
User's Guide
Application Software Optimization on the C29 CPU

ABSTRACT

This user's guide describes specific techniques to optimize application performance with the C29 CPU.

Table of Contents
1 Introduction...2
2 Performance Optimization... 2

2.1 Compiler Settings...2
2.2 Memory Settings.. 3
2.3 Code Construction and Configuration.. 4
2.4 Application Code Optimization... 8

3 References.. 14
4 Revision History... 14

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SPRUJG0B – DECEMBER 2024 – REVISED NOVEMBER 2025
Submit Document Feedback

Application Software Optimization on the C29 CPU 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJG0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJG0B&partnum=

1 Introduction
This guide describes specific techniques to optimize application performance with the C29 CPU. The advocated
methods span compiler settings, memory configuration, code construction and configuration, and finally
application level optimization.

2 Performance Optimization

2.1 Compiler Settings
This section discusses key compiler settings that affect performance.

2.1.1 Enabling Debug and Source Inter-Listing

During initial development, it is recommended to use the -g compiler option to generate debug information. Then,
with the following command, the output executable can generate a disassembly file with inter-listed source code.
For more information, see Development Flow Differences.

c29objdump --disassemble -S <>.out > <>.cdis

2.1.2 Optimization Control

-O3 optimization is recommended for speed, specifically for software pipe-lining of loops. For debug purposes,
optimization can be selectively switched off for select functions using the 'optnone' attribute.

__attribute__((optnone))
void foo()
{
 ..
}

2.1.3 Floating-Point Math

-ffast-math is a compiler option that is recommended for floating-point computations. This option is a collection
of several options, of which the two that significantly improve performance are -fapprox-funcs and -freassoc. It
lets the compiler make aggressive assumptions about floating-point math, resulting in limited loss in accuracy.
Details on controlling floating-point behavior can be found in the Clang Compiler User's manual and in the C29
Clang Compiler Tools User's Guide. Details on -ffast-math can also be found in the Clang Compiler User's
manual and in the C29 Clang Compiler Tools User's Guide.

With -ffast-math, the compiler replaces calls to many standard RTS library functions with the corresponding TMU
instruction. The TMU is built into the C29 CPU.

Single-precision floating-point division using the C '/' operator is implemented using PREDIVF, SUBC4F
(7 times), and POSTDIVF instructions. Double-precision floating-point division using the C '/' operator is
implemented using PREDIVF, SUBC3F (19 times), and POSTDIVF instructions. With the -ffast-math compiler
option, single-precision floating-point division is implemented using the DIVF instruction (which estimates the
reciprocal of the denominator and multiplies with the numerator).

Introduction www.ti.com

2 Application Software Optimization on the C29 CPU SPRUJG0B – DECEMBER 2024 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://software-dl.ti.com/codegen/docs/c29clang/compiler_tools_user_guide/migration_guide/behavioral_differences/development_flow.html?highlight=interlist
https://clang.llvm.org/docs/UsersManual.html#controlling-floating-point-behavior
https://software-dl.ti.com/codegen/docs/c29clang/compiler_tools_user_guide/migration_guide/mapping_ticl_options_to_ticlang/managing_floating_point_support.html
https://clang.llvm.org/docs/UsersManual.html#controlling-floating-point-behavior
https://software-dl.ti.com/codegen/docs/c29clang/compiler_tools_user_guide/compiler_manual/using_compiler/compiler_options/optimization_options.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJG0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJG0B&partnum=

2.1.4 Fixed-Point Division

In signed or unsigned 32-bit or 64-bit integer division, the C '/' operator is implemented by the compiler using the
necessary instructions. Three types of division are supported - traditional, Euclidean, and Modulo. Traditional
division is natively supported by the C standard and compiler, where the remainder has the sign of the
numerator. In modulo (or floored) division, the remainder has the sign of the denominator. Euclidean division
is the preferred choice for control operations, where the quotient is linear about 0, and the remainder is always
positive.

Note
To implement Euclidean or Modulo division, intrinsics need to be used. For more information, see
here.

2.1.5 Single vs Double Precision Floating-Point

If FPU64 is available (CPU3 on F29H85x), double-precision floating point operations can be efficiently
performed. To enable use of the FPU64, use the compiler option:

-mfpu=f64

On the C29, EABI is the only supported executable format. COFF is not supported. With EABI, the double type
is 64-bits. User code that contains literal constants (1.54) without a trailing 'f' (1.54f) is interpreted as double
precision per the C standard. This leads to implicit conversion of other associated variables to double precision,
which negatively impacts performance when FPU64 is not available (CPU3 on F29H85x).

