AM261x SOM to HSEC Adapter Board

Description

This evaluation module is a 180-pin High Speed Edge Card (HSEC) adapter for TI AM261x System-On-Module (SOM) platforms, allowing for SOM-based platforms to have backwards compatibility with Sitara/C2000 HSEC-based EVMs. The HSEC180ADAPEVM-AM2 connects 180 pins from the SOM board to HSEC pins for use with legacy Sitara/C2000 HSEC Docking Stations, such as the TMDSHSECDOCK-AM263 and TMDSHSECDOCK.

Get Started

- Order the AM261x SOM to HSEC Adapter Board (HSEC180ADAPEVM-AM2)
- Order the AM261 controlSOM Evlaution Board (AM261-SOM-EVM)
- Order the XDS110 emulation board (XDS110ISO-EVM)
- Order the HSEC Docking Station hardware. For a board comparison, see Table 2-1
 - a. AM26x HSEC Docking Station (TMDSHSECDOCK-AM263)
 - b. C2000 HSEC Docking Station (TMDSHSECDOCK)

- Download the latest Code Composer StudioTMIntegrated Development Environment (IDE) and the AM261x MCU PLUS Software Development Kit (SDK)
- 6. Read the Setup chapter (Section 2.2) in this User's Guide to get started

Features

- Standard 180-pin HSEC interface
- Compatibility with XDS110ISO-EVM for emulation
- 2x DP83869 10/100/1000-Mbps Ethernet PHY with 2x RJ-45 Ethernet jacks
- 1x Ethernet Add-on Board Connector compatible with:
 - DP83826-EVM-AM2 Industrial Ethernet add-on board
 - DP83TG720-EVM-AM2 Automotive Ethernet add-on board
- USB 2.0 Interface with Micro-AB port
- · Fast Serial Interface (FSI) Header
- ADC filtering and ESD protection for dedicated analog HSEC pins
- · OSPI Memory expansion board connector
- MCAN and LIN Transceiver connectivity when used with TMDSHSECDOCK-AM263

1 Evaluation Module Overview

1.1 Introduction

The HSEC180ADAPEVM-AM2 is a SOM to HSEC adapter board that is used to expand the IO and evaluation capabilities of the AM261x controlSOM EVM (AM261-SOM-EVM). The SOM to HSEC adapter board allows interfaces not present on the AM261x controlSOM to be evaluated using a compatible HSEC docking station for powering the system and prototyping using the IO headers and on-board hardware of the HSEC docking station.

The SOM to HSEC adapter allows on-board interfacing with Ethernet, USB 2.0, FSI, JTAG, and off-board interfacing with GPIO pins, MCAN, and LIN using the TMDSHSECDOCK-AM263. By utilizing all three boards in the AM261x controlSOM system (AM261-SOM-EVM + HSEC180ADAPEVM-AM2 + TMDSHSECDOCK-AM263), a customer can create and evaluate complex applications built around the AM261x Microcontroller.

The 180-pin Edge connector is intended to provide a well-filtered, robust design capable of working in most environments. The pinout of the 180-pin HSEC hardware is designed to be nearly identical to the existing AM263x and AM263Px controlCARD EVMs (TMDSCNCD263 and TMDSCNCD263P).

Included in this User's Guide are the hardware details of the SOM to HSEC adapter board and explanations of the functions of the on-board peripherals, locations of jumpers and connectors, and configurations of switches on the PCB. Also included in this guide are instructions on how to start developing software applications using the AM261x controlSOM, SOM to HSEC adapter board, and HSEC docking station.

Preface: Read This First

1.1.1 Sitara MCU+ Academy

Texas Instruments offers the *MCU+ Academy* as a resource for designing with the MCU+ software and tools on supported devices. The MCU+ Academy features easy-to-use training modules that range from the basics of getting started to advanced development topics.

1.1.2 Important Usage Notes

Note

External power supply or power accessory requirements:

- Compatible HSEC Docking Station
 - TMDSHSECDOCK-AM263
 - TMDSHSECDOCK
- HSEC Docking Station Power Supply
 - Nominal output voltage: 5-VDC
 - Max output current: 3000mA
 - Efficiency Level V

Note

TI recommends using an external power supply or accessory which complies with applicable regional safety standards such as (by example) UL, CSA, VDE, CCC, PSE.

1.2 Kit Contents

The following items are included in the HSEC180ADAPEVM-AM2 kit:

- HSEC180ADAPEVM-AM2 PCB
- Quick Start Guide

1.3 Specification

The HSEC180ADAPEVM-AM2 is designed to expand on the capabilities of the AM261x controlSOM EVM, allowing a user to explore the full functionality of AM261x microcontrollers. The SOM to HSEC adapter board can be treated as a good reference design for the AM261x interfaces, but is not intended to be a complete

www.ti.com Evaluation Module Overview

customer design. Full compliance to safety, EMI/EMC, and other regulations are left to the designer of the AM261x system.

1.3.1 Component Identification

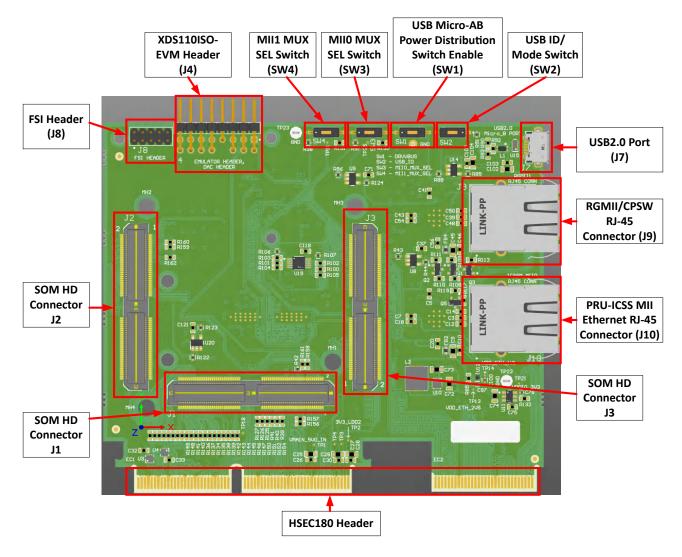


Figure 1-1. HSEC180ADAPEVM-AM2 Top

Evaluation Module Overview www.ti.com

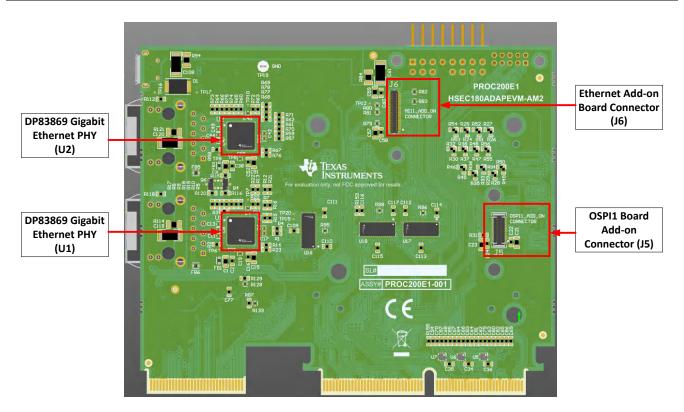


Figure 1-2. HSEC180ADAPEVM-AM2 Bottom

1.3.2 Functional Block Diagram

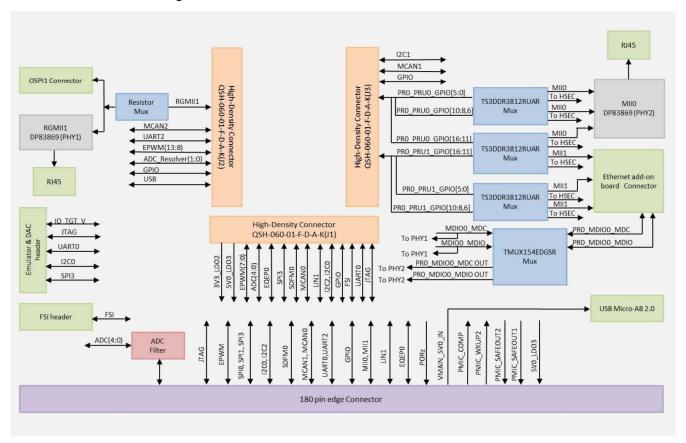


Figure 1-3. HSEC180ADAPEVM-AM2 Functional Block Diagram

1.4 Device Information

The AM261x Sitara Arm® Microcontrollers are part of Sitara AM26x real-time MCU families designed to meet the complex real-time processing needs of next generation industrial and automotive embedded products. With scalable Arm® Cortex-R5F performance and an extensive set of peripherals, AM261x device is designed for a broad range of applications while offering safety features and optimized peripherals for real time control.

Key features and benefits:

- Peripherals supporting system level connectivity such as Gigabit Ethernet, USB, OSPI/QSPI, CAN, UARTs, SPI and GPIOs.
- Granular firewalls managed by Hardware Security Manager (HSM) enable developers to implement stringent security minded system design requirements.
- Up to two R5F cores in cluster with 256KB of shared Tightly Coupled Memory (TCM) per core along with 1.5MB of shared SRAM, greatly reducing the need for external memory.

Hardware www.ti.com

2 Hardware

2.1 Additional Images

2.2 Setup

The AM261x SOM to HSEC adapter board supports **controlSOM Configuration 2**: *controlCARD Backward Compatibility Configuration*. Power for the system is provided to the SOM to HSEC adapter + controlSOM system through an HSEC dock (TMDSHSECDOCK-AM263 or TMDSHSECDOCK). An emulation debug probe such as the XDS110ISO-EVM is required to provide debug connectivity to the MCU on the controlSOM. The controlSOM, XDS110 debug probe, and HSEC dock are sold separately.

TMDSHSECDOCK-AM263 and TMDSHSECDOCK are HSEC docking stations are required to use the HSEC180ADAPEVM-AM2, and provide the power supply to the overall controlSOM sytem. Both HSEC docking stations enable rapid prototyping and enhances the development capability of the AM261x controlSOM. The TMDSHSECDOCK-AM263 contains hardware to enable AM26x MCU-specific features that allow various peripherals not enabled on-board the controlSOM to be interfaced with, whereas the TMDSHSECDOCK only enables access to the IOs pinned out to the SOM HD connectors. Table 2-1 compares the features of each docking station.

Table 2-1. Alvi.	20X CONTROLLAND H3EC DOCK	Companison
Feature	TMDSHSECDOCK	TMDSHSECDOCK-AM263
USB Type-C power input	✓	✓
GPIO breakout headers	✓	✓
Breadboard area for customizable routing and prototyping	1	
2-channel MCAN Transceiver		✓
2-channel LIN Transciever		✓
MIPI-60 debug header		✓
14-pin JTAG header	✓	✓
ADC input signal conditioning		✓

Table 2-1. AM26x controlCARD HSEC Dock Comparison

In this configuration, Code Composer Studio[™] connects to the SOM to HSEC adapter board via JTAG and enables software development. The XDS110 debug-probe also enumerates a virtual COM port (VCP) for communication with the MCU via UART.

Follow these steps to enable this configuration:

- 1. The following equipment is required:
 - a. AM261x controlSOM (AM261-SOM-EVM)
 - b. AM261x HSEC180 adapter board (HSEC180ADAPEVM-AM2)
 - c. AM26x controlCARD compatible baseboard/HSEC180 docking station (TMDSHSECDOCK-AM263 or TMDSHSECDOCK)
 - d. XDS110 isolated debug probe (XDS110ISO-EVM)
 - e. 2 USB Type-C cables
 - f. (Optional) DC 5V power supply if using TMDSHSECDOCK
- 2. Verify the switch settings are correct on each EVM.
 - a. AM261-SOM-EVM:
 - Use SW1 to select the desired boot mode (see *Boot Mode Selection* in the AM261-SOM-EVM User Guide)
 - ii. Use S1, S2, S4 to select the desired ADC voltage reference mode (if applicable for the application) (see ADC and DAC in the AM261-SOM-EVM User Guide)
 - b. XDS110ISO-EVM:

- i. S1 selects JTAG mode set to JTAG mode.
- ii. S2 enables UART/SPI connection set to ON mode.
- 3. Attach the controlSOM to the SOM to HSEC180 adapter board
- 4. Ensure the controlSOM is correctly oriented. The J1 header on the controlSOM should connect with the J1 header on the HSEC180 adapter board.
- 5. Insert the HSEC180 adapter board into the HSEC docking station
- 6. Connect the XDS110ISO-EVM into the connector J4 of the HSEC-180 adapter board (Figure 2-1) OR J7 (Figure 2-2) of the controlSOM.
- 7. Connect the USB cable into connector J5 on the XDS110 isolated debug probe. The XDS110 isolated probe is powered on
- 8. Connect a USB cable into the connector on the HSEC docking station.
- 9. HSEC Dock Power
 - a. If using TMDSHSECDOCK-AM263 Flip SW3 to the ON position
 - b. If using TMDSHSECDOCK Flip S1 to the USB-ON position
- 10. Verify the power status LEDs (D5, D6, D7) on the controlSOM are turned on.
- 11. The controlSOM is ready for use. Follow the steps in Software to get started developing software.

