Jacinto7 EVM Infotainment Expansion

ABSTRACT

This document describes the hardware architecture of the Jacinto7 EVM – Infotainment Expansion (INFO) Boards. INFO is one of the expansion boards that will be interfaced with the Jacinto7 common processor board.

This design incorporates HDMI® technology.

1 Introduction	3
1.1 Key Features	
2 Infotainment Expansion Board Overview	4
2.1 Infotainment Expansion Board Identification	
2.2 Infotainment Expansion Board Component Identification	5
3 Infotainment Expansion Board - User Setup/Configuration	
3.1 Interfacing Infotainment Expansion Board With CP Board	
3.2 Power Requirements	3
3.3 EVM Reset/Interrupt Push Buttons	9
3.4 EVM Configuration DIP Switch	9
4 Infotainment Expansion Board Hardware Architecture	10
4.1 Infotainment Expansion Board Hardware Top Level Diagram	10
4.2 Expansion Connectors	<u>1</u> 1
4.3 Board ID EEPROM	13
4.4 Audio Codec Interface	14
4.5 FPD link De-Serializer Interface (Audio)	15
4.6 DIR Interface	16
4.7 DIT Interface	
4.8 Legacy Audio/JAMR3 Connectors	17
4.9 VIN/VOUT Mux Selection	
4.10 HDMI Interface Bridge	
4.11 FPD Link Display Serializer Interface	
4.12 Parallel Camera Interface	
5 Jacinto7 EVM Interface/IO Mapping	
5.1 Interface Mapping	
5.2 Infotainment Board GPIO Mapping	
5.3 I2C Address Mapping	
6 Revision History	28

Table of Contents

Trademarks

Table of Contents

All trademarks are the property of their respective owners.

The terms HDMI, HDMI High-Definition Multimedia Interface, HDMI trade dress, and the HDMI Logos are trademarks or registered trademarks of HDMI Licensing Administrator Inc.

www.ti.com Introduction

1 Introduction

The Jacinto7 EVMs are development and evaluation systems that enable developers to write software and develop hardware around the Jacinto7 family of processors. The main elements of the system are available on the base board(s) of the EVM. This gives developers the basic resources needed for most general-purpose type projects that encompass the Jacinto7 processor.

The Jacinto7 EVM is comprised of two boards:

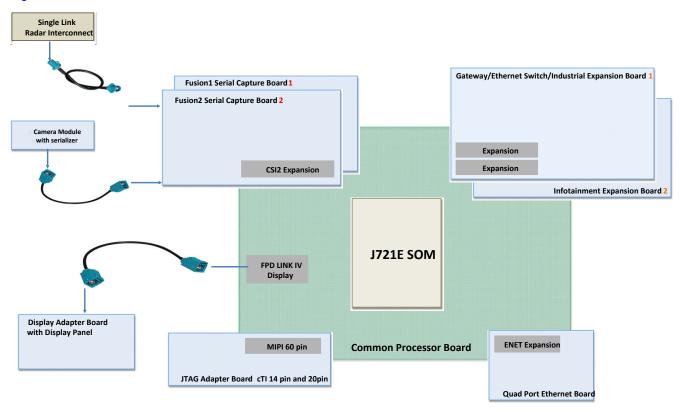
- Jacinto7 System on Module (SOM) which includes Jacinto7 processor, its power solution, and non-volatile memory.
- Jacinto7 Common Processor Board (CPB) which includes wide variety of memories, peripherals, and debug tools supporting by the Jacinto7 processor.

Beyond the basic resources provided, additional functionality can be added via expansion cards.

1.1 Key Features

Below are the key features of infotainment expansion board:

- · Audio interfaces:
 - Two Audio codecs each with three Stereo Inputs and four Stereo Outputs
 - Audio input over FPD Link III
 - Digital Audio Interface Transmit
 - Digital Audio Interface Receiver
- Video interfaces:
 - HDMI/FPD LINK III Display out
 - LI/OV Camera input
- JAMR3 interface
- Board ID EEPROM



2 Infotainment Expansion Board Overview

Jacinto7 EVM can support different types of expansion boards, one of which is Infotainment. Not all the expansion boards may not be available on all Jacinto7 EVMs.

To determine version of the Jacinto7 EVM supports the Infotainment expansion board, see Section 5.

Figure 2-1 shows the overall architecture of Jacinto7 EVM.

- A. Only one board can be connected to Expansion connector at a time.
- B. Only one board can be connected to CSI2 Expansion connector at a time.