Using the following compiler option generates a warning when the above occurs:

-Wdouble-promotion

Alternately, the following compiler option can be used to limit floating-point constants to single-precision. This
eliminates the need to add a trailing 'f' to every floating-point constant. However, with this approach, all floating-
point constants become single-precision.

-cl-single-precision-constant

2.1.6 Link-Time Optimization (LTO)

The compiler tools, starting with version 2.0.0.STS, enable inter-module optimization over the complete program
at link-time. This feature is commonly referred to as Link-Time Optimization or LTO. This can result in significant
performance benefits. More information on LTO can be found here.

Note
In order for libraries included in an application to participate in LTO, the libraries must each be built
with the -flto compiler option. This sets the libraries up to support LTO during linking.

2.2 Memory Settings
This section discusses key memory settings that affect performance.

2.2.1 Executing Code From RAM

To understand which RAMs are 0 wait-state access for Program code for C29 CPUs, see the Memory
Subsystem (MEMSS) chapter of the F29H85x and F29P58x Real-Time Microcontrollers Technical Reference
Manual. As an example, CPU1 and CPU2 have 0-WS access for program code on LPAx RAM. CPU1 and CPU3
have 0-WS access for program code on CPAx RAM.

www.ti.com Performance Optimization

SPRUJG0B – DECEMBER 2024 – REVISED NOVEMBER 2025
Submit Document Feedback

Application Software Optimization on the C29 CPU 3

Copyright © 2025 Texas Instruments Incorporated

https://software-dl.ti.com/codegen/docs/c29clang/compiler_tools_user_guide/compiler_manual/c_cpp_language_implementation/intrinsics/indexC29.html?highlight=intrinsics#arithmetic-intrinsics
https://www.ti.com/product/F29H850TU
https://software-dl.ti.com/ccs/esd/documents/C2000_c28x_migration_from_coff_to_eabi.html
https://www.ti.com/product/F29H850TU
https://software-dl.ti.com/codegen/docs/tiarmclang/compiler_tools_user_guide/compiler_manual/link_time_optimization/index.html
https://www.ti.com/lit/pdf/SPRUJ79
https://www.ti.com/lit/pdf/SPRUJ79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJG0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJG0B&partnum=

Functions that need to execute from RAM can be placed in a RAM section, and the linker command file can be
used to control the copy of this function to RAM at boot time. More information can be found here.

Source file:
__attribute__((section(“ramfunc”), noinline)) void foo() {.. }

Linker command file:
ramfunc : load=FLASH, run=RAM, table(BINIT)

2.2.2 Executing Code From Flash

To understand the number of required Flash wait states depending on the CPU clock frequency, see the Flash
Parameters section of the F29H85x and F29P58x Real-Time Microcontrollers Data Sheet. Also, make sure
Pre-fetch, Pre-read and caches are enabled. Flash_initModule() can be used to perform these operations:

voidFlash_initModule(uint16_twaitstates)
{
 ..
 // Set waitstates according to frequency
 Flash_setWaitstates(waitstates);
 ..
 // Enable data cache, code cache, prefetch, and data preread to improve performance of code//
executed from flash.
 Flash_configFRI(FLASH_FRI1, FLASH_DATAPREREAD_ENABLE | FLASH_CODECACHE_ENABLE |
FLASH_DATACACHE_ENABLE | FLASH_PREFETCH_ENABLE);
 ..
}

2.2.3 Data Placement

To understand which RAMs are 0 wait-state access for Program data for C29 CPUs, see the Memory Subsystem
(MEMSS) chapter of the F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual. As an
example, CPU1 and CPU2 have 0-WS access for program data on LDAx RAM. CPU1 and CPU3 have 0-WS
access for program data on CDAx RAM.

Parallel accesses to RAM can lead to arbitration and results in stalls when they occur to the same RAM block
(LDAx, CDAx - each "x" corresponds to a different RAM block). The compiler attempts to perform parallel loads
whenever feasible:

LD.32 M2,*(ADDR2)(A7++)
||LD.32 M3,*(ADDR2)(A4+A0<< 2)

To avoid stalls, make sure the accesses occur to different blocks. For example, with an FIR filter, parallel loads of
filter coefficients and history buffer values can occur. Place each in its own RAM block.

2.3 Code Construction and Configuration
This section discusses code construction and configuration that affect performance.

2.3.1 Inlining

Inlining can lead to performance benefits by eliminating the overhead of function calls and returns on very small
functions, allowing the compiler to perform optimizations in the context of the code surrounding the function calls.
It can also be beneficial on large functions that are called only a few times.