Hardware INSTRUMENTS

www.ti.com

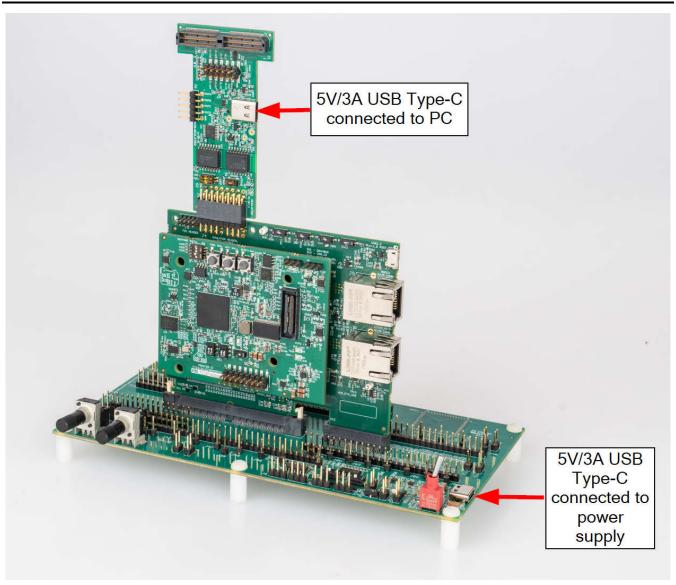


Figure 2-1. AM26x controlCARD Backward Compatibility Configuration - XDS110ISO connected to HSEC180ADAPEVM-AM2 J4

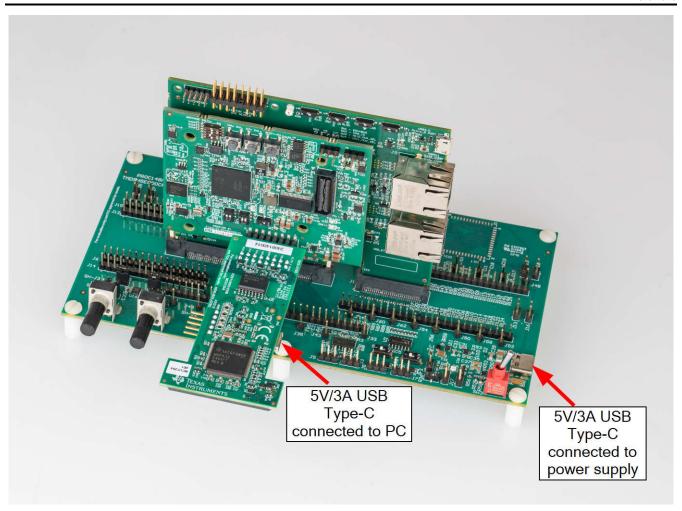


Figure 2-2. AM26x controlCARD Backward Compatibility Configuration - XDS110ISO connected to controlSOM J7

2.3 Power Requirements

The SOM to HSEC adapter board receives power from the HSEC docking station through the 5V input pins on the HSEC header. The 5V input is passed to the controlSOM through the SOM HD Connectors to supply the PMIC on the controlSOM. The PMIC generates the 3.3V IO supply to power the on-board hardware of the HSEC180ADAPEVM-AM2, as well as the on-board supplies for the Ethernet PHYs.

2.3.1 Power Tree

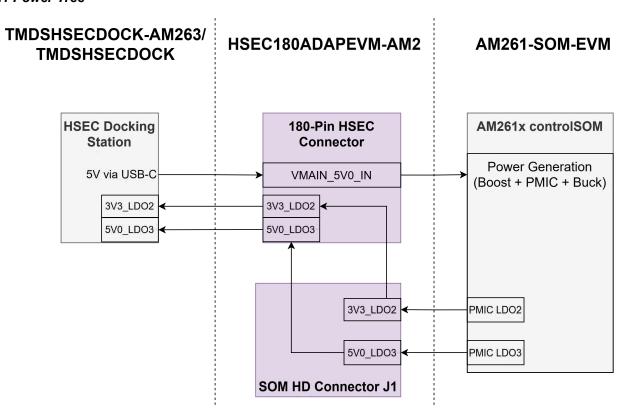
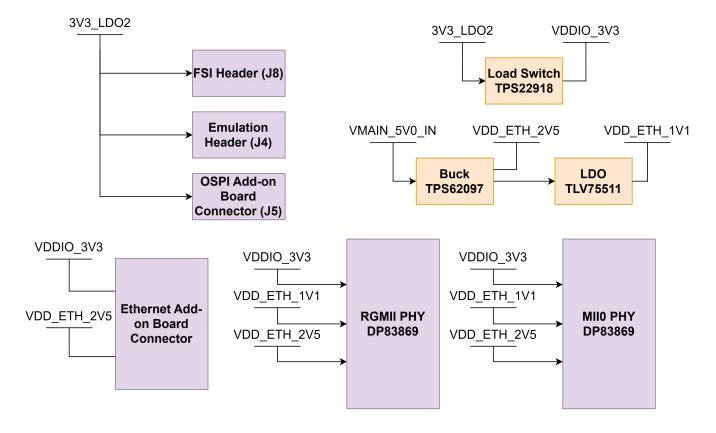



Figure 2-3. HSEC180ADAPEVM-AM2 Power Tree

2.3.2 Power Sequence

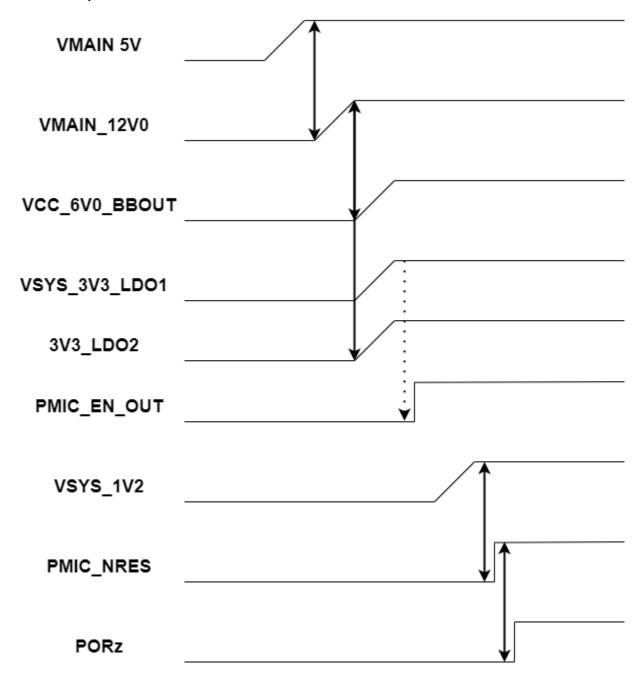


Figure 2-4. AM261-SOM-EVM Power Sequence

Hardware Vincom

Www.ti.com

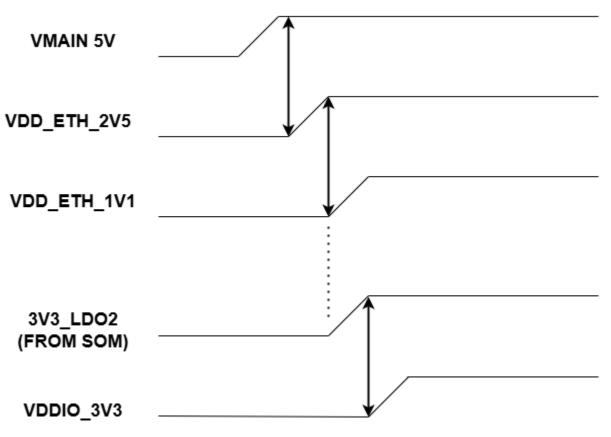


Figure 2-5. HSEC180ADAPEVM-AM2 Power Sequence

2.4 Header Information

2.4.1 Baseboard Headers (J1, J2, J3)

The HSEC180ADAPEVM-AM2 SOM HD Connector pinout conforms to the C2000/Sitara MCU controlSOM standard. Three baseboard headers, J1, J2, and J3, are supported for interfacing with the AM261x controlSOM EVM. Refer to the HSEC180ADAPEVM-AM2 design files for a complete pinout of these headers.

J1, J2, J3 header information:

Part number: QSH-060-01-L-D-A

Manufacturer: Samtec

Maximum insertion cycles: 100

2.4.2 HSEC Pinout

The 180-pin High Speed Edge Connector (HSEC) connects to an HSEC docking station. This interface provides power to the SOM to HSEC adapter board and controlSOM through the SOM HD connectors. In addition, the HSEC pins bring out analog and digital IO from the controlSOM and allow access to prototyping using these interfaces, such as SPI, I2C, UART, FSI, EQEP, PRU-ICSS, EPWM, and ADC.

Table 2-2 details the HSEC pinout. The pinout can also be found in the HSEC180ADAPEVM-AM2 design files package in the PROC195E1(001)_SOM_to_AM26x-HSEC.pdf file.

Table 2-2. HSEC Pinout - AM261-SOM-EVM Rev E1

Pin #	SOM HD Pin	Package Signal Name	Muxed Signal Options	Muxed Signal Options	Signal Package Name	SOM HD Pin	Pin #
1		-	-	-	-		2
3	J1.24	TMS	TMS	-	-		4
5	J1.22	TCK	TCK	TDO	TDO	J1.21	6
7		GND	GND	TDI	TDI	J1.19	8
9	J1.119	ADC0_AIN0 / DAC_OUT	ADC0_AIN0 / DAC_OUT	GND	GND		10
11	J1.117	ADC0_AIN1 / DAC_OUT	ADC0_AIN1 / DAC_OUT	ADC1_AIN0	ADC1_AIN0	J1.116	12
13		GND	GND	ADC1_AIN1	ADC1_AIN1	J1.114	14
15	J1.120	ADC0_AIN2	CO_AIN2 ADCO_AIN2 GND		GND		16
17	J1.118	ADC0_AIN3	0_AIN3 ADC0_AIN3 ADC1		ADC1_AIN2	J1.111	18
19		GND	GND	ADC1_AIN3	ADC1_AIN3	J1.109	20
21	J1.115	ADC0_AIN4	ADC0_AIN4	GND	GND		22
23	J1.113	ADC0_AIN5	ADC0_AIN5	ADC1_AIN4	ADC1_AIN4	J1.112	24
25	J1.107	ADC2_AIN0	ADC2_AIN0	ADC1_AIN5	ADC1_AIN5	J1.110	26
27	J1.105	ADC2_AIN1	ADC2_AIN1	ADC_CAL0	ADC_CAL0	J1.92	28
29		GND	GND	-	-		30
31	J1.108	ADC2_AIN2	ADC2_AIN0	-	-		32
33	J1.106	ADC2_AIN3		-	-		34
35		GND	GND	-	-		36
37	J1.103	ADC2_AIN4	ADC2_AIN2	GND	GND		38
39	J1.101	ADC2_AIN5	ADC2_AIN3	-	-		40
41		-	-	-	-		42
43	J1.87	ADC_VREFLO_G0_G 1_G2		-	-		44
45	J1.85	ADC_VREFHI_G0_G1		GND	GND		46
47		GND	GND	VMAIN_5V0_IN	VMAIN_5V0_IN		48

14

Pin #	SOM HD Pin	Package Signal Name	Muxed Signal Options	Muxed Signal Options	Signal Package Name	SOM HD Pin	Pin #
49	J1.15	EPWM0_A	EPWM0_A / PR1_PRU0_GPIO5 / GPMC0_A3 / GPIO43	EPWM2_A / PR1_PRU0_GPIO3 / GPMC0_A1 / GPIO47 / EPWM2_A	EPWM2_A	J1.7	50
51	J1.13	EPWM0_B	EPWM0_B / PR1_PRU0_GPIO8 / GPMC0_A6 / GPIO44	EPWM2_B 0 / PR1_PRU0_GPIO16 / PR1_PRU0_GPIO7 / GPMC0_A14 / GPIO48 / EPWM2_B	EPWM2_B	J1.5	52
53	J1.11	EPWM1_A	EPWM1_A / PR1_PRU0_GPIO6 / GPMC0_A4 / GPIO45	EPWM3_A / PR1_PRU0_GPIO15 / GPMC0_A13 / GPIO49 / EPWM3_A	EPWM3_A	J1.3	54
55	J1.9	EPWM1_B	EPWM1_B / PR1_PRU0_GPIO4 / GPMC0_A2 / GPIO46	EPWM3_B / PR1_PRU0_GPIO11 / GPMC0_A9 / GPIO50 / EPWM6_A	EPWM3_B	J1.1	56
57	J1.16	EPWM4_A	EPWM4_A / PR1_PRU0_GPIO12 / GPMC0_A10 / GPIO51	EPWM6_A / PR1_PRU1_GPIO8 / CLKOUT0 / GPMC0_AD8 / GPIO55 / EPWM3_B	EPWM6_A	J1.8	58
59	J1.14	EPWM4_B	EPWM4_B / PR1_PRU0_GPIO13 / GPMC0_A11 / GPIO52	EPWM6_B / PR1_PRU1_GPIO6 / UART2_RTSn / GPMC0_A20 / GPIO56 / EPWM6_B	EPWM6_B	J1.6	60
61	J1.12	J1.12 EPWM5_A EPWM5_A / PR1_PRU0_GPIO14 / GPMC0_A12 / EPWM7_A / PR1_PRU1_GPIO4 / OSPI0_CSn1		EPWM7_A / PR1_PRU1_GPIO4 / OSPI0_CSn1 / OSPI1_CSn1 / GPMC0_AD4 / GPIO57 / EPWM7_A	EPWM7_A	J1.4	62
63	J1.10	EPWM5_B	EPWM5_B / PR1_PRU1_GPIO5 / OSPI0_RESET_OUT0 / GPMC0_AD5 / GPIO54 / EPWM8_B	EPWM7_B / PR1_PRU1_GPIO3 / OSPI1_D1 / OSPI0_D1 / GPMC0_AD3 / GPIO58 / EPWM5_B	EPWM7_B	J1.2	64
65		GND	GND	-	-		66
67	J2.30	SPI0_D1	SPI0_D1 / PR1_PRU0_GPI01 / MMC0_D1 / UART3_RTSn / GPMC0_A16 / FSITX0_DATA1 / GPI014 / ADC_ETCH_XBAROUT3 / XBAROUT3	PR0_PRU1_GPIO19 / UART3_RXD / PR0_IEP0_EDC_SYNC_OUT0 / GPMC0_A19 / GPIO119 / TRC_CLK / EQEP1_A / XBAROUT13	EQEP1_A	J3.68	68
69	J2.32	SPI0_D0	SPI0_D0 / PR1_PRU0_GPI00 / MMC0_D0 / UART3_CTSn / GPMC0_BE1n / FSITX0_DATA0 / GPI013 / ADC_ETCH_XBAROUT_2 / XBAROUT2 / SOP3	PR0_PRU1_GPIO18 / UART3_TXD / PR0_IEP0_EDIO_DATA_IN_OUT31 / GPMC0_A17 / GPIO120 / TRC_CTL / EQEP1_B / XBAROUT14	EQEP1_B	J3.66	70
71	J2.34	SPI0_CLK	SPI0_CLK / PR1_PRU0_GPIO9 / MMC0_CMD / UART3_TXD / FSITX0_CLK / GPMC0_A7 / GPIO12 / ADC_ETCH_XBAROUT1 / XBAROUT1 / SOP2	CLKOUT1 / PR1_PRU0_GPIO7 / UART2_RTSn / PSM_CLKOUT / PR1_UART0_CTSn / GPMC0_A5 / GPIO122 / SDFM0_CLK0 / EQEP1_STROBE	EQEP1_STROBE	J1.54	72
73	J2.36	SPI0_CS0	SPI0_CS0 / PR1_PRU0_GPIO2 / MMC0_CLK / UART3_RXD / GPMC0_A0 / GPIO11 / ADC_ETCH_XBAROUT0 / XBAROUT0	EXT_REFCLK0 / SAFETY_ERRORn / USB0_DRVVBUS / PR0_IEP0_EDIO_DATA_IN_OUT30 / GPMC0_A18 / GPIO121 / EQEP1_INDEX / XBAROUT15 / DTB_OUT_14	EQEP1_INDEX	J1.70	74
75	J1.59	SPI1_D0	SPI1_D0 / EPWM8_A / MMC0_WP / UART5_TXD / OSPI0_ECC_FAIL / PR1_PRU1_GPIO16 / FSIRX0_DATA0 / GPIO17 / GPMC0_DIR / ADC_ETCH_XBAROUT6 / XBAROUT3	LIN1_RXD / OSPI0_ECC_FAIL / SPI2_CS0 / PR1_PRU1_GPI06 / OSPI1_ECC_FAIL / UART1_RXD / GPMC0_AD6 / GPI019 / OSPI0_RESET_OUT1 / XBAROUT5 / EPWM6_B	LIN1_RXD	J1.37	76