Figure 2-1. System Architecture Interface

2.1 Infotainment Expansion Board Identification

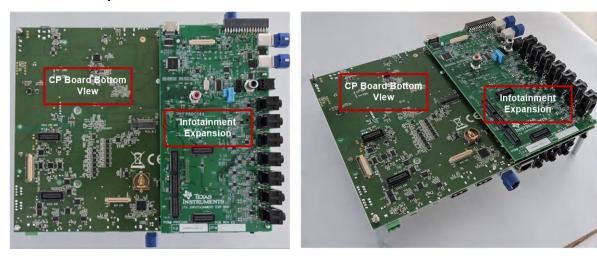
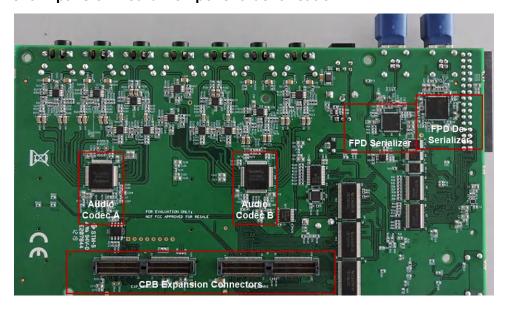



Figure 2-2. System Assembly Image

2.2 Infotainment Expansion Board Component Identification

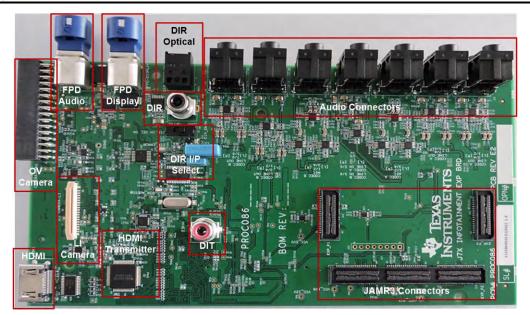


Figure 2-3. Infotainment Expansion Board Component Identification

3 Infotainment Expansion Board - User Setup/Configuration

3.1 Interfacing Infotainment Expansion Board With CP Board

Infotainment expansion boards interface with Jacinto7 EVM Common Processor Board (CPB). Expansion connectors J1 and J2 on the Infotainment will be mated to the EVM CPB Expansion connectors J46 and J51.

Figure 3-1. Expansion Connectors on INFO Exp Board Top Side

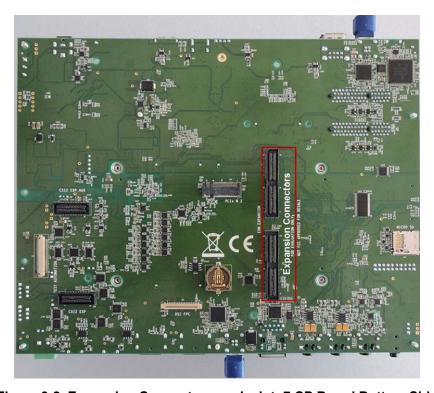


Figure 3-2. Expansion Connectors on Jacinto7 CP Board Bottom Side

3.1.1 Board Assembly Procedures

- 1. Take the Assembled CP board Kit
- 2. Remove the spacers from CP board and mate the infotainment board on CP board left side B-B connectors.
- 3. Add 2 mm thick washer (PART NUMBER : RWM100A) on the four stand offs in case no CSI Expansion Board connected.
- 4. Fix all the eight stand offs.

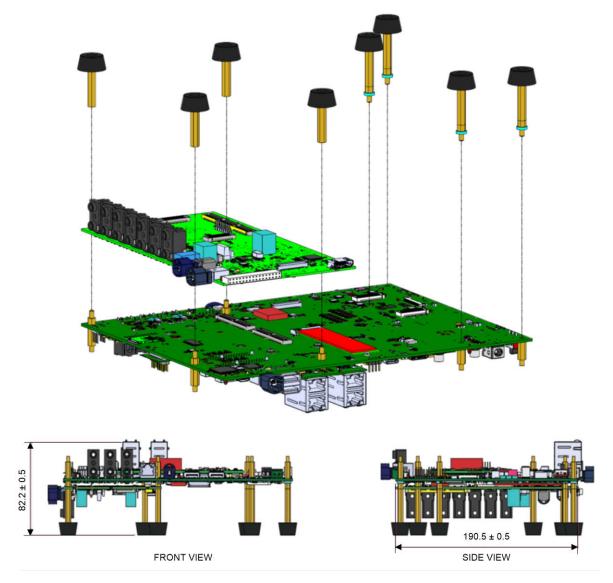


Figure 3-3. Board Assembly Procedure

3.2 Power Requirements

External power supply is not required since Infotainment board takes power from Jacinto7 EVM Common Processor Board. 12 V, 5 V, 3.3 V and 3.3 V IO are tapped from CPB.

Power to the Camera Connectors (3.3 V/1.8 V) are generated locally on Infotainment Expansion board using LDO and the enable of LDO is controlled by a Switch from CPB.