To enable inlining, the compiler needs the optimization level to -O1 or above (at -O0, attributes can force
inlining), and needs to be able to see the definition of functions at compile time. Thus, calls to functions defined
in the same source file can be inlined, as well as functions defined with "static" in header files, where the header
files are included in the source file.

Note
Link-time Optimization (LTO) enables the compiler to inline functions that are defined in source files
different from the source files where they are called from.

Performance Optimization www.ti.com

4 Application Software Optimization on the C29 CPU SPRUJG0B – DECEMBER 2024 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://software-dl.ti.com/codegen/docs/c29clang/rel1_0_0_LTS/compiler_manual/linker_description/08_using_linker_generated_copy_tables/generating-copy-tables-with-the-table-operator-stdz0750716.html#boot-time-copy-tables
https://www.ti.com/lit/pdf/SPRSP93
https://www.ti.com/lit/pdf/SPRUJ79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJG0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJG0B&partnum=

2.3.2 Intrinsics

The C29 has instructions that support the efficient implementation of many standard RTS functions when the
-ffast-math compiler option is used. The compiler also supports builtins, or intrinsics, that correspond to these
instructions. The F29-SDK provides examples in examples/rtlibs/fastmath/tmu that illustrate the use of these
intrinsics. The examples supported are asinf(), acosf(), atan2f(), ceilf(), cosf(), divf(), expf(), floorf(), fmodf(),
roundf(), sinf(), and truncf().

• Additionally, the compiler supports sqrtf() and 1/sqrtf() implementation with the ISQRTF instruction. The
corresponding intrinsic is shown in the code block below.

float __builtin_c29_i32_isqrtf32_m(float x);

• The intrinsic for IEXP2F is shown in the code block below.

float __builtin_c29_i32_iexp2f32_m(float f0);

Note
Due to accuracy limitations with IEXP2F when the base or exponent are large, the compiler does not
support expf(), exp2f(), 1/expf(), or 1/exp2f() implementation through IEXP2F. However, the F29x-SDK
contains an example for this in examples/rtlibs/fastmath/tmu/ccs/expf_example, that demonstrates the
use of the intrinsic over a range of inputs. The instruction (and intrinsic) are still accurate and useful
over a range of base/exponent values.

• The compiler supports logarithm computation through the LOG2F instruction. Additionally, the intrinsic for
LOG2F is shown in the code block below. It can be used to implement logf(), log2f(), and also powf().

float __builtin_c29_i32_log2f32_m(float f0);

• atanf() can be implemented with PUATANF, using the intrinsic float __builtin_c29_i32_puatanf32_m(float f0)

Example:
// x is per-unit in [-1,1]
// y is per-unit in [-0.125, 0.125] i.e. [-pi/4, pi/4] radians
y = __builtin_c29_i32_puatanf32_m(x);

• The compiler supports atan2f() computation through the PUATANF and QUADF instructions. Additionally,
atan2f() can be implemented using the intrinsics float __builtin_c29_i32_puatanf32_m(float f0) and float
__builtin_c29_quadf32(unsigned int * tdm_w_uip0, float * rw_fp1, float * rw_fp2)

Example:
test_output =puatan2f32(y_input,x_input);

static inline float32_t puatan2f32(float32_t y, float32_t x)
{
 uint32_t flags;
 return __builtin_c29_quadf32(&flags, &y, &x) + __builtin_c29_i32_puatanf32_m(y / x);
}

2.3.3 Volatile Variables

The 'volatile' keyword on a variable indicates to the compiler that it might be modified by something external to
the obvious flow of the program such as an ISR. This makes sure the compiler preserves the number of reads
and writes to the global variable exactly as written in C/C++ code, without eliminating redundant reads or writes
or re-ordering accesses. The volatile keyword must be used when accessing memory locations that represent
memory mapped peripherals.

Note
The volatile keyword is recommended on variables only when absolutely needed, such as variables
updated inside ISRs, and memory mapped peripherals. When using volatile data types, performance
can be improved by using local variables for intermediate computation instead of directly referencing
the volatile data structure.

www.ti.com Performance Optimization

SPRUJG0B – DECEMBER 2024 – REVISED NOVEMBER 2025
Submit Document Feedback

Application Software Optimization on the C29 CPU 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJG0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJG0B&partnum=

2.3.4 Function Arguments

When pointers are passed as function arguments, using the "restrict" keyword on the pointer can result in
performance improvements. By applying restrict to the type declaration of a pointer p, the programmer provides
the following to the compiler:

Within the scope of the declaration of p , only p or expressions based on p are used to access the object pointed
to by p.