Pin #	SOM HD Pin	Package Signal Name	Muxed Signal Options	Muxed Signal Options	Signal Package Name	SOM HD Pin	Pin #
77	J1.57	SPI1_D1	SPI1_D1 / EPWM8_B / MMC0_CD / UART5_RXD / OSPI0_RESET_OUT0 / PR1_PRU1_GPIO15 / FSIRX0_DATA1 / GPIO18 / GPMC0_WPn / ADC_ETCH_XBAROUT7 / XBAROUT4	LIN1_TXD / OSPI0_RESET_OUT0 / SPI2_CLK / PR1_PRU1_GPIO8 / OSPI1_RESET_OUT0 / UART1_TXD / GPMC0_AD8 / GPIO20 / XBAROUT6 / EPWM6_A	LIN1_TXD	J1.35	78
79	J1.55	SPI1_CLK	SPI1_CLK / EPWM7_B / MMC0_D3 / UART4_RXD / PR1_PRU1_GPIO3 / FSIRX0_CLK / GPIO16 / GPMC0_OEn_REn / ADC_ETCH_XBAROUT5	MMC0_CLK / UART0_RXD / LIN0_RXD / MCAN0_RX / PR1_MDI00_MDI0 / GPI077 / SDFM1_CLK0	MCAN0_RX	J1.38	80
81	J3.57	SPI1_CS0	SPI1_CS0 / EPWM7_A / MMC0_D2 / UART4_TXD / PR1_PRU1_GPIO4 / GPIO15 / GPMC0_WAIT0 / ADC_ETCH_XBAROUT4 / XBAROUT1	MMC0_CMD / UART0_TXD / LIN0_TXD / MCAN0_TX / PR1_MDIO0_MDC / GPIO78 / SDFM1_D0	MCAN0_TX	J1.36	82
83		GND GND		VMAIN_5V0_IN		84	
85	J1.63 I2C2_SDA MMC0_CD / UART0_CTSn / I2C2_SDA / GPIO84 / SDFM1_D3 UART0_RXD / LIN0_RXD /		UART0_RXD / LIN0_RXD / GPIO27 / XBAROUT4 / DTB_INOUT_6	UART0_RXD	J1.33	86	
87	PR1_PRU0_GPIO2 / GPIO83 / SDFM1_CLK3		UART0_TXD / LIN0_TXD / GPIO28 / XBAROUT5 / DTB_INOUT_7	UART0_TXD	J1.31	88	
89			PR0_MDIO0_MDC / LIN0_TXD / MCAN0_TX / GPIO86 / XBAROUT15 / DTB_OUT_11	PR0_MDIO0_MDC	J3.97	90	
91	J1.60	SDFM0_D0		I2C0_SDA	J1.25	92	
93	J1.23	12C0_SCL	I2C0_SCL / GPIO135 / SDFM1_CLK3	MMC0_D0 / UART2_RXD / I2C1_SCL / MCAN1_RX / PR1_PRU0_GPIO10 / GPIO79 / SDFM1_CLK1	MCAN1_RX	J3.56	94
95	J3.54	MCAN1_TX	MMC0_D1 / MCAN1_TX / PR1_PRU0_GPIO10 / GPIO79 / SDFM1_CLK1	MMC0_D2 / UART2_TXD / I2C1_SDA / PR1_PRU0_GPIO0 / GPIO81 / SDFM1_CLK2	I2C1_SDA	J3.72	96
97		GND	GND		VMAIN_5V0_IN		98
99	J1.58	SDFM0_D1	PR0_PRU1_GPIO17 / PR1_PRU1_GPIO13 / UART2_RXD / PR0_IEP0_EDIO_DATA_IN_OUT30 / PR1_UART0_TXD / UART5_CTSn / GPMC0_AD13 / GPIO125 / SDFM0_D1	SPI2_D0 / PR1_PRU1_GPIO18 / UART4_RTSn / PR1_IEP0_EDC_SYNC_OUT0 / I2C1_SDA / MCAN1_RX / GPMC0_OEn_REn / GPIO130 / EQEP0_A / SDFM1_CLK0	EQEP0_A	J1.71	100
101	J1.72			EQEP0_B	J1.69	102	
103	J1.56	SDFM0_D2	UART2_CTSn / PR1_MDIO0_MDC / SPI3_CS1 / UART5_RXD / GPMC0_BE0n_CLE / GPIO127 / SDFM0_D2 / ADC_EXTCH_XBAROUT0	I2C2_SDA / PR1_PRU0_GPIO20 / UART4_TXD / PR1_IEP0_EDIO_DATA_IN_OUT30 / GPMC0_A15 / GPIO132 / EQEP0_STROBE / SDFM1_CLK1 / ADC_EXTCH_XBAROUT2	EQEP0_STROBE	J1.67	104

16

Pin #	SOM HD Pin	Package Signal Name	Muxed Signal Options	Muxed Signal Options	Signal Package Name	SOM HD Pin	Pin #
105	J1.73	SDFM0_CLK2	UART1_CTSn / PR1_MDIO0_MDIO / SPI2_CS1 / PR1_IEP0_EDC_SYNC_OUT1 / UART5_CTSn / UART5_TXD / GPMC0_CLKLB / GPIO126 / SDFM0_CLK2 / SDFM1_D1 / ADC_EXTCH_XBAROUT8	I2C2_SCL / PR1_PRU1_GPI07 / UART4_RXD / GPMC0_AD7 / GPI0133 / EQEP0_INDEX / SDFM1_D1 / ADC_EXTCH_XBAROUT3	EQEP0_INDEX	J1.65	106
107	J1.50	SDFM0_D3	SPI2_CLK / PR1_PRU1_GPI017 / UART5_TXD / GPMC0_WEn / GPI0129 / SDFM0_D3 / ADC_EXTCH_XBAROUT1	PR0_PRU0_GPI05 / UART3_RTSn / RMII2_RX_ER / MII2_RX_ER / GPI087 / TRC_CTL / ADC_EXTCH_XBAROUT4 / XBAROUT6	PR0_PRU0_GPIO5	J3.111	108
109	J1.46	-	-	PR0_PRU0_GPIO9 / PR1_PRU0_GPIO9 / PR0_IEP0_EDC_SYNC_OUT1 / PR0_UART0_CTSn / MII2_COL		J3.105	110
111		GND	GND	VMAIN_5V0_IN	VMAIN_5V0_IN		112
113	J3.29	PMIC_SAFE_OUT2	PMIC_SAFE_OUT2	PMIC_WKUP2	PMIC_WKUP2	J1.30	114
115		NC	NC	-	-		116
117	J1.34	VSS_5V0_LDO3	VCC_5V0	-	-		118
119	J1.28	3V3_LDO2	3V3_LDO2	PORz	PORz	J1.29	120
121	J3.109	PR0_PRU0_GPIO10	PR0_PRU0_GPIO10 / UART3_CTSn / RMII2_CRS_DV / PR0_UART0_RTSn / MII2_CRS / GPIO89	PR0_PRU0_GPIO8 / I2C0_SDA / GPIO90	PR0_PRU0_GPIO8	J3.87	122
123	J.100	PR0_PRU0_GPIO6	PR0_PRU0_GPI06 / I2C0_SCL / RMII2_REF_CLK / RGMII2_RXC / MII2_RXCLK / GPI091	PR0_PRU0_GPIO4 / UART3_RXD / RGMII2_RX_CTL / MII2_RXDV / GPIO92 / TRC_CLK / ADC_EXTCH_XBAROUT5 / XBAROUT7	PR0_PRU0_GPIO4	J3.113	124
125	J3.102	PR0_PRU0_GPIO0	PR0_PRU0_GPI00 / PR1_PRU0_GPI00 / RMII2_RXD0 / RGMII2_RD0 / MII2_RXD0 / GPI093 / TRC_DATA0 / ADC_EXTCH_XBAROUT6 / XBAROUT8	PR0_PRU0_GPIO1 / PR1_PRU0_GPIO1 / RMII2_RXD1 / RGMII2_RD1 / MII2_RXD1 / GPIO94 / TRC_DATA1 / ADC_EXTCH_XBAROUT7 / XBAROUT11	PR0_PRU0_GPIO1	J3.104	126
127	J3.106	PR0_PRU0_GPIO2	PR0_PRU0_GPIO2 / PR1_PRU0_GPIO2 / RGMII2_RD2 / MII2_RXD2 / GPIO95 / TRC_DATA2 / ADC_EXTCH_XBAROUT8 / XBAROUT12	PR0_PRU0_GPIO3 / UART3_TXD / RGMII2_RD3 / MII2_RXD3 / GPIO96 / TRC_DATA3 / ADC_EXTCH_XBAROUT9 / XBAROUT13 / DTB_INOUT_0	PR0_PRU0_GPIO3	J3.108	128
129	J3.112	PR0_PRU0_GPIO16	PR0_PRU0_GPIO16 / RGMII2_TXC / MII2_TXCLK / GPIO97	PR0_PRU0_GPIO15 / RMII2_TX_EN / RGMII2_TX_CTL / MII2_TX_EN / GPIO98	PR0_PRU0_GPIO15	J3.115	130
131	J3.114	PR0_PRU0_GPIO11	PR0_PRU0_GPIO11 / RMII2_TXD0 / RGMII2_TD0 / MII2_TXD0 / GPIO99	PR0_PRU0_GPIO12 / RMII2_TXD1 / RGMII2_TD1 / MII2_TXD1 / GPIO100	PR0_PRU0_GPIO12	J3.116	132
133	J3.118	PR0_PRU0_GPIO13	PR0_PRU0_GPIO13 / RGMII2_TD2 / MII2_TXD2 / GPIO101	PR0_PRU0_GPIO14 / RGMII2_TD3 / MII2_TXD3 / GPIO102	PR0_PRU0_GPIO14	J3.120	134
135		GND	GND	-			136

www.ti.com

Table 2-2. HSEC Pinout - AM261-SOM-EVM Rev E1 (continued)