No Power ON indication LEDs are provided in the Infotainment expansion board.

3.3 EVM Reset/Interrupt Push Buttons

Jacinto7 EVM supports multiple User Push buttons for providing Reset inputs and User Interrupts to the processor. For their location and function, see the device-specific user's manual.

There are no Specific Reset/Interrupt Push Buttons available on the infotainment expansion board.

3.4 EVM Configuration DIP Switch

Common processor board has dedicated EVM configuration switch (SW3) shown in Figure 3-4 to set the various functions of EVM peripherals. The Configuration DIP Switch (SW3) is placed on Top side of CPB right below the USB Type C port.

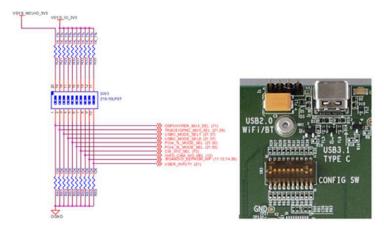


Figure 3-4. EVM Configuration DIP Switch

Table 3-1. Jacinto7 EVM Common Processor DIP Switches Used for Expansion Boards

Switch Name	Default Condition	Signal	Operation
SW3.8	ON	INFO_CAM_VIO_SEL	'1' (ON) =3.3V will be selected from LDO for camera IO voltage '0' (OFF) =1.8V will be selected from LDO for Camera IO Voltage
SW3.9	ON	BOARDID_EEPROM_WP	Sets EVM's configuration EEPROM Write Protection '0' (OFF) = Configuration EEPROM can be updated '1' (ON) = Configuration EEPROM cannot be updated/protected

4 Infotainment Expansion Board Hardware Architecture

This section explains the hardware architecture of infotainment expansion board in detail.

4.1 Infotainment Expansion Board Hardware Top Level Diagram

Figure 4-1 shows the functional block diagram of the infotainment expansion board

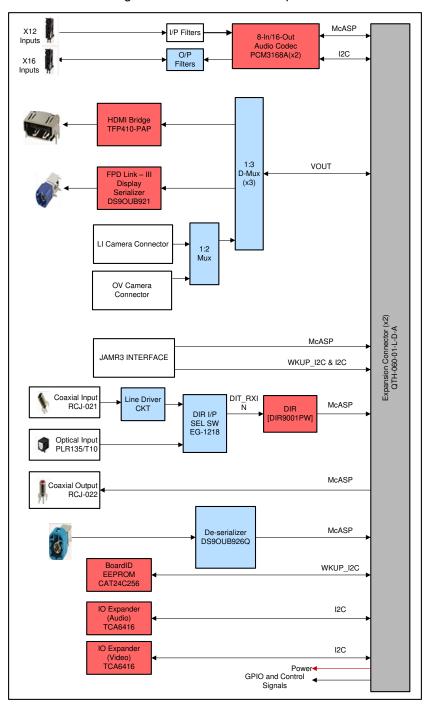


Figure 4-1. Functional Block Diagram of Infotainment Expansion Board

Few of the interfaces shown in the above diagram are specific EVM dependency. All may not be supported in all the Jacinto7 EVM.

For supported interfaces on the specific EVM platform, see Section 5.1.

4.2 Expansion Connectors

There are two expansion connectors J1 and J2 (120 pin Samtec connector) on the Infotainment board for connecting it to Jacinto7 EVM Common processor board. All Infotainment Interfaces, power and control signals are provided with these connectors.

Table 4-1 and Table 4-2 contain the pin out/signal mapping INFO expansion connectors. The tables show only the primary function/net name.