The compiler can take advantage of this to generate more efficient code.

Example:
void matrix_vector_product(float32_t *restrict A, float32_t *restrict b, int nr, int nc, float32_t
*restrict c)
{
 int i, j;
 float32_t s;
 for(i = nr -1; i >=0; i--)
 {
 s =c[i];
 for(j = nc -1; j >=0; j--)
 {
 s = s +A[j*nr+i]*b[j];
 }
 c[i] = s;
 }
}

Note
When passing a structure as a function argument, passing structure pointers instead of structure
members results in improved performance.

2.3.5 Enabling Wider Data Accesses

Many operations in embedded systems involve consecutive data accesses (reads or writes) to memory. Since
data buses on the F29x are 64-bit wide, the architecture allows 64-bit data reads and writes. However, most
user code is limited to 32-bit data, and therefore accesses are limited to 32-bits. In some cases, especially array
accesses, significant performance benefits can be achieved by re-writing the code to perform 64-bit accesses
instead of 32-bit accesses. For example, the first code block below represents a simple memory buffer read
operation, through 32-bit accesses.

uint32_t mem_read_16k_cn(uint32_t *src)
{
 uint32_t i =0;
 uint32_t x =0;
 for (i=0;i<LEN_16K;i++)
 {
 x +=*src++;
 }
 return x;
}

The next code block represents the identical operation, implemented using 64-bit accesses, which is twice as
efficient.

uint32_t mem_read_16k_opt(uint32_t *src)
{
 uint32_t i =0;
 uint64_t *s2 = (uint64_t*) src;
 uint32_t x =0;
 uint32_t x2 =0;
 for (i=0;i<LEN_16K>>1;i++)
 {
 uint64_t temp =*s2++;
 x += (temp>>32);
 x2 += (temp&0xFFFFFFFF);
 }

Performance Optimization www.ti.com

6 Application Software Optimization on the C29 CPU SPRUJG0B – DECEMBER 2024 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJG0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJG0B&partnum=

 return x+x2;
}

In many cases, the compiler is able to provide this performance boost without explicitly rewriting the code, but
by applying specific attributes to the underlying data. If an array is aligned, use __attribute__((aligned(val)) to
indicate so to the compiler. For example, __attribute__((aligned(8)) on an array indicates 8-byte alignment, and
allows the compiler to potentially load 64-bits at a time instead of 32-bits. This can lead to performance benefits
for operations like matrix multiplication. If the array is global and is accessed directly in a function, then the
alignment specification above is sufficient (see first code block below). On the other hand, if the aligned array
is passed into a function as a pointer, then the __builtin_assume_aligned attribute needs to be applied to the
pointer to inform the compiler about alignment of that object (see second code block below).

__attribute__((aligned(8))) float A[100];
__attribute__((aligned(8))) float B[100];
__attribute__((aligned(8))) float C[100];
void matrix_mpy(void)
{
int32_T i;
int32_T i_0;
int32_T i_1;
for (i_0 =0; i_0 <10; i_0++)
{
 for (i =0; i <10; i++)
 {
 int32_T C_tmp, tmp;
 C[10* i_0 + i] =0.0f;
 for (i_1 =0; i_1 <10; i_1++)
 {
 C[10* i_0 + i] +=A[10* i_1 + i] *B[10* i_0 + i_1];
 }
 }
}

void matrix_mpy_f32_4by4(float (*restrict Ma_f32) [4], float (*restrict Mb_f32)[4], float
(*restrict Mc_f32)[4])
{
int32_t i,j,k;
// Use __builtin_assume_aligned to inform the compiler about alignment Ma_f32 =
__builtin_assume_aligned(Ma_f32, 8);
Mb_f32 = __builtin_assume_aligned(Mb_f32, 8);
Mc_f32 = __builtin_assume_aligned(Mc_f32, 8);
..
}

Note

At present, the compiler is not able to discern alignment based on the physical address of an object
i.e. just based on a location attribute.

Note

This "vectorization" i.e. combining accesses of smaller data types to larger data types is also possible
with 8-bit and 16-bit data, and is planned in a future release of the compiler.

www.ti.com Performance Optimization

SPRUJG0B – DECEMBER 2024 – REVISED NOVEMBER 2025
Submit Document Feedback

Application Software Optimization on the C29 CPU 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJG0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJG0B&partnum=

2.3.6 Auto Code-Generation Tools

Performance optimization with auto code-generation tools, Mathworks Embedded Coder, for example, is a key
focus area. Details can be found here.