Pin #	SOM HD Pin	Package Signal Name	Muxed Signal Options	Muxed Signal Options	Signal Package Name	SOM HD Pin	Pin #
137	J3.95	PR0_PRU1_GPIO5	PR0_PRU1_GPI05 / RMII1_RX_ER / MII1_RX_ER / GPI0103 / TRC_DATA0 / ADC_EXTCH_XBAROUT6	PR0_PRU1_GPI09 / PR0_UART0_ PR0_IEP0_EDIO_DATA_IN_OUT31 / MII1_ GPMC0_A21 / GPI0104 / TRC_D ADC_EXTCH_XBAR	COL / ATA1 /	J3.85	138
139	J3.83	PR0_PRU1_GPIO10	PR0_PRU1_GPIO10 / PR0_UART0_TXD / RMII1_CRS_DV / PR0_IEP0_EDIO_DATA_IN_OUT30 / MII1_CRS / GPMC0_A20 / GPIO105 / TRC_DATA2	PR0_PRU1_GPIO8 / GPIO106 / TRC_I	PR0_PRU1_GPIO8	J3.89	140
141	J3.76	PR0_PRU1_GPI06	PR0_PRU1_GPI06 / MCAN0_RX / RMII1_REF_CLK / RGMII1_RXC / MII1_RXCLK / GPI0107 / TRC_DATA4 / DTB_INOUT_4	PR0_PRU1_GPIO4 / MCAN RGMII1_RX_CTL / MII1_RXDV / GPI TRC_DATA5 / DTB_0	D108 /	J3.93	142
143	43 J3.78 PR0_PRU1_GPI00 PR0_PRU1_GPI00 / MCAN1_RX / RMII1_RXD0 / PR0_PRU1_GPI01 / MCAN1_TX / RM RGMII1_RD1 / MII1_RXD1 / RGMII1_RD1 / MII1_RXD1 /		PR0_PRU1_GPIO1 / MCAN1_TX / RMII1_F RGMII1_RD1 / MII1_RXD1 / GPI TRC_DATA7 / DTB_O	D110 /	J3.80	144	
145			PR0_PRU1_GPIO3 / RGMII1_RD3 / MII1_F GPIO112 / TRC_I		J3.84	146	
147	J3.88	PR0_PRU1_GPIO16	PR0_PRU1_GPIO16 / RGMII1_TXC / MII1_TXCLK / GPIO113 / TRC_DATA10	PR0_PRU1_GPIO15 / RMII1_TX RGMII1_TX_CTL / MII1_TX_EN / GPI TRC_D	D114 /	J3.91	148
149	J3.90	PR0_PRU1_GPIO11	PR0_PRU1_GPIO11 / RMII1_TXD0 / RGMII1_TD0 / MII1_TXD0 / GPIO115 / TRC_DATA12	PR0_PRU1_GPIO12 / RMII1_TXD1 / RGMII1_ MII1_TXD1 / GPIO116 / TRC_D		J3.92	150
151	J3.94	PR0_PRU1_GPIO13	PR0_PRU1_GPIO13 / RGMII1_TD2 / MII1_TXD2 / GPIO117 / TRC_DATA14 / XBAROUT11	PR0_PRU1_GPIO14 / RGMII1_TD3 / MII1_ GPIO118 / TRC_DATA15 / XBAR0		J3.96	152
153	J2.23	GPIO136	UART1_RTSn / SPI0_CS1 / LIN0_RXD / UART3_RXD / GPIO136 / SDFM1_D2		GPI068	J2.57	154
155	J2.21	GPIO137	UART2_RTSn / EQEP1_INDEX / LIN0_TXD / UART3_TXD / GPIO137 / SDFM1_D3	PR1_PRU0_GPIO0 / OSPI0_D5 / UART3_0	TSn / GPI067	J2.59	156
157		GND	GND	VMAIN_5	VO_IN VMAIN_5V0_IN	1	158
159	J2.58	EPWM8_B	EPWM8_B / PR1_PRU1_GPIO15 / OSPI1_CLK / MCAN0_TX / OSPI0_CLK / GPMC0_AD15 / GPIO60 / UART4_RXD / EPWM9_B	PR1_PRU0_GPI09 / OSPI0_D1 / UART1_I UART3_CTSn / OSPI1_D1 / OSPI0_ECC_ G		J2.53	160
161	J2.60	EPWM8_A	EPWM8_A / PR1_PRU1_GPIO16 / OSPI1_D0 / MCAN0_RX / PR0_PRU1_GPIO7 / OSPI0_D0 / GPMC0_CSn1 / GPIO59 / UART4_TXD / EPWM8_A	PR1_PRU0_GPIO2 / OSPI0_D3 / UART1 G	_RIn / GPIO69	J2.55	162
163	J2.54	EPWM9_B	EPWM9_B / LIN1_RXD / OSPI0_CSn0 / UART1_RTSn / OSPI1_CSn0 / GPI062	UART0_RTSn / I2C2_SCL / SPI PR1_PRU1_GPIO19 / PR1_PRU0_GF UART3_RXD / GPMC0_WAIT1 / GP XBAROUT9 / DTB_C	O17 / O25 /	J1.45	164

Hardware

	rable 2 21 riole 7 mode 7 miles i Gome 21 (continuou)								
Pin #	SOM HD Pin	Package Signal Name	Muxed Signal Options		Muxed Signal Options	Signal Package Name	SOM HD Pin	Pin #	
165	J2.56	EPWM9_A	EPWM9_A / LIN1_TXD / OSPI0_RESET_OUT0 / SPI2_CLK / UART1_TXD / OSPI1_RESET_OUT0 / GPI061 / EPWM9_A		UART0_CTSn / I2C2_SDA / SPI3_D1 / SPI0_CS1 / PR1_PRU0_GPI07 / UART3_TXD / GPI026 / XBAROUT10	UART0_CTSn	J1.43	166	
167	J2.50	GPIO64	LIN0_TXD / UART2_RTSn / OSPI0_RESET_OUT0 / I2C0_SCL / UART4_TXD / GPI064		I2C1_SDA / SPI3_CLK / PR1_PRU0_GPIO18 / GPMC0_OEn_REn / GPIO24 / XBAROUT8	I2C1_SDA	J1.41	168	
169	J2.52	GPIO63	LINO_RXD / UART1_CTSn / I2C0_SDA / UART2_TXD / GPIO63 / EPWM7_B		I2C1_SCL / SPI3_CS0 / PR1_PRU0_GPIO17 / GPMC0_WEn / GPIO23 / XBAROUT7	I2C1_SCL	J1.39	170	
171	J3.33	PMIC_COMP2_IN+	PMIC_COMP2_IN+		-	-		172	
173	J3.31	PMIC_COMP2_IN-	PMIC_COMP2_IN-		-	-		174	
175	J3.37	PMIC_COMP1_IN+	PMIC_COMP1_IN+		-	-		176	
177	J3.35	PMIC_COMP1_IN-	PMIC_COMP1_IN-		PMIC_SAFE_OUT1	PMIC_SAFE_OUT1	J1.32	178	
179		GND	GND		VMAIN_5V0_IN	VMAIN_5V0_IN		180	

2.4.3 XDS Debug Header (J4)

The XDS debug header (J4) provides debug access to the AM261-SOM-EVM. The XDS debug header is compatible with the XDS110ISO-EVM. Table 2-3 provides a pinout of the J4 header.

CAUTION

The XDS debug header (J4) is only compatible with the XDS110ISO-EVM. Do not plug in any other debug probe directly into this header. See Section 2.9 for information on using other debug probes with the controlSOM.

Table 2-3. XDS Debug Header (J4) Pinout

EVM Connection	Function	Pin	Pin	Function	EVM Connection
VSYS_3V3_LDO1	IO_TGT_V	1	2	GND	GND
TMS	MCU_TMS	3	4	MCU_TCK	TCK
TDI	MCU_TDI	5	6	MCU_TDO	TDO
GND	GND	7	8	KEY	NC
UART0_RXD	MCU_SCI_RX	9	10	MCU_SCI_TX	UART0_TXD
I2C0_SDA	EE_I2CSDA	11	12	EE_I2CSCL	I2C0_SCL
SPI3_CLK	DAC_SPI_SCLK	13	14	DAC_SPI_PICO	SPI3_D0
SPI3_D1	DAC_SPI_POCI	15	16	DAC_SPI_PTE	SPI3_CS0

2.4.4 FSI Header

The HSEC180ADAPEVM-AM2 has a 10-pin Fast Serial Interface (FSI) header for interfacing with the AM261x FSI peripheral. The pinout is shown in Table 2-4 below.

Table 2-4. FSI Header (J8) Pinout

EVM Connection	Pin	Pin	EVM Connection
FSIRX0_DATA0	1	2	FSIRX0_DATA1
FSIRX0_CLK	3	4	GND
FSITX0_DATA0	5	6	FSITX0_DATA1
FSITX0_CLK	7	8	GND
-	9	10	3V3_LDO2

For more information on the FSI implementation, see Section 2.8.3.

2.4.5 OSPI Expansion Connector

The HSEC180ADAPEVM-AM2 has a 30-pin high density connector for connecting an external OSPI memory to interface with the OSPI1 peripheral on the AM261x MCU. The pinout is detailed in Table 2-5 below:

Table 2-5. OSPI Expansion Connector (J5)

EVM Connection	Pin	Pin	EVM Connection
GND	1	2	3V3_LDO2
3V3_LDO2	3	4	GND
OSPI1_RESET_OUT0	5	6	OSPI1_ECC_FAIL
OSPI1_CSn0	7	8	OSPI1_CSn1
GND	9	10	OSPI1_CLK
GND	11	12	OSPI1_DQS

Hardware www.ti.com

Table 2-5. OSPI Expansion Connector (J5) (continued)

EVM Connection	Pin	Pin	EVM Connection
GND	13	14	OSPI1_D0
OSPI1_D1	15	16	OSPI1_D2
OSPI1_D3	17	18	GND
OSPI1_D4	19	20	OSPI1_D5
OSPI1_D6	21	22	OSPI1_D7
GND	23	24	-
-	25	26	-
-	27	28	-
-	29	30	-

For more information, see Section 2.8.4.

2.4.6 Ethernet Add-on Board Connector

The HSEC180ADAPEVM-AM2 has a 48-pin high-density shielded connector (DF40GB-48DP-0.4V(58)) for connecting a supported TI Ethernet Add-on Board, such as the DP83826-EVM-AM2.

The PR0_PRU1 instance of the AM261x PRU-ICSS core is routed to the Ethernet add-on board Connector to be used as MII Ethernet. The connector pinout is standard across TI EVMs that support Ethernet add-on boards, and is detailed in Table 2-6 below.

Table 2-6. DF40GB Header Pinout

Pin#	AM261x EVM Connection	Ethernet Add-on Board Standard	Description	Description	Ethernet Add-on Board Standard	AM261x EVM Connection	Pin#
1	GND	GND	Ground	PMIC External Voltage Monitor	EXT_VMON	EXT_VMON2	2
3	ICSSM_MII_TXD 0	TX_CLK	Transmit Clock	2.5V supply	VDD_2V5	VDD_ETH_2V5	4
5	GND	GND	Ground	2.5V supply	VDD_2V5	VDD_ETH_2V5	6
7	ICSSM_MII_TXD 0	TX_D0	Transmit Data 0	Ground	GND	GND	8
9	ICSSM_MII_TXD	TX_D1	Transmit Data 1	Interrupt To Ethernet PHY	PWDN/INTn	MII1_INTn (GPIO119)	10
11	ICSSM_MII_TXD 2	TX_D2	Transmit Data 2	Reset input to Ethernet PHY	RESETn	MII0/MII1_RST	12
13	ICSSM_MII_TXD	TX_D3	Transmit Data 3	Collision Detected	COL	ICSSM_MII1_CO L	14
15	GND	GND	Ground	Ground	GND	GND	16
17	GND	GND	Ground	Ground	GND	GND	18
19	ICSSM_MII1_RX CLK	RX_CLK	Receive Clock	MDIO Clock	MDIO_MDC	PR0_MDIO0_MD C	20
21	GND	GND	Ground	MDIO Data	MDIO_MDIO	PR0_MDIO0_MDI O	22
23	ICSSM_MII1_RX D0	RX_D0	Receive Data 0	Ground	GND	GND	24
25	ICSSM_MII1_RX D1	RX_D1	Receive Data 1	Inhibit	INH	GND	26
27	ICSSM_MII1_RX D2	RX_D2	Receive Data 2	PRUx Reference Clock	REF_CLK	PHY1_25MHZ_C LK	28
29	ICSSM_MII1_RX D3	RX_D3	Receive Data 3	Carrier Sense	CRS	ICSSM_MII1_CR S	30
31	GND	GND	Ground	Ground	GND	GND	32

Table 2-6. DF40GB Header Pinout (continued)

Pin #	AM261x EVM Connection	Ethernet Add-on Board Standard	Description	Description	Ethernet Add-on Board Standard	AM261x EVM Connection	Pin#
33	GND	GND	Ground	Ground	GND	GND	34
35	ICSSM_MII1_TX EN	TXEN	Transmit Enable	Board Connection Detect	BRD_CONN_DE T	3V3_LDO2	36
37	MII_EEPROM_A2	EEPROM_A2	EEPROM I2C Address bit [2]	IEEE 1588 SFD	1588_SFD	TP12	38
39	ICSSM_MII1_RX ER	RX_ER	Receive Data Error	I2C Clock	I2C_SCL	I2C0_SCL	40
41	GND	GND	Ground	I2C Data	I2C_SDA	I2C0_SDA	42
43	ICSSM_MII1_RX LINK	RX_LINK	Receive Indicator	IO Voltage Supply	VDDIO	VDDIO_3V3	44
45	ICSSM_MII1_RX DV	RXDV	Receive Data Valid	IO Voltage Supply	VDDIO	VDDIO_3V3	46
47	MII1_EEPROM_A 0	EEPROM_A0	EEPROM I2C Address bit [0]	Audio Bit Clock	GPIO_2/CLKOUT	-	48

For more information, see Section 2.8.5.2.2.

2.5 Reset

The Power-On-Reset net from the AM261x controlSOM, driven by the on-SOM push button or the AM261x SoC PORz signal is routed through SOM HD connector J1 and is tied to the reset logic for the following peripherals:

- · HSEC connector
- OSPI Expansion connector reset
- PHY1 reset
- PHY2 reset
- Ethernet add-on board connector reset

PORz is ANDed with each target peripheral's dedicated reset signal to drive the reset logic for each device.

- MDIO0_MDIO pinmuxed with the OSPI1_RESET_OUT0 signal from the AM261x SoC, routed through SOM HD connector J2 and passed through a resistor mux.
- Note
 The resistor to route OSPI1_RESET_OUT0 to the OSPI Expansion Connector is DNI by default, and must be populated for the reset signal to route to the OSPI Expansion Connector.
- RGMI11_RST AM261x controlSOM IO Expander output, input to reset logic for the RGMI11 PHY (PHY1)
- MII_RST# AM261x controlSOM IO Expander output, input to reset logic for the MII0 PHY (PHY1) and Ethernet add-on Board Connector

Figure 2-6 shows the reset architecture of the HSEC180ADAPEVM-AM2.

Hardware Superior Instruments

www.ti.com

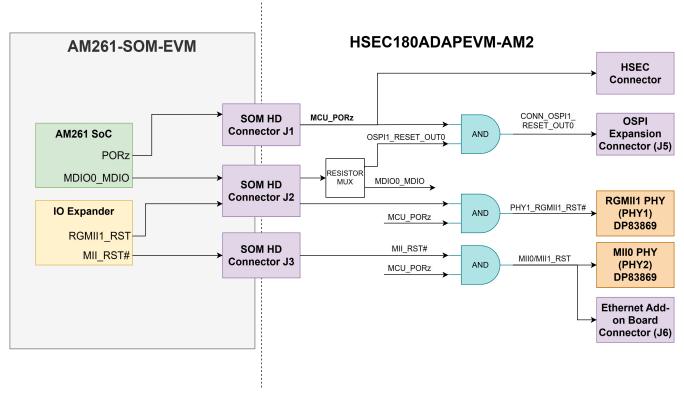


Figure 2-6. HSEC180ADAPEVM-AM2 Reset Architecture

2.6 Clock

The Ethernet peripheral clocking scheme is sourced from the clock buffer IC on the AM261x controlSOM. Three 25MHz clock outputs from the clock buffer are routed through the SOM HD connectors to their target on the HSEC180ADAPEVM-AM2. The RGMII PHY, MII0 PHY, and Ethernet add-on board connector each have their own independent 25MHz clock lines. Figure 2-7 details the clock tree on the HSEC180ADAPEVM-AM2.

