TLV2264AM

ACTIVE

Low Voltage Rail-To-Rail Low Power Precision Advanced LinCMOS™ Quad Operational Amplifier

A newer version of this product is available

open-in-new Compare alternates
Pin-for-pin with same functionality to the compared device
LM124AQML ACTIVE Military-grade, quad, 32-V, 1-MHz, 3-mV offset voltage op amp with -55°C to 125°C operation Wider supply range (3 V to 32 V), lower offset voltage (2 mV), lower power (0.175 mA), higher output current (60 mA)

Product details

Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.7 Vos (offset voltage at 25°C) (max) (mV) 0.95 Offset drift (typ) (µV/°C) 2 Input bias current (max) (pA) 60 GBW (typ) (MHz) 0.71 Features High Cload Drive Slew rate (typ) (V/µs) 0.55 Rail-to-rail In to V-, Out Iq per channel (typ) (mA) 0.2 Vn at 1 kHz (typ) (nV√Hz) 12 CMRR (typ) (dB) 83 Rating Military Operating temperature range (°C) -55 to 125 Iout (typ) (A) 0.009 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -0.8 Output swing headroom (to negative supply) (typ) (V) 0.09 Output swing headroom (to positive supply) (typ) (V) -0.15 THD + N at 1 kHz (typ) (%) 0.003
Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 2.7 Vos (offset voltage at 25°C) (max) (mV) 0.95 Offset drift (typ) (µV/°C) 2 Input bias current (max) (pA) 60 GBW (typ) (MHz) 0.71 Features High Cload Drive Slew rate (typ) (V/µs) 0.55 Rail-to-rail In to V-, Out Iq per channel (typ) (mA) 0.2 Vn at 1 kHz (typ) (nV√Hz) 12 CMRR (typ) (dB) 83 Rating Military Operating temperature range (°C) -55 to 125 Iout (typ) (A) 0.009 Architecture CMOS Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -0.8 Output swing headroom (to negative supply) (typ) (V) 0.09 Output swing headroom (to positive supply) (typ) (V) -0.15 THD + N at 1 kHz (typ) (%) 0.003
CDIP (J) 14 130.4652 mm² 19.56 x 6.67 CFP (W) 14 58.023 mm² 9.21 x 6.3
  • Output Swing Includes Both Supply Rails
  • Low Noise...12 nV/ Hz Typ at f = 1 kHz
  • Low Input Bias Current...1 pA Typ
  • Fully Specified for Both Single-Supply and Split-Supply Operation
  • Low Power...500 µA Max
  • Common-Mode Input Voltage Range Includes Negative Rail
  • Low Input Offset Voltage
    950 µV Max at TA = 25°C (TLV226xA)
  • Wide Supply Voltage Range
    2.7 V to 8 V
  • Macromodel Included
  • Available in Q-Temp Automotive
    HighRel Automotive Applications
    Configuration Control / Print Support
    Qualification to Automotive Standards

Advanced LinCMOS is a trademark of Texas Instruments.

  • Output Swing Includes Both Supply Rails
  • Low Noise...12 nV/ Hz Typ at f = 1 kHz
  • Low Input Bias Current...1 pA Typ
  • Fully Specified for Both Single-Supply and Split-Supply Operation
  • Low Power...500 µA Max
  • Common-Mode Input Voltage Range Includes Negative Rail
  • Low Input Offset Voltage
    950 µV Max at TA = 25°C (TLV226xA)
  • Wide Supply Voltage Range
    2.7 V to 8 V
  • Macromodel Included
  • Available in Q-Temp Automotive
    HighRel Automotive Applications
    Configuration Control / Print Support
    Qualification to Automotive Standards

Advanced LinCMOS is a trademark of Texas Instruments.

The TLV2262 and TLV2264 are dual and quad low voltage operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single or split supply applications. The TLV226x family offers a compromise between the micropower TLV225x and the ac performance of the TLC227x. It has low supply current for battery-powered applications, while still having adequate ac performance for applications that demand it. This family is fully characterized at 3 V and 5 V and is optimized for low-voltage applications. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. Figure 1 depicts the low level of noise voltage for this CMOS amplifier, which has only 200 µA (typ) of supply current per amplifier.

The TLV226x, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels combined with 3-V operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV226xA family is available and has a maximum input offset voltage of 950 µV.

The TLV2262/4 also makes great upgrades to the TLV2332/4 in standard designs. They offer increased output dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442 devices. If your design requires single amplifiers, please see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment.

The TLV2262 and TLV2264 are dual and quad low voltage operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single or split supply applications. The TLV226x family offers a compromise between the micropower TLV225x and the ac performance of the TLC227x. It has low supply current for battery-powered applications, while still having adequate ac performance for applications that demand it. This family is fully characterized at 3 V and 5 V and is optimized for low-voltage applications. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. Figure 1 depicts the low level of noise voltage for this CMOS amplifier, which has only 200 µA (typ) of supply current per amplifier.

The TLV226x, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels combined with 3-V operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV226xA family is available and has a maximum input offset voltage of 950 µV.

The TLV2262/4 also makes great upgrades to the TLV2332/4 in standard designs. They offer increased output dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442 devices. If your design requires single amplifiers, please see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment.

Download

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 1
Type Title Date
* Data sheet Advanced LinCMOS (TM) Rail-to-Rail Operational Amplifiers datasheet (Rev. C) 11 Aug 2006

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​