Depending on the configuration settings, generated code can have double-precision floating point operations
and these can lead to significant deterioration of performance when running on floating-point hardware that
supports only single-precision floating point operations. It is advised that users look for the following in the
generated code:

• Any unexpected double-precision floating point constants in C code. These can be floating point numbers
without a trailing 'f'. Sometimes these have specific names, such as "DBL_EPSILON".

• Ocurrences of double-precision operations in compiler generated assembly. These might have specific
names, such as "CALLD @__extendsfdf2" (double-precision multiply), or "CALLD @__muldf3" (double-
precision multiply).

2.3.7 Accurately Profiling Code

The user can use different profiling techniques to benchmark their application code. With optimization enabled,
the compiler can re-order operations and perform inlining, and so forth. This can sometimes make it difficult
to understand exactly what was profiled, and whether what was profiled was indeed what the user wanted to
profile.

"__builtin_instrumentation_label()" is a helpful label to use before and after the code that needs to be profiled
(see code block below). However, it is not a perfect code barrier when optimization is enabled. The C29 compiler
has no true code movement barrier other than to outline the code block into its own function, mark it noinline to
disable inlining, and call that function.

// Example 1
__builtin_instrumentation_label("profiling_start");
function1();
__builtin_instrumentation_label("profiling_stop");

// Example 2
__builtin_instrumentation_label("profiling_start");
// code being profiled
..
..
__builtin_instrumentation_label("profiling_stop");

2.4 Application Code Optimization
This section discusses application code and its configuration that affects application performance.

2.4.1 Optimized SDK Libraries

Use optimized libraries and source provided in F29x SDKs. These contain optimal implementations of many
standard control, DSP, and math operations. Some of these (FFT, FIR) are written in assembly.

Many RTS library functions are cycle intensive because they cover all corner-case scenarios. When certain
assumptions are made (for example, no NaN or infinite values are operands or results of floating-point
operations), these functions can be replaced with simpler and more optimized functions that leverage specific
C29 instructions. For example- asinf(), acosf(), atan2f(), ceilf(), cosf(), divf(), expf(), floorf(), fmodf(), roundf(),
sinf(), truncf(). Examples of these implementations are provided in the F29x-SDK, and are enabled with the
-ffast-math compiler option.

Automotive applications using AUTOSAR leverage math libraries generated by code generation tools, containing
floating-point and fixed-point libraries, with functions for fixed-point to floating-point conversion and vice versa.
C29 instructions can be leveraged to perform these in an efficient manner.

Performance Optimization www.ti.com

8 Application Software Optimization on the C29 CPU SPRUJG0B – DECEMBER 2024 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

http://www.ti.com/lit/spradi0
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJG0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJG0B&partnum=

2.4.2 Optimizing Code-Size With Libraries

Applications can include pre-compiled libraries, but can not use all the functions present in those libraries. To
make sure the linker excludes unused functions in libraries and application code, make sure both are built with
the below compiler option:

-ffunction-sections

Each function is then placed in a specific section, like .text.<function_name>, otherwise each function is placed
in .text.

Note
Using __attribute__((section)) puts code into the corresponding section. -ffunction-sections does not
affect objects with the section attribute. In such cases, if the user groups multiple functions into the
same section, even if one of those functions is used, all the functions mapped to that section are
linked into the final executable.

2.4.3 C29 Special Instructions

C29 supports a number of instructions that find use in optimizing specific types of functions. Key examples are
listed below:

• SVGEN - space vector generation can be optimized with the QUADF instruction, leveraged using the intrinsic
'float __builtin_c29_quadf32(unsigned int * tdm_w_uip0, float * rw_fp1, float * rw_fp2)'.

Note
Optimized implementations of the SVGEN (including those that can be applied to a 3-level inverter) are
planned in the F29x Motor Control SDK.

• CRC - Cyclic Redundancy Check implementations can be optimized with the CRC instruction. Examples are
provided in the F29x SDK. An intrinsic is also available 'unsigned int __builtin_c29_i32_crc(unsigned int ui0,
unsigned int ui1, unsigned int ui2, unsigned int ui3)'.