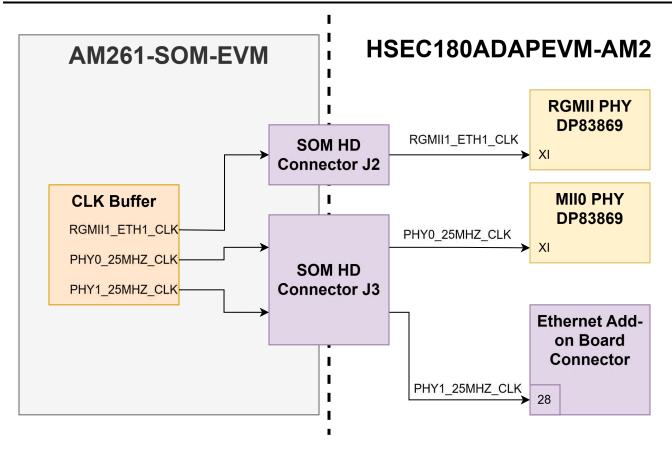


Figure 2-7. HSEC180ADAPEVM-AM2 Clock Tree

24

2.7 GPIO Mapping

Table 2-7. GPIO Mapping Table - Rev E1

GPIO	GPIO Description	Pin Name	Functionality	Net Name	Active Status	SOM HD Connector Pin	Baseboard/Adapter Board Usage
GPIO66	Reset to OSPI flash device	GPIO66	Reset	OSPI0_RESET_OUT	LOW		
GPIO138	Resistor option between GPIO and PMIC_DIAG_OUT	CLKOUT0	GPIO	MCU_GPIO138	PREFERABLE	J1-74	Default PMIC_DIAG_OUT. Remove R84 and populate R138 to use as GPIO.
GPIO65	Error signal from OSPI flash device	GPIO65	Error Signal	OSPI0_ECS	LOW		
GPIO1	USER_LED1	OSPI0_CSn1	GPIO	MCU_GPIO1	PREFERABLE	J1-52	Default USER_LED_OUT. Remove R140 and populate R237 to use as GPIO.
GPIO82	Select line for I2C1/MCAN1 Mux, terminated to SOM HD Connector	MMC0_D3	Mux Select	MCU_GPIO82	PREFERABLE	J1-48	GPIO. Left floating on HSEC180ADAPEVM-AM2
GPIO73	Terminated to SOM HD Connector	PR1_PRU1_GPIO2	GPIO	MCU_GPIO73	PREFERABLE	J1-75	Interrupt signal for MII0 on HSEC180ADAPEVM-AM2
GPIO119	Terminated to SOM HD Connector	PR0_PRU1_GPIO19	GPIO	MCU_GPIO119	PREFERABLE	J3-66	Interrupt signal for MII1 on HSEC180ADAPEVM-AM2
GPIO128	SoC interrupt signal from push button SW3	SDFM0_CLK3	Interrupt	MCU_INTn	LOW		
GPIO126	Terminated to SOM HD Connector	SDFM0_CLK2	GPIO	MCU_GPIO126	PREFERABLE	J1-73	GPIO
GPIO71	Terminated to SOM HD Connector	PR1_PRU1_GPIO0	Interupt	RGMII1_INTn	LOW	J2-7	Interrupt signal for RGMII1 on HSEC180ADAPEVM- AM2
GPIO37	Terminated to SOM HD Connector	RGMII1_TD0	GPIO	RGMII1_TD0	PREFERABLE	J2-8	RGMII1 Transmit Data 0 on HSEC180ADAPEVM-AM2
GPIO121	Resistor option between SOM HD Connector and PMIC_INTn	EXT_REFCLK0	GPIO	MCU_GPIO121	PREFERABLE	J1-70	Default PMIC_INTn. Remove R311 and populate R312 to use as GPIO.
GPIO124	Resistor option between USER_LED0 and SOM HD Connector	SDFM0_CLK1	GPIO	MCU_GPIO124	PREFERABLE	J1-72	Default USER_LED0. Remove R215 and populate R214 to use as GPIO.
GPIO74	Terminated to SOM HD Connector	PR1_PRU1_GPIO9	GPIO	MCU_GPIO74	PREFERABLE	J2-25	MDIO & MDC MUX select line on HSEC180ADAPEVM-AM2
GPIO21	Connection for USB_DRVVBUS	LIN2_RXD	GPIO	AM26x_UART2_RXD	PREFERABLE	J2-26	USB_DRVVBUS
GPIO22	Connection for USB0_VBUS_OC	LIN2_TXD	GPIO	AM26x_UART2_TXD	LOW	J2-28	USB0_VBUS_OC
			IO Expa	ander			
	Select line for PMIC SPI MUX/ DEMUX (U24)	P0	Mux Select	PMIC_SPI1/ FSIRX0_MUX_SEL	PREFERABLE		

Table 2-7. GPIO Mapping Table - Rev E1 (continued)

GPIO	GPIO Description	Pin Name	Functionality	Net Name	Active Status	SOM HD Connector Pin	Baseboard/Adapter Board Usage
	Select line for ADC0_AIN0/ DAC_OUT MUX (U20)	P1	Mux Select	ADC0_AIN0/ DAC_OUT_MUX_SE L	PREFERABLE		
	MII Reset	P2	Reset	MII_RST#	LOW	J3-101	Reset signal for MII0 and MII1 on HSEC180ADAPEVM-AM2
	RGMII1 Reset	P3	Reset	RGMII1_RST	LOW	J2-11	Reset signal for RGMII1 on HSEC180ADAPEVM-AM2
	Select line for SPI0-FSI MUX/ DEMUX (U13)	P4	Mux Select	SPI0/ FSITX0_MUX_SEL	PREFERABLE		
	Select line for SPI3 MUX/DEMUX (U18)	P5	Mux Select	SPI3_MUX_SEL	PREFERABLE		
	Select line for HSEC180ADAPEVM- AM2 MII0 Mux	P6	Mux Select	IOEXP_OUT_P6	PREFERABLE	J2-5	MII0 Mux select line on HSEC180ADAPEVM-AM2
	Select line for HSEC180ADAPEVM- AM2 MII1 Mux	P7	Mux Select	IOEXP_OUT_P7	PREFERABLE	J2-9	MII1 Mux select line on HSEC180ADAPEVM-AM2

Hardware Vincom

Vinco

2.8 Interfaces

2.8.1 USB

The HSEC180ADAPEVM-AM2 has one USB2.0 interface connected to the USB0 peripheral on the AM261x MCU. On the AM261x controlSOM, the USB signals are routed from the MCU to the SOM HD Connector J2.

On the SOM to HSEC adapter board, the USB0_DM and USB0_DP nets are routed to a common mode choke to reduce noise on the high-speed USB signal bus. The nets are passed through a TPD4E02B04 ESD protection diode, and are terminated at a Micro-USB receptacle. Figure 2-8 details the USB implementation on the HSEC180ADAPEVM-AM2.

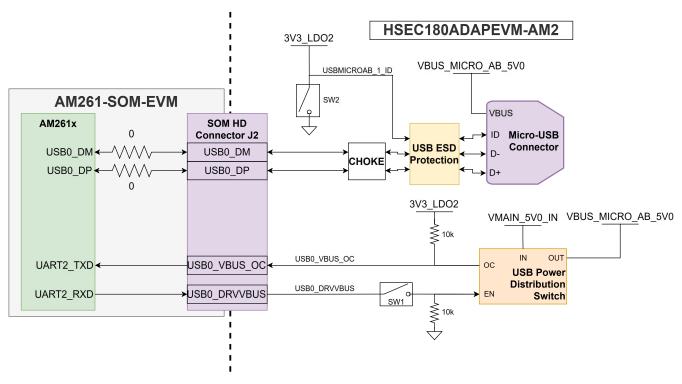


Figure 2-8. HSEC180ADAPEVM-AM2 USB Interface

The USB mode of operation is controlled using a set of DIP switches - SW1 and SW2. The setting of the DIP switches determines the USB mode of operation, and is detailed in Table 2-8 below.

Table 2-8. USB Mode Switch Settings

SW1 (USB0_DRVVBUS)	SW2 (USBMICROAB_ID)	USB Mode
OFF / RIGHT (TPS2051B disabled)	ON / RIGHT (3V3)	Device Mode
ON / LEFT (TPS2051B enabled)	OFF / LEFT (GND)	Host Mode

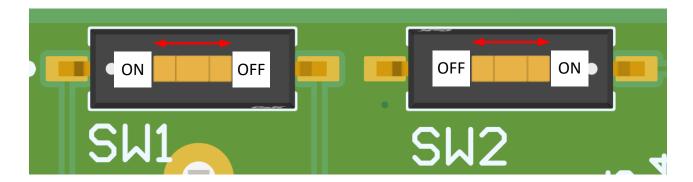


Figure 2-9. SW1/SW2 Positions

USB Device Mode

When using the AM261x device in USB device mode, the VBUS pin of the Micro-USB receptacle is used to detect when voltage has been applied to or removed from the USB connector. Software running on the AM261x manages the internal USB PHY according to the presence of 5V or 0V on the VBUS pin.

USB Host Mode

When using the AM261x device in USB Host mode, 5V on the VBUS pin of the Micro-USB receptacle is required. On the HSEC180ADAPEVM-AM2, this supply is generated using a TPS2051B USB Power Distribution switch which sources the main 5V system input from the HSEC connector and supplies a separate 5V input for the USB bus. As shown in Table 2-8 above, SW1 must be set to ON to enable the TPS2051B USB Power Distribution switch, and SW2 must be OFF to indicate that the device is set to USB Host mode. SW1 controls the state of the USB0_DRVVBUS net, which is connected to a dedicated USB0_DRVVBUS pin on the AM261x MCU and drives the enable pin on the TPS2051B. The OC pin of the TPS2051B is an active low, open-drain output that occurs when an overcurrent or overtemperature shutdown condition is detected. The USB0_VBUS_OC net is connected to the UART2_TXD pin on the AM261x MCU and is configured as a GPIO for this use case.

2.8.2 UART

One instance of the UART peripheral is routed from the SOM HD Connector J1 to the Emulation header (J4) and the HSEC connector.

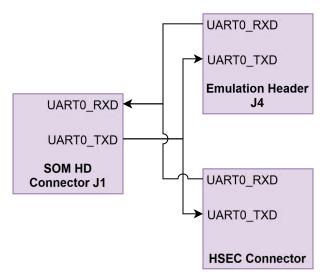


Figure 2-10. HSEC180ADAPEVM-AM2 UART Interface

Hardware www.ti.com

The XDS110ISO-EVM uses its on-board XDS110 emulator as a USB2.0 to UART bridge for terminal access. The UART0 transmit and receive signals of the AM261x SoC are mapped to SOM HD Connector J1 to connect to the XDS110ISO-EVM via J4 when mated to the HSEC180ADAPEVM-AM2.

2.8.3 FSI

The AM261x SOM to HSEC adapter provides a 10-pin header for interfacing with the AM261x MCU Fast Serial Interface (FSI) peripheral. The interface has two lines of data and a clock line for both the receive and transmit signals.

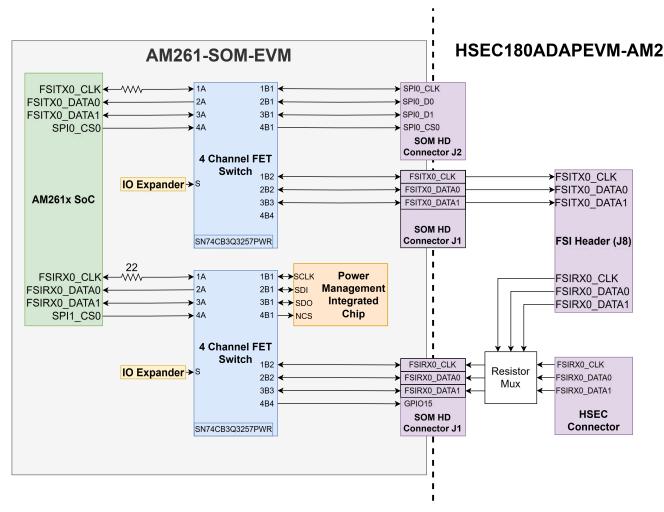


Figure 2-11. HSEC180ADAPEVM-AM2 FSI Interface

The FSIRX signals are passed through a resistor mux, routing the FSIRX signals to either the dedicated FSI header (J8) or the HSEC connector. The FSITX signals are directly connected to the dedicated FSI header (J8)

Note

On the AM261x controlSOM, FSI TX signals go through a 4-bit 1:2 signal routing mux. There is a pull-down resistor on the select line of the mux, which does not route FSI as the default selection. To use FSI, the SPI0/FSITX0_MUX_SEL GPI0 from the IO expander must be configured as a logic high output. In addition, the FSI RX signals go through a separate 4-bit 1:2 signal routing mux. There is a pull-down resistor on the select line of the mux, which does not route FSI as the default selection. To use FSI, the PMIC_SPI1/FSIRX0_MUX_SEL GPI0 from the IO expander must also be configured as a logic high output.

Hardware

2.8.4 OSPI

The OSPI1 instance of the AM261x OSPI peripheral is routed to a 30-pin high density connector on the HSEC180ADAPEVM-AM2. Compatible OSPI add-on boards can be connected to the SOM to HSEC adapter board for interfacing with the AM261x MCU on the AM261x controlSOM.

Figure 2-12 shows the connections between the RGMII1 signals routed from the SOM HD connectors, the resistor muxing scheme, and connection to the OSPI expansion header. The OSPI1 reset logic is determined by the output of an AND gate with inputs PORz and OSPI1 RESET OUT0.