• Limiting (Saturation) operations - can be optimized using the MINMAXF instruction.
– The compiler generates the MINMAXF instruction and an optimal implementation if the C code is written

using the ternary operator, if min and max are constants, and the code is compiled with -O3 and -ffast-
math options. This implementation is the fastest as it involves 2 MV instructions in parallel, followed by
the MINMAXF instruction. If min and max are constants, but only -O3 is used, MINMAXF is not generated,
instead CMPF and SELECT instruction pairs are generated. If min and max are not constant, with -O3 and
-ffast-math options, the compiler generates LDs to read from memory, CMPF, SELECT, and MAXF.

float saturation(float in)
{
 float out;
 out = (in > max)? max:((in < min)? min:in);
 return out;
}

www.ti.com Performance Optimization

SPRUJG0B – DECEMBER 2024 – REVISED NOVEMBER 2025
Submit Document Feedback

Application Software Optimization on the C29 CPU 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJG0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJG0B&partnum=

– With if.else conditionals and either of the implementations below, the behavior is exactly the same as
above.

float saturation(float in)
{
 float out;
 if(in > max)
 {
 out = max;
 } else if(in < min)
 {
 out = min;
 } else {
 out = in;
 }
 return out;
}

float saturation(float in)
{
 float out = in;
 if(in > max)
 {
 out = max;
 } else if(in < min)
 {
 out = min;
 }
 return out;
}

float saturation(float in)
{
 float out = in;
 if(in > max)
 {
 out = max;
 }
 if(in < min)
 {
 out = min;
 }
 return out;
}

• Deadzone operations - the compiler generates the most efficient code when min and max are constants, with
the -O3 option, and with the C code written using either the ternary operator or if..else as shown in the code
blocks below.

float deadzone(float in)
{
 float out;
 out = (in>1.0f)?(in-1.0f):((in>-1.0f)?0.0f:(in+1.0f));
 return out;
}

float deadzone(float in)
{
 float out;
 if(in >1.0f)
 {
 out = in-1.0f;
 } else if(in >-1.0f){
 out =0.0f;
 } else {
 out = in+1.0f;
 }
 return out;
}

Performance Optimization www.ti.com

10 Application Software Optimization on the C29 CPU SPRUJG0B – DECEMBER 2024 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJG0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJG0B&partnum=

2.4.4 C29 Parallelism

• The C29 compiler can leverage the parallelism of the C29 architecture, executing multiple instructions in
parallel especially in cases where independent operations occur sequentially. For example, the code block
below demonstrates two identical PID operations that occur sequentially. If DCL_runPID is declared as a
static function in a header file, the compiler can perform inlining and then perform the two PID operations in
parallel.

Note
However, in order to achieve performance improvement with the parallelized operations, it may also
be necessary to place memory objects in different RAM blocks so as to avoid memory stalls when
simultaneously accessing objects associated with independent execution (e.g. PID) instances.

float run_dualPID(DCL_PID *restrict p1, DCL_PID *restrict p2,float32_t rk1, float32_t yk1,
float32_t lk1,float32_t rk2, float32_t yk2, float32_t lk2)
{
 float x = DCL_runPID_C3(p1, rk1, yk1, lk1);
 float y = DCL_runPID_C3(p2, rk2, yk2, lk2);
 return x+y;
}

• Binary LUT search - binary look-up table searches are common in motor control applications, and can be
optimized by changing the conditional loop to a fixed iteration loop. The F29-SDK provides an example in
examples/rtlibs/fastmath/binary_lut_search.

2.4.5 32-Bit Variables and Writes Preferred

The ECC bits cover 32-bit data, so for write sizes less then 32-bits to RAM , the memory wrapper performs a
Read-Modify-Write operation to patch in the new value and re-calculate the ECC for the whole 32-bit word. This
leads to stalls when multiple writes of less than 32-bits occur. This is true for most CPUs, including ARM CPUs.

Example: 5 writes take 13 cycles
ST.16 *(ADDR1)(A4+#0x1a),#0x1
ST.16 *(ADDR1)(A4+#0x14),#0x303
ST.8 *(ADDR1)(A4+#0x1e),#0x0
ST.8 *(ADDR1)(A4+#0x16),#0x4
ST.16 *(ADDR1)(A4+#0x1c),#0x0

Note
Application code must minimize writes of less than 32-bits, and in general use 32-bit variables where
possible.

Using 32-bit variables also sometimes avoids the compiler adding extra instructions to sign extend 16-bit values.
The below example shows an additional instruction the compiler uses to sign-extend a 16-bit value to a 32-bit
value.