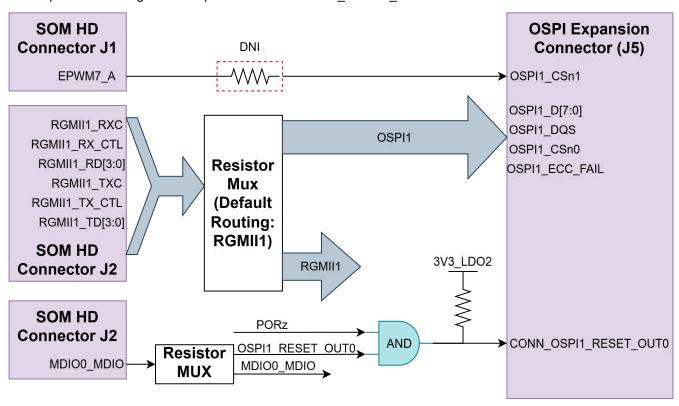


Figure 2-12. HSEC180ADAPEVM-AM2 OSPI Interface

The majority of the OSPI1 signals are pinmuxed with the RGMII signals on the AM261x MCU. The OSPI1_CSn1 signal is pinmuxed with EPWM7 A. In order to enable OSPI1 and route the OSPI1 nets to the OSPI Expansion connector, the following resistor modifications must be made:

Table 2-9. OSPI1 Resistor Mods

AM261x Signal	Pinmuxed OSPI1 Signal	DNI Resistor	Populate Resistor
RGMII1_RXC	OSPI1_CLK	R25	R24
RGMII1_RX_CTL	OSPI1_D0	R27	R26
RGMII1_RD0	OSPI1_D1	R29	R28
RGMII1_RD1	OSPI1_D2	R32	R30
RGMII1_RD2	OSPI1_D3	R34	R33
RGMII1_RD3	OSPI1_D4	R36	R35
RGMII1_TXC	OSPI1_D5	R38	R37
RGMII1_TX_CTL	OSPI1_D6	R46	R45
RGMII1_TD0	OSPI1_D7	R48	R47
RGMII1_TD1	OSPI1_CSn0	R50	R49
RGMII1_TD2	OSPI1_DQS	R52	R51

Hardware Vincom

Www.ti.com

Table 2-9. OSPI1 Resistor Mods (continued)

AM261x Signal	Pinmuxed OSPI1 Signal	DNI Resistor	Populate Resistor
RGMII1_TD3	OSPI1_ECC_FAIL	R54	R53
MDIO0_MDIO	OSPI1_RESET_OUT0	R56	R55
EPWM7_A	OSPI1_CSn1 ¹	-	R31

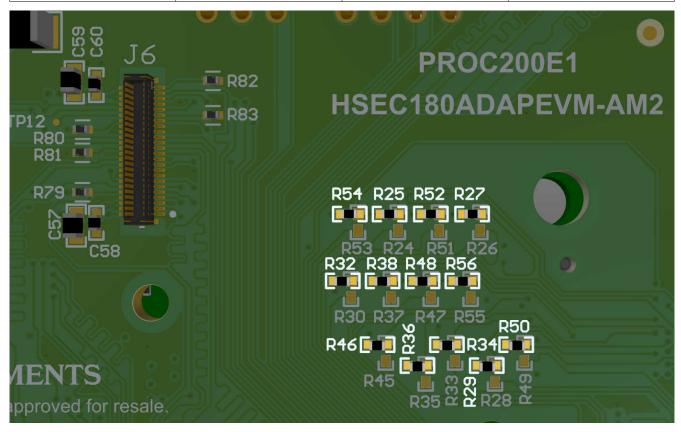


Figure 2-13. OSPI1 - DNI Resistors

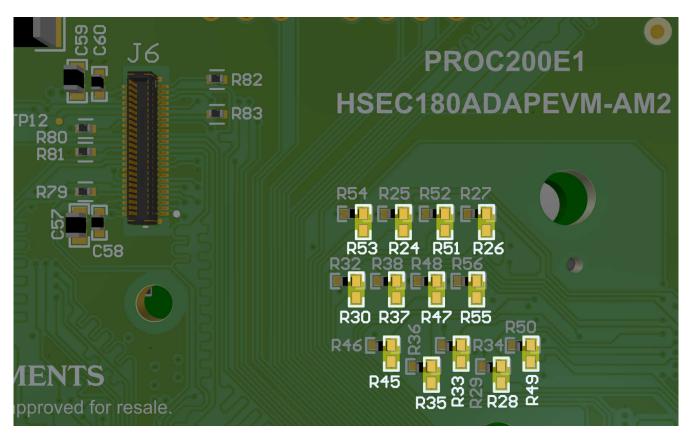


Figure 2-14. OSPI1 - Install Resistors

2.8.5 Ethernet

2.8.5.1 RGMII

One port of RGMII signals is routed from the AM261x controlSOM to the HSEC180ADAPEVM-AM2 to a 48-pin DP83869 gigabit Ethernet PHY, and terminated at a RJ45 connector.

The DP83869 PHY is configured to advertise 1Gb operation. The RJ45 connector is used for 10/100/1000 Mbps Ethernet connectivity with integrated magnets and LEDs for link and activity indication.

Hardware Superior INSTRUMENTS

www.ti.com

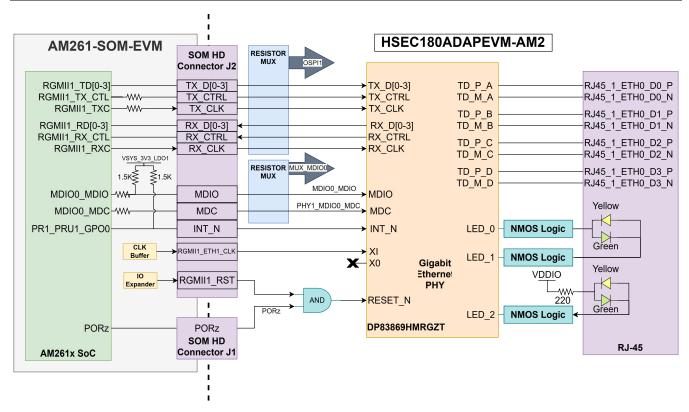


Figure 2-15. HSEC180ADAPEVM-AM2 RGMII Interface

The RGMII RX and TX nets are routed through the SOM HD Connector J2 and pass through a resistor mux. The resistors are populated for the RGMII path by default, and connect to the DP83869 PHY.

The MDIO0 nets are routed through SOM HD Connector J2 and also pass through a resistor mux. The resistors for both paths are populated by default, and no modifications are required. MDIO0 nets are pulled up to the IO supply voltage via $1.5 k\Omega$ resistors on the AM261x controlSOM, and do not require additional pull-ups on the HSEC180ADAPEVM-AM2.

The PHY interrupt signal is driven by a GPIO mapped from the AM261x MCU.

The DP83869 clock input is sourced from the clock buffer IC on the AM261x controlSOM, and operates at 25MHz.

The DP83869 reset signal is generated from the AM261x PORz signal ANDed with an output from the AM261x controlSOM IO expander.

The DP83869 PHY requires three separate power sources. VDDIO (3.3V) is the output of the on-board load switch, which uses the 3.3V system IO voltage as its input. The other two PHY power inputs - VDD1P1 and VDDA2P5 - are generated from on-board LDOs. For more on the system power, see Section 2.3.

Strapping Resistors

The DP83869 Ethernet PHY uses several functional pins as strap options to place the PHY into specific modes of operation.

Note

RX_D0 and RX_D1 are left floating rather than pulled down with 2.49kΩ resistors because they are on a 4-level strap resistor mode scheme. All other signals are 2-level strap resistor modes.

Note

Each functional pin used for strapping has an internal pull down resistance of 9kΩ

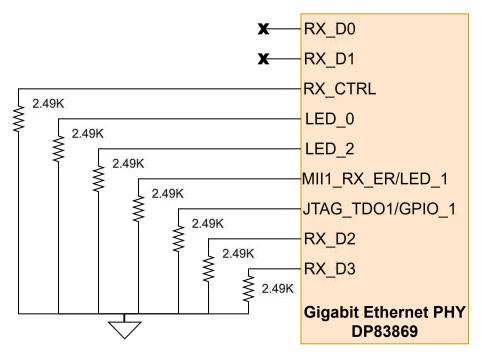


Figure 2-16. DP83869 RGMII1 PHY Strapping Resistors

Table 2-10. DP83869 RGMII1 Gigabit Ethernet PHY Strapping Resistors

Functional Pin	Default Mode	Mode on HSEC180ADAPEVM-AM2	Function
RX_D0	0	0	PHY address: 0000
RX_D1	0	0	
JTAG_TDO/GPIO_1	0	0	RGMII to Copper
RX_D3	0	0	
RX_D2	0	0	
LED_0	0	0	Auto-negotiation, 1000/100/10
RX_ER	0	0	advertised, auto MDI-X
LED_2	0	0	
RX_DV	0	0	Port mirroring disabled

RJ45 Connector LED Indications

The RJ45 receptacle connected to the DP83869 PHY contains two bi-color LEDs that are used to indicate link and activity.

Table 2-11. CPSW/RGMII1 RJ45 Receptacle LED Indication

RJ45 LED	Color	Indication
Right LED	GREEN	Ethernet PHY power established
	YELLOW	Transmit or Receive activity
Left LED	GREEN	Link OK
	YELLOW	1000BT link is up

2.8.5.2 PRU-ICSS

The AM261x controlSOM routes two instances of the AM261x MCU on-die programmable real-time unit and industrial communication subsystem (PRU-ICSS) to the SOM HD connectors. On the HSEC180ADAPEVM-AM2,

Hardware www.ti.com

there are two external Ethernet ports - one on-board gigabit Ethernet PHY transceiver (DP83869), and one Ethernet add-on board connector. The gigabit Ethernet PHY is connected to the PR0_PRU0 core of the PRU-ICSS, and the Ethernet add-on board interface is connected to the PR0_PRU1 core of the PRU-ICSS. Table 2-12 details the protocols supported at each Ethernet port interface:

Table 2-12. PRU-ICSS Ethernet Protoc	ocols	Prof	Ethernet	I-ICSS	PRI	2-12.	Table
--------------------------------------	-------	------	----------	--------	-----	-------	-------

AM261x PRU-ICSS Core	On-board Peripheral / Speed	External Interface	Supported Protocols
PR0_PRU0	DP83869 gigabit PHY10/100/1000 Mbps	RJ45	PRU-ICSS RGMII/MII CPSW RGMII/MII
PR0_PRU1	Ethernet add-on board connector 10/100/1000 Mbps	Ethernet add-on board	PRU-ICSS RGMII/MII

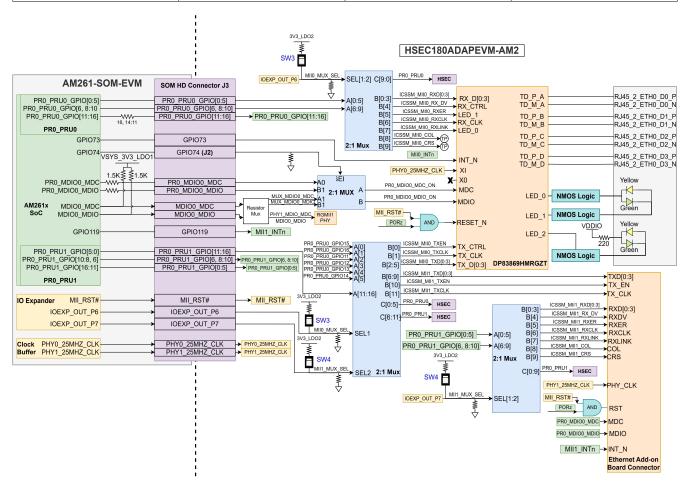


Figure 2-17. HSEC180ADAPEVM-AM2 PRU-ICSS Ethernet Implementation

The Ethernet data signals of the DP83869 PHY are terminated to a RJ45 connector. The RJ45 connector supports Ethernet speeds of 10/100/1000 Mbps connectivity and has integrated magnets and LEDs for link and activity indication.

There are a series of multiplexers on the paths of the PRU-ICSS nets from the SOM HD connectors to their external interfaces. 3 high-speed, 12-channel switches (TS3DDR3812) control the routing of the PRx_PRUx_GPIOx signals to either the Ethernet interfaces or to the HSEC connector. The select lines for the muxes are software controlled by two output signals configured by the on-SOM IO Expander, or hardware controlled by the on-board switches (SW3 and SW4) on the HSEC180ADAPEVM-AM2. An additional mux selects which set of MDIO signals is routed to the DP83869 PHY, and is dependent on which protocol is being

used on the DP83869 - CPSW RGMII or PRU MII. The select line of this mux is controlled by AM261x GPIO74, which is routed from the MCU to the HSEC180ADAPEVM-AM2 through SOM HD connector J2. Table 2-13 shows the mux configurations. Figure 2-18 shows the mux select switches.

Table 2-13. PRU-ICSS Signal Routing

AM261x PRU-ICSS Core	Destination	Protocol	MII0_MUX_SEL (SW3)	MII1_MUX_SEL (SW4)	MDIO/MDC MUX SEL
			Controlled by control OR on-board DIP Swi	•	Controlled by AM261x GPIO74
PR0_PRU0	DP83869 PHY	CPSW RGMII2	LOW / RIGHT (default)	LOW / RIGHT (default)	HIGH (AM261x SoC MDIO0 signals)
	DP83869 PHY	PRU MII0	LOW / RIGHT (default)	LOW / RIGHT (default)	LOW (default) (PRU MDIO0 signals)
	HSEC	CPSW RGMII	HIGH / LEFT	HIGH / LEFT	HIGH (AM261x SoC MDIO0 signals)
	HSEC	PRU MII0	HIGH / LEFT	HIGH / LEFT	LOW (default) (PRU MDIO0 signals)
PR0_PRU1	Ethernet Add-on Board Connector	PRU MII1	LOW / RIGHT (default)	LOW / RIGHT (default)	х
	HSEC	PRU MII1	HIGH / LEFT	HIGH / LEFT	X

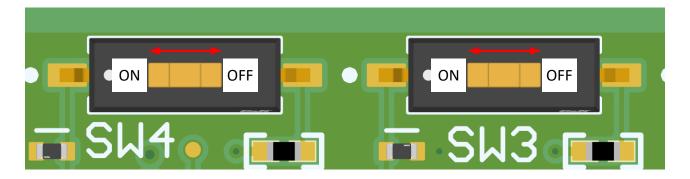


Figure 2-18. SW3/SW4 Positions

2.8.5.2.1 On-Board PHY

The on-board DP83869 gigabit Ethernet PHY has the following hardware connections, shown in Figure 2-19 and detailed in Table 2-14.