Example:
int16_t mashup_16(int16_t in_a, int16_t in_b)
{
int16_t tmp1, tmp2, tmp3, tmp4;
 tmp1 = in_a + in_b;
 tmp2 = in_a - in_b;
 tmp3 = in_b - in_a;
 tmp3 = tmp1>>(tmp3 &0x7);
 tmp4 = tmp2<<(tmp1 &0x7);
 return (tmp3 ^ tmp4);
}
Generated code:
20103420 <mashup_16>:
20103420: 33dd 0004 MV A4,D0
20103424: 33dd 0025 MV A5,D1
20103428: 3204 18a4 SUB A6,A5,A4,#0x0
2010342c: b2e7 b200 3386 0007 20a4 0007
 MV.S16 A7,#0x7
 || ADD A8,A5,A4,#0x0
 || AND.U16 A6,#0x7

www.ti.com Performance Optimization

SPRUJG0B – DECEMBER 2024 – REVISED NOVEMBER 2025
Submit Document Feedback

Application Software Optimization on the C29 CPU 11

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJG0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJG0B&partnum=

20103438: 33d2 1d07 AND A7,A8,A7
2010343c: b3e4 3204 0108 1085
 SEXT.16 A8,A8
 || SUB A4,A4,A5,#0x0
20103444: 33d8 1087 LSL A4,A4,A7
20103448: b3d5 7a09 1506 ASR A5,A8,A6
 || RETD
2010344e: 33e6 10a4 XOR A4,A5,A4
20103452: 33e4 0084 SEXT.16 A4,A4
20103456: 33e0 0004 MV D0,A4

Note
Since all CPU registers are 32-bits and operations on registers are 32-bits, using 32-bit data variables
(for time critical code) in general leads to better performant code.

2.4.6 Coding Style and Impact on Performance

The way the developer writes C code can have an impact on performance. This section illustrates specific
example scenarios where this can occur.

• With loops, performance can vary depending on whether the loop counter is a fixed or a variable value.
With a fixed value, the compiler has complete knowledge of the loop, and can determine the approach
that maximizes performance - whether that means unrolling the loop, software pipelining the loop, and so
forth. For example, with matrix multiplication, the performance is significantly better when the matrix row and
column sizes are specified in the loops, versus passing them in as function arguments.

• In some cases, merging independent loops into a single loop can speed up performance. The first code block
below generates sub-optimal code. The second code block is more optimized.

uint8_T Bit_Manipulation_Test_Case(void)
{
uint32_T result;
uint32_T i;
uint8_T valid;
result = 0u;
valid = TC_OK;
i = 0u;
/* Or Test Case */
for(i=0; i<BIT_MANIPULATION_ARRAY_SIZE; i++)
{
 result = (Swc1_Bit_Manipulation.Operand_A[i] | Swc1_Bit_Manipulation.Operand_B[i]);
 if(result != Swc1_Bit_Manipulation.Result_Or[i])
 {
 valid = TC_NOK;
 }
}
/* And Test Case */
for(i=0; i<BIT_MANIPULATION_ARRAY_SIZE; i++)
{
 result = (Swc1_Bit_Manipulation.Operand_A[i] & Swc1_Bit_Manipulation.Operand_B[i]);
 if(result != Swc1_Bit_Manipulation.Result_And[i])
 {
 valid = TC_NOK;
 }
}
/* Xor Test Case */
for(i=0; i<BIT_MANIPULATION_ARRAY_SIZE; i++) {
 result = (Swc1_Bit_Manipulation.Operand_A[i] ^ Swc1_Bit_Manipulation.Operand_B[i]);
 if(result != Swc1_Bit_Manipulation.Result_Xor[i]) {
 valid = TC_NOK;
 }
}
 return valid;
}

uint8_T Bit_Manipulation_Test_Case(void)
{
uint32_T result_or,result_and,result_xor;
uint32_T i;
uint8_T valid;
result_or = 0u;
result_and = 0u;

Performance Optimization www.ti.com

12 Application Software Optimization on the C29 CPU SPRUJG0B – DECEMBER 2024 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJG0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJG0B&partnum=

result_xor = 0u;
valid = TC_OK;
i = 0u;
/* Or, And, Xor Test Case */
for(i=0; i<BIT_MANIPULATION_ARRAY_SIZE; i++)
{
 result_or = (Swc1_Bit_Manipulation.Operand_A[i] | Swc1_Bit_Manipulation.Operand_B[i]);
 if(result_or != Swc1_Bit_Manipulation.Result_Or[i])
 {
 valid = TC_NOK;
 }
 result_and = (Swc1_Bit_Manipulation.Operand_A[i] & Swc1_Bit_Manipulation.Operand_B[i]);
 if(result_and != Swc1_Bit_Manipulation.Result_And[i])
 {
 valid = TC_NOK;
 }
 result_xor = (Swc1_Bit_Manipulation.Operand_A[i] ^ Swc1_Bit_Manipulation.Operand_B[i]);
 if(result_xor != Swc1_Bit_Manipulation.Result_Xor[i])
 {
 valid = TC_NOK;
 }
}
return valid;
}

• Also, if conditional statements involve loads from memory or access to global variables, it may be helpful
for them to be pre-loaded into local variables if possible. This allows for increased use of the wider register
set on the C29 CPU. It also prevents pipeline stalls that occur from loading a value from a memory and
immediately performing a conditional check on it. The first code block below generates sub-optimal code. The
second code block is more optimized.