Hardware www.ti.com

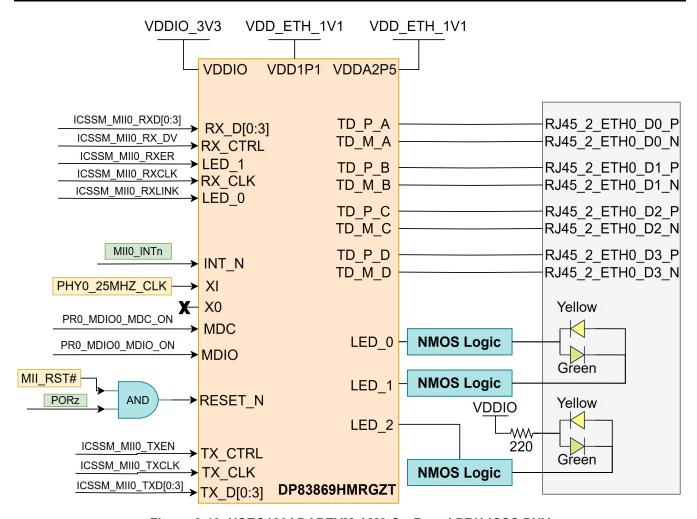


Figure 2-19. HSEC180ADAPEVM-AM2 On-Board PRU-ICSS PHY

Table 2-14. DP83869 Hardware Connections

DP83869 Pin	AM261x / controlSOM Pin Source	HSEC180ADAPEVM Net	Notes
RX_D[0:3]	PR0_PRU0_GPIO[0:3]	ICSSM_MII0_RXD[0:3]	
RX_CTRL/RX_DV	PR0_PRU0_GPIO4	ICSSM_MII0_RX_DV	
LED1/RX_ER	PR0_PRU0_GPIO5	ICSSM_MII0_RXER	
RX_CLK	PR0_PRU0_GPIO6	ICSSM_MII0_RXCLK	
LED_0	PR0_PRU0_GPIO8	ICSSM_MII0_RXLINK	
TX_CTRL/TX_EN	PR0_PRU0_GPIO15	ICSSM_MII0_TXEN	
TX_CLK	PR0_PRU0_GPIO16	ICSSM_MII0_TXCLK	
TX_D[0:3]	PR0_PRU0_GPI0[11:14]	ICSSM_MII0_TXD[0:3]	
MDC	Output of MDIO/MDC Mux	PR0_MDIO0_MDC_ON	See Table 2-13
MDIO	Output of MDIO/MDC Mux	PR0_MDIO0_MDIO_ON	See Table 2-13.
INT_N	GPIO73	MII0_INTn	
XI	PHY0_25MHZ_CLK	PHY0_25MHZ_CLK	Output of Clock Buffer IC on AM261x controlSOM

Table 2-14. DP83869 Hardware Connections (continued)

DP83869 Pin	AM261x / controlSOM Pin Source	HSEC180ADAPEVM Net	Notes
RESET_N	Output of MII_RST# AND PORz	MII0/MII1_RST	MII_RST# net sourced from
			IO Expander on AM261x
			controlSOM

The DP83869 PHY requires three separate power sources. VDDIO (3.3V) is the output of the on-board load switch, which uses the 3.3V system IO voltage as its input. The other two PHY power inputs - VDD1P1 and VDDA2P5 - are generated from on-board LDOs. For more on the system power, see Section 2.3.

Strapping Resistors

The DP83869 Ethernet PHY uses several functional pins as strap options to place the PHY into specific modes of operation. Each functional pin has a default mode that is driven by an internal pull resistor.

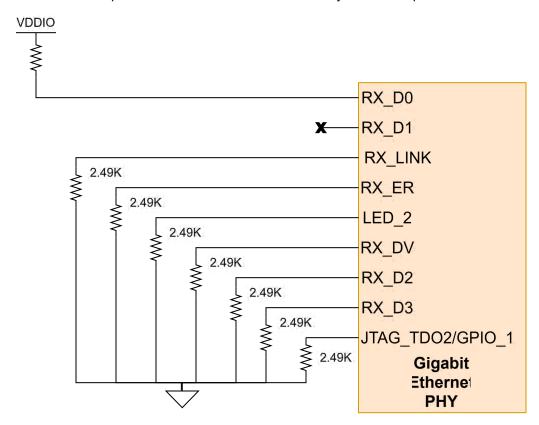


Figure 2-20. DP83869 PHY Strapping Resistors

Table 2-15. PR0 PRU0 ICSS Gigabit Ethernet PHY Strapping Resistors

imple = ion inc_i inco io oo olgaan = mollioti in ola apping itoolotic				
Functional Pin	Default Mode	Mode on HSEC180ADAPEVM-AM2	Function	
RX_D0	0	3	PHY address: 0011	
RX_D1	0	0		
JTAG_TDO/GPIO_1	0	0	RGMII to Copper	
RX_D3	0	0		
RX_D2	0	0		

Hardware www.ti.com

Table 2-15. PR0_PRU0 ICSS Gigabit Ethernet PHY Strapping Resistors (continued)

Functional Pin	Default Mode	Mode on HSEC180ADAPEVM-AM2	Function
LED_0	0	0	Auto-negotiation, 1000/100/10
RX_ER	0	0	advertised, auto MDI-X
LED_2	0	0	
RX_DV	0	0	Port mirroring disabled

RJ45 Connector LED Indications

The RJ45 receptacle connected to the DP83869 PHY contains two bi-color LEDs that are used to indicate link and activity.

Table 2-16. PR0_PRU0 ICSS RJ45 Receptacle LED Indication

RJ45 LED	Color	Indication
Right LED	GREEN	Ethernet PHY power established
	YELLOW	Transmit or Receive activity
Left LED	GREEN	Link OK
	YELLOW	1000BT link is up

2.8.5.2.2 Ethernet Add-on Board

There is one Ethernet Add-on Board Connector on the HSEC180ADAPEVM-AM2 for connecting compatible TI Ethernet Add-on Boards. The primary Ethernet Add-on Board for this EVM system is the DP83826-EVM-AM2. Visit the tool page for more information.

To connect the HSEC180ADAPEVM-AM2 to the Ethernet add-on board, attach the receptacle on the bottom side of the add-on board to J6 on the HSEC180ADAPEVM-AM2. Use the screws and spacers included in the Ethernet add-on board kit to securely mount the two boards together. The connected board assembly is shown in Figure 2-21.

Figure 2-21. HSEC180ADAPEVM-AM2 + Ethernet Add-on Board Connection

The AM261x PR0_PRU1 core is connected to the Ethernet Add-on Board Connector. The full pinout details of the connector can be found in Section 2.4.6. The hardware connections between the AM261x controlSOM + HSEC180ADAPEVM-AM2 system and the connector are shown in Figure 2-22 and detailed in Table 2-17 below:

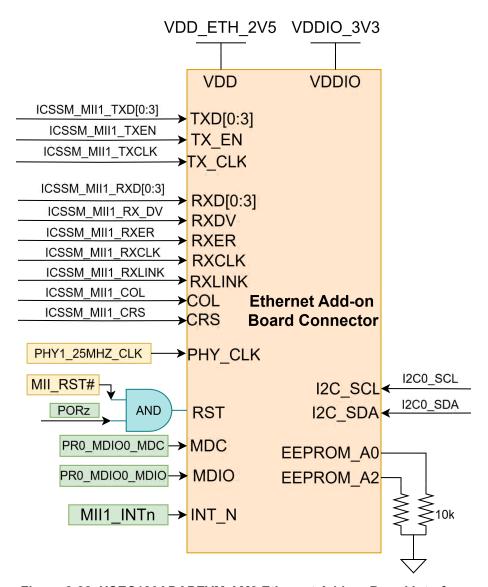


Figure 2-22. HSEC180ADAPEVM-AM2 Ethernet Add-on Board Interface

Table 2-17. Ethernet Add-on Board Hardware Connections

Ethernet Add-on Board Pin	AM261x / controlSOM Pin Source	HSEC180ADAPEVM Net	Notes
DV Dro of		LOCOLA MILL DVDIO O	
RX_D[0:3]	PR0_PRU1_GPIO[0:3]	ICSSM_MII1_RXD[0:3]	
RXDV	PR0_PRU1_GPIO4	ICSSM_MII1_RX_DV	
RX_ER	PR0_PRU1_GPIO5	ICSSM_MII1_RXER	
RX_CLK	PR0_PRU1_GPIO6	ICSSM_MII1_RXCLK	
RX_LINK	PR0_PRU1_GPIO8	ICSSM_MII1_RXLINK	
TXEN	PR0_PRU1_GPIO15	ICSSM_MII1_TXEN	
TX_CLK	PR0_PRU1_GPIO16	ICSSM_MII1_TXCLK	
TX_D[0:3]	PR0_PRU1_GPI0[11:14]	ICSSM_MII1_TXD[0:3]	

Hardware www.ti.com

Table 2-17. Ethernet Add-on Board Hardware Connections (continued)

Ethernet Add-on Board Pin	AM261x / controlSOM Pin Source	HSEC180ADAPEVM Net	Notes
MDC	PR0_MDIO0_MDC	PR0_MDIO0_MDC	
MDIO	PR0_MDIO0_MDIO	PR0_MDIO0_MDIO	
INT_N	GPIO119	MII1_INTn	
REF_CLK	PHY1_25MHZ_CLK	PHY1_25MHZ_CLK	Output of Clock Buffer IC on AM261x controlSOM
RESET_N	Output of MII_RST# AND PORz	MII0/MII1_RST	MII_RST# net sourced from IO Expander on AM261x controlSOM

The I2C address of the Ethernet Add-on Board EEPROM is determined by on-board pull resistors that connect to the address pins of an EEPROM on a Ethernet Add-on Board when connected to the HSEC180ADAPEVM-AM2. These address pins also drive a FET network on the Ethernet Add-on Board that determine the PHY's address. All Ethernet add-on boards in the TI Ethernet Add-on Board Ecosystem follow the same addressing convention. Because the HSEC180ADAPEVM-AM2 only has a single connector, the CONNECTOR_0 addressing is followed:

Table 2-18. CONNECTOR_0 I2C / PHY Addressing Scheme

Connector_#		OM_A2 tor pin 37)	EEPRO	OM_A1	EEPROM_A	•	I2C Address	PHY Address
	Pull	A2	Pull	A1	Pull	A0		
CONNECTOR_0	GND	0	VDDIO	1	GND	0	0x52	Ethernet add-on board dependent

The PHY address is dependent on which Ethernet add-on board is being used, since different PHYs have different address configurations. To determine the PHY address for a specific Ethernet Add-on Board, see the Add-on Board's User Guide and find the *Multi-Connector Addressing* section in the document.

2.8.6 I2C

Two instances of the AM261x I2C peripheral are routed from the SOM HD connectors to various target devices/ destinations on the HSEC180ADAPEVM-AM2.

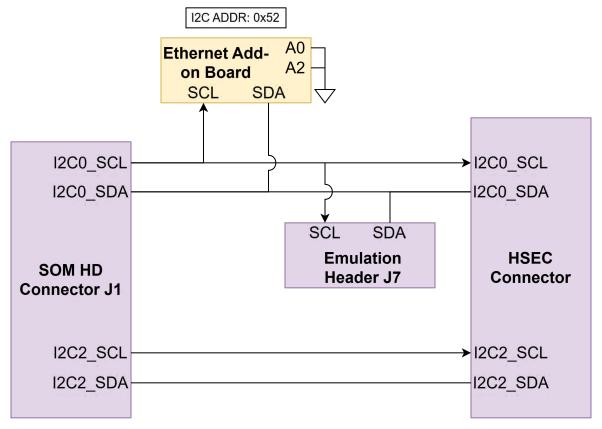


Figure 2-23. HSEC180ADAPEVM-AM2 I2C Interface

Table 2-19 details the I2C peripheral connections.

Table 2-19. I2C Devices and Destinations

Target	I2C Instance	Description	I2C Address
HSEC Connector	12C0	HSEC Connector pins 92 (SDA), 93 (SCL)	
	12C2	HSEC Connector pins 85 (SDA), 87 (SCL)	
Emulation Header (J4)	I2C0	Allows XDS110 device on XDS110ISO-EVM to read Board ID EEPROM on AM261x controlSOM	
Ethernet Add-on Board Connector	12C0	Ethernet Add-on Board EEPROM connection	0x52

2.8.7 SPI

Two instances of SPI are routed to the HSEC180ADAPEVM-AM2 from the AM261x controlSOM through SOM HD connector J2 (SPI0) and J1 (SPI3).

Hardware www.ti.com

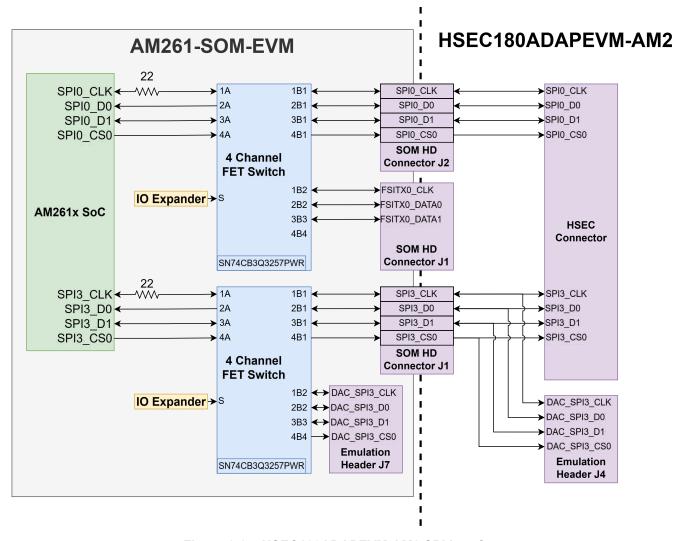


Figure 2-24. HSEC180ADAPEVM-AM2 SPI Interface

SPI0 is directly connected to the HSEC connector.