// Variables are globals
if(xx ==FALSE)
{
 A = b * c + d;
 E = f * c + d;
 if(dd > high)
 {
 D = high;
 } elseif (dd < low) {
 if(kk == RUN)
 {
 D = low;
 } else {
 D = dd;
 }
 } else {
 D=dd;
 }
}

// Local copies of globals
float b_temp=b, c_temp=c, d_temp=d, f_temp=f, high_temp=high, low_temp=low, dd_temp=dd, kk_temp=kk,
D_temp=D, g_temp=g, h_temp=h;
if(xx==FALSE)
{
 A = b_temp * c_temp + d_temp;
 E = f_temp * c_temp + d_temp;
 if(dd_temp > high_temp)
 {
 D_temp = high_temp;
 } elseif (dd_temp < low_temp) {
 if(kk_temp == RUN)
 {
 D_temp = low_temp;
 } else {
 D_temp = dd_temp;
 }
 } else {
 D_temp=dd_temp;
 }
}

www.ti.com Performance Optimization

SPRUJG0B – DECEMBER 2024 – REVISED NOVEMBER 2025
Submit Document Feedback

Application Software Optimization on the C29 CPU 13

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJG0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJG0B&partnum=

3 References
1. Texas Instruments, C29x CPU Reference Guide
2. Texas Instruments, F29H85x and F29P58x Real-Time Microcontrollers Data Sheet
3. Texas Instruments, F29H85x and F29P58x Real-Time Microcontrollers technical reference manual
4. Texas Instruments, Application Software Migration to the C29 CPU user's guide
5. Texas Instruments, Implementing Run-Time Safety and Security Protections With the C29x SSU
6. Texas Instruments, TI C29x Clang Compiler Tools user’s guide
7. Texas Instruments, TMS320F2837x, TMS320F2838x, TMS320F28P65x Migration to TMS320F29H85x

4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from April 30, 2025 to November 30, 2025 (from Revision A (April 2025) to Revision B
(November 2025)) Page
• Removed Note..2
• Removed Note..2
• Updated Single vs Double Precision Floating-Point section...3
• Updated Section 2.1.6.. 3
• Updated Inlining section... 4
• Updated Intrinsics section.. 5
• Updated Enabling Wider Data Accesses section... 6
• Removed Notes..8
• Updated C29 Special Instructions section..9
• Updated C29 Parallelism section..11
• Updated Coding Style and Impact on Performance section...12

References www.ti.com

14 Application Software Optimization on the C29 CPU SPRUJG0B – DECEMBER 2024 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/lit/pdf/sprsp93
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruiy8
https://www.ti.com/lit/pdf/spradk2
https://software-dl.ti.com/codegen/docs/c29clang/compiler_tools_user_guide/index.html
https://www.ti.com/lit/pdf/spruja3
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUJG0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUJG0B&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully
indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale, TI’s General Quality Guidelines, or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products
are standard, catalog, general purpose devices.
TI objects to and rejects any additional or different terms you may propose.
IMPORTANT NOTICE

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com/lit/pdf/SZZQ076
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Performance Optimization
	2.1 Compiler Settings
	2.1.1 Enabling Debug and Source Inter-Listing
	2.1.2 Optimization Control
	2.1.3 Floating-Point Math
	2.1.4 Fixed-Point Division
	2.1.5 Single vs Double Precision Floating-Point
	2.1.6 Link-Time Optimization (LTO)

	2.2 Memory Settings
	2.2.1 Executing Code From RAM
	2.2.2 Executing Code From Flash
	2.2.3 Data Placement

	2.3 Code Construction and Configuration
	2.3.1 Inlining
	2.3.2 Intrinsics
	2.3.3 Volatile Variables
	2.3.4 Function Arguments
	2.3.5 Enabling Wider Data Accesses
	2.3.6 Auto Code-Generation Tools
	2.3.7 Accurately Profiling Code

	2.4 Application Code Optimization
	2.4.1 Optimized SDK Libraries
	2.4.2 Optimizing Code-Size With Libraries
	2.4.3 C29 Special Instructions
	2.4.4 C29 Parallelism
	2.4.5 32-Bit Variables and Writes Preferred
	2.4.6 Coding Style and Impact on Performance

	3 References
	4 Revision History