SPI3 is routed to both the HSEC connector and the Emulation Header (J4).

2.8.8 TMDSHSECDOCK-AM263 Peripherals

There are several peripherals routed from the AM261x MCU on the AM261x controlSOM, through the SOM HD connectors to the HSEC180ADAPEVM-AM2, and passed to the HSEC connector for use on the TMDSHSECDOCK-AM263. The TMDSHSECDOCK-AM263 has AM26x MCU feature-specific on board hardware for interfacing with the following peripherals:

- ADC
- MCAN
- LIN
- JTAG
- GPIO

The following sections in this User's Guide will detail the integration of the HSEC180ADAPEVM-AM2 between the AM261x controlSOM and the AM26x HSEC Dock. For specific information on the implementation of the hardware on the TMDSHSECDOCK-AM263, consult the TMDSHSECDOCK-AM263 User's Guide.

2.8.8.1 ADC/DAC

18 ADC signal channels (3 ADC instances x 5 input channels) are routed from the AM261x controlSOM to the HSEC180ADAPEVM-AM2 via SOM HD Connector J1. On the HSEC180ADAPEVM-AM2, the channels are routed through RC filtering and ESD diodes before terminating at the HSEC connector. When docked with a TMDSHSECDOCK-AM263, the ADC channels can be interfaced with on the 100-mil headers on the AM26x Docking Station.

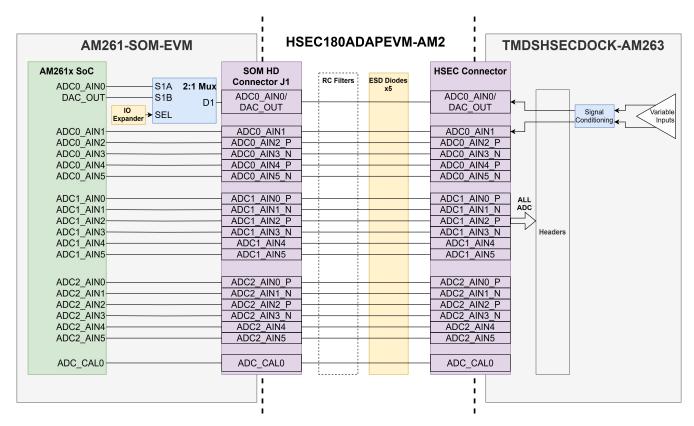


Figure 2-25. HSEC180ADAPEVM-AM2 + TMDSHSECDOCK-AM263 ADC Interface

On the TMDSHSECDOCK-AM263, a pair of potentiometers and op-amps provide variable inputs and signal conditioning for ADC0_AIN0 and ADC0_AIN1. For more information on the implementation, see the ADC section in the TMDSHSECDOCK-AM263 User's Guide.

2.8.8.2 MCAN

Two instances of the AM261x MCAN peripheral are routed from the AM261x controlSOM through the SOM HD connectors to the HSEC180ADAPEVM-AM2. On the SOM to HSEC adapter board, the signals are routed directly to the HSEC connector. When docking the controlSOM + SOM to HSEC adapter with the TMDSHSECDOCK-AM263, the HSEC pins with the MCAN0 and MCAN1 signals connect to a 2-channel MCAN PHY (TCAN1046) on the AM26x HSEC docking station.

Hardware Superior INSTRUMENTS

www.ti.com

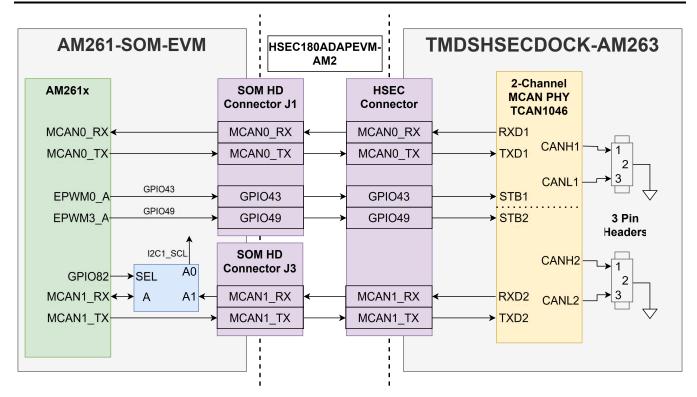


Figure 2-26. HSEC180ADAPEVM-AM2 + TMDSHSECDOCK-AM263 MCAN Interface

GPIO43 (EPWM0_A) and GPIO49 (EPWM3_A) are used as standby control signals for each channel of the TCAN1046, and are appropriately routed to the correct HSEC pin to connect to the STB[2:1] pins of the TCAN1046 on the AM26x HSEC docking station.

From the MCAN PHY, The low and high level CAN bus I/O lines for each channel are terminated to a three pin header.

For more information on the implementation of the TCAN1046 on the TMDSHSECDOCK-AM263, see the the MCAN section in the TMDSHSECDOCK-AM263 User's Guide.

2.8.8.3 LIN1

One instance of the AM261x Local Interconnect Network (LIN) peripheral is routed from the AM261x controlSOM to the HSEC180ADAPEVM-AM2 via SOM HD Connector J1. The LIN1 RXD/TXD signals are directly routed to the HSEC connector. When docking with the TMDSHSECDOCK-AM263, these HSEC pins connect to a TLIN2022A 2-channel LIN transceiver. Only one of the two channels of the TLIN2022A is enabled for LIN communication when using the AM261x controlSOM + HSEC180ADAPEVM-AM2. The LIN bus of LIN1 is connected to the second pin of a 3-pin header on the AM26x HSEC Docking Station.

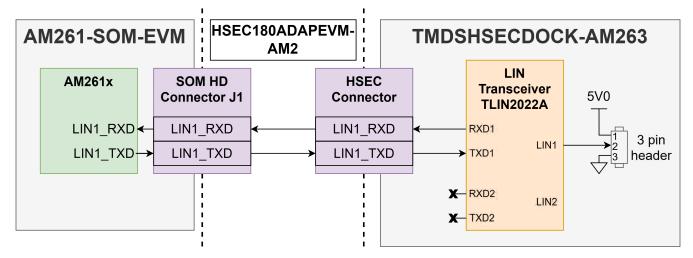


Figure 2-27. HSEC180ADAPEVM-AM2 + TMDSHSECDOCK-AM263 LIN Interface

2.8.8.4 JTAG

The JTAG signals (TDO, TDI, TMS, TCK) are routed from the AM261x controlSOM through the SOM HD Connector J1 to the HSEC180ADAPEVM-AM2. On the HSEC180ADAPEVM-AM2, the JTAG nets are routed to an emulation header (J4) and the HSEC Connector. When docked with the TMDSHSECDOCK-AM263, the JTAG signals can be accessed at the AM26x Docking Station MIPI-60 header or TI 14-pin JTAG header.

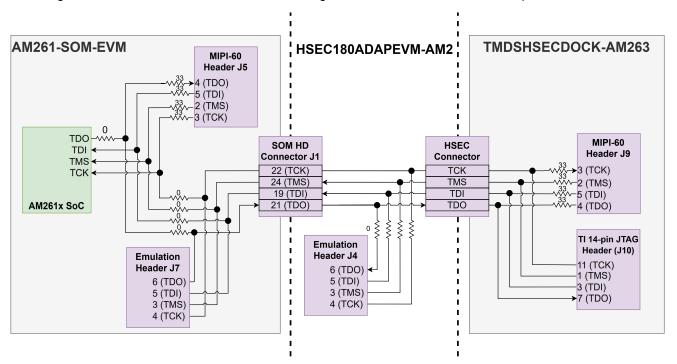


Figure 2-28. HSEC180ADAPEVM-AM2 + TMDSHSECDOCK-AM263 JTAG Interface

2.8.8.5 GPIO

All digital IO from the AM261x controlSOM routed to the HSEC connector on the HSEC180ADAPEVM-AM2 can be interfaced with as GPIO signals on standard 100-mil headers when docked with the TMDSHSECDOCK-AM263. For pinmux information, see Table 2-2.

2.9 Debug Information

Hardware Www.ti.com

2.10 Test Points

The AM261x SOM to HSEC adapter includes multiple test points to aid in hardware debug. Table 2-20 includes a list of the test points available on the HSEC180ADAPEVM-AM2.

Table 2-20. HSEC180ADAPEVM-AM2 Test Points

	T (D : (N (N	5
Test Point Designator	Test Point Net Name	Description
TP1	VMAIN_5V0_IN	System 5V input
TP2	3V3_LDO2	System 3.3V I/O supply. AM261x controlSOM PMIC LDO2 output
TP3	5V0_LDO3	AM261x controlSOM PMIC 5V LDO3 output
TP4	GND	GND
TP5	VDDA2_1V8	DP83869 (U1) PHY 1.8V supply input for three-supply mode
TP6	PHY2_RBIAS	DP83869 (U1) PHY bias resistor pin
TP7	PHY2_CLKOUT	DP83869 (U1) PHY output clock
TP8	VDDA1_1V8	DP83869 (U2) PHY 1.8V supply input for three-supply mode
TP9	PHY1_RBIAS	DP83869 (U2) PHY bias resistor pin
TP10	PHY1_CLKOUT	DP83869 (U2) PHY output clock
TP11	EXT_VMON2	AM261x controlSOM PMIC external voltage monitor for Ethernet add-on board connector
TP12	1588_SFD	IEEE 1588 SFD
TP13	VDD_ETH_2V5	2.5V Ethernet PHY power supply output
TP14	VDD_ETH_1V1	1.1V Ethernet PHY power supply output
TP15	ICSSM_MII0_COL	MII0 collision detected
TP16	VBUS_MICRO_AB_5V0	USB micro-AB power distribution switch 5V output
TP17	GND	GND
TP18	AM26x_VREFHI1	1.8V analog voltage reference
TP19	GND	GND
TP20	ICSSM_MII0_CRS	MII0 carrier sense
TP21	VDDIO_3V3	3.3V load switch output
TP22	GND	GND
TP23	GND	GND
TP25	MCU_PORz	AM261x power-on-reset

2.11 Assembly Instructions

2.12 Best Practices

Electrostatic Discharge (ESD) Compliance

Components installed on the product are sensitive to electrostatic discharge (ESD). TI recommends this product be used in ESD controlled environment. This includes a temperature or humidity controlled environment to limit the buildup of ESD. TI recommends to use ESD protection such as wrist straps and ESD mats when interfacing with the product.

Assumed Operating Conditions

This kit is assumed to run at standard room conditions. Standard ambient temperature and pressure (SATP) with moderate-to-low humidity is assumed.

www.ti.com Software

3 Software

The AM261x MCU+ Software Development Kit (MCU-PLUS-SDK-AM261X) is a unified software platform for embedded processors providing easy setup and fast out-of-the-box access to examples, benchmarks and demonstrations. This software accelerates application development schedules by eliminating creating basic system software functions from scratch.

The AM261x MCU+ Academy provides a Getting Started Guide for first-time software development using the AM261-SOM-EVM. Follow the steps in this guide to begin development.

4 Hardware Design Files

The HSEC180ADAPEVM-AM2 hardware design files can be downloaded from the EVM Tool Page, or by clicking this link.

www.ti.com Additional Information

5 Additional Information

5.1 Trademarks

All trademarks are the property of their respective owners.

6 References

In addition to this document, the following references are available for download at

- AM2612 Microcontroller Product Page
- AM261x Data Sheet
- AM261x Technical Reference Manual
- AM261x Register Addendum
- XDS110ISO-EVM XDS110 isolated plug-in evaluation module for C2000 and Sitara™ controlSOMs
- TMDSHSECDOCK C2000[™] HSEC180 baseboard docking station
- TMDSHSECDOCK-AM263 AM26x HSEC180 dock and breakout board

6.1 Other TI Components Used in This Design

This EVM uses various other TI components. A consolidated list of these components with links to their TI Product Pages is shown below.

- DP83869HM gigabit Ethernet PHY transceiver
- TPD4E001 Quad 1.5-pF, 5.5-V, ±8-kV ESD protection diode with 1-nA max leakage & VCC pin for USB 2.0
- SN74AHC1G09 1-ch, 2-input AND gate with open-drain outputs
- TPS62097 2-A Step Down Converter with Selectable Switching Frequency
- **TPS22918** 5.5-V, 2-A, 52-mΩ load switch
- TLV755P 500mA high-PSRR low-IQ low-dropout voltage regulator with enable
- **TPS2051B** 0.5A loading, 2.7-5.5V, 70mΩ USB power switch
- TPD4E02B04 Quad 0.25-pF, ±3.6-V, ±12-kV ESD protection diode for USB 3.0, HDMI 2.0 & High Speed Signals
- TS3DDR3812 3.3-V, 2:1 (SPDT), 12-channel switch
- TMUX154E 7.5-pF on-state capacitance, 3.3-V, 2:1 (SPDT), 2-channel analog switch

7 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
March 2025	*	Initial Release

STANDARD TERMS FOR EVALUATION MODULES

- Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or
 documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance
 with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 Limited Warranty and Related Remedies/Disclaimers:
 - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after the defect has been detected.
 - 2.3 Tl's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. Tl's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by Tl and that are determined by Tl not to conform to such warranty. If Tl elects to repair or replace such EVM, Tl shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI's recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI's instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:

EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGREDATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.

3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types lated in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

3.3 Japan

- 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。
 - https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-delivered-in-japan.html
- 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

- 1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
- 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above. User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けていないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの 措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。
- なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

ンスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

- 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-for-power-line-communication.html
- 3.4 European Union
 - 3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

- 4 EVM Use Restrictions and Warnings:
 - 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
 - 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.
 - 4.3 Safety-Related Warnings and Restrictions:
 - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.
 - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.
 - 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.
- 5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. Disclaimers:

- 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
- 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.
- 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

- 8. Limitations on Damages and Liability:
 - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TIMORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.
 - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, , EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
- 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.
- 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025