Table 4-1. Pinouts of J1 Expansion Connector

Pin	Net Name	Pin	Net Name	Pin	Net Name	Pin	Net Name
1	DGND	31	VOUT0_DATA10	61	McASP0_AXR3	91	CAM_SEL_OV#
2	VCC_12V0	32	VOUT0 DATA23	62	NC	92	McASP6_ACLKR
3	DGND	33	VOUT0_VSYNC	63	WKUP_I2C0_SDA	93	McASP2_AXR0
4	VCC 12V0	34	VOUT0 DE	64	SOC PORZ OUT	94	MUX_McASP6_AXR0
5	DGND	35	NC	65	WKUP_I2C0_SCL	95	DGND
6	VCC_12V0	36	VOUT0_PCLK	66	NC	96	DGND
7	McASP1 AXR3	37	DGND	67	DGND	97	NC
8	VOUT0_DATA15	38	DGND	68	DGND	98	NC
9	JAMR3_GPIO1	39	VOUT0_DATA0	69	McASP0_AXR0	99	NC
10	VOUT0_DATA14	40	VOUT0_DATA19	70	McASP0_AXR8	100	JAMR3_I2S_DB
11	McASP1_AXR2	41	VOUT0_DATA2	71	McASP0_AXR2	101	SPI3_D0
12	VOUT0_HSYNC	42	VOUT0_DATA16	72	McASP0_AXR7	102	McASP0_AXR13
13	McASP1_AXR0	43	VOUT0_DATA1	73	McASP0_AXR4	103	SPI3_D1
14	VOUT0_DATA11	44	VOUT0_DATA20	74	McASP0_AXR11	104	NC
15	McASP1_AXR1	45	VOUT0_DATA3	75	UB926_GPIO2	105	SPI3_CLK
16	VOUT0_DATA13	46	VOUT0_DATA18	76	McASP0_AXR10	106	NC
17	JAMR3_GPIO0	47	VOUT0_DATA4	77	McASP0_AXR1	107	DGND
18	VOUT0_DATA12	48	VOUT0_DATA21	78	McASP0_AXR9	108	DGND
19	DGND	49	VOUT0_DATA6	79	UB926_GPIO3	109	I2C0_SCL
20	DGND	50	VOUT0_DATA17	80	McASP0_AXR12	110	McASP1_ACLKX
21	VOUT0_EXTPCLKIN	51	DGND	81	DGND	111	I2C0_SDA
22	CON_VPFE0_DATA6	52	DGND	82	DGND	112	SOC_I2C2_SCL
23	VOUT0_DATA5	53	McASP0_AXR5	83	McASP1_AXR8	113	I2C1_SCL
24	CON_VPFE0_DATA7	54	CON_VPFE0_DATA12	84	MUX_McASP6_ACLKX	114	SOC_I2C2_SDA
25	VOUT0_DATA7	55	McASP0_AXR6	85	McASP1_AXR7	115	I2C1_SDA
26	AUDIO_EXT_REFCLK1	56	CON_VPFE0_DATA11	86	McASP6_AFSR	116	NC
27	VOUT0_DATA8	57	McASP0_ACLKX	87	CON_UB921_INTB	117	NC
28	VOUT0_DATA22	58	SPI3_CS0	88	MUX_McASP6_AFSX	118	EXP_RSTz
29	VOUT0_DATA9	59	McASP0_AFSX	89	JAMR3_GPIO2	119	DGND
30	UB926_GPIO1	60	McASP1_AFSX	90	MUX_McASP6_AXR1	120	DGND

Table 4-2. Pinouts of J2 Expansion Connector

Pin	Net Name	Pin	Net Name	Pin	Net Name	Pin	Net Name
1	DGND	31	VOUT0_DATA10	61	McASP0_AXR3	91	CAM_SEL_OV#
2	VCC_12V0	32	VOUT0_DATA23	62	NC	92	McASP6_ACLKR
3	DGND	33	VOUT0_VSYNC	63	WKUP_I2C0_SDA	93	McASP2_AXR0
4	VCC_12V0	34	VOUT0_DE	64	SOC_PORZ_OUT	94	MUX_McASP6_AXR0
5	DGND	35	NC	65	WKUP_I2C0_SCL	95	DGND
6	VCC_12V0	36	VOUT0_PCLK	66	NC	96	DGND
7	McASP1_AXR3	37	DGND	67	DGND	97	NC
8	VOUT0_DATA15	38	DGND	68	DGND	98	NC
9	JAMR3_GPIO1	39	VOUT0_DATA0	69	McASP0_AXR0	99	NC
10	VOUT0_DATA14	40	VOUT0_DATA19	70	McASP0_AXR8	100	JAMR3_I2S_DB
11	McASP1_AXR2	41	VOUT0_DATA2	71	McASP0_AXR2	101	SPI3_D0
12	VOUT0_HSYNC	42	VOUT0_DATA16	72	McASP0_AXR7	102	McASP0_AXR13
13	McASP1_AXR0	43	VOUT0_DATA1	73	McASP0_AXR4	103	SPI3_D1
14	VOUT0_DATA11	44	VOUT0_DATA20	74	McASP0_AXR11	104	NC
15	McASP1_AXR1	45	VOUT0_DATA3	75	UB926_GPIO2	105	SPI3_CLK
16	VOUT0_DATA13	46	VOUT0_DATA18	76	McASP0_AXR10	106	NC
17	JAMR3_GPIO0	47	VOUT0_DATA4	77	McASP0_AXR1	107	DGND
18	VOUT0_DATA12	48	VOUT0_DATA21	78	McASP0_AXR9	108	DGND
19	DGND	49	VOUT0_DATA6	79	UB926_GPIO3	109	I2C0_SCL
20	DGND	50	VOUT0_DATA17	80	McASP0_AXR12	110	McASP1_ACLKX
21	VOUT0_EXTPCLKIN	51	DGND	81	DGND	111	I2C0_SDA
22	CON_VPFE0_DATA6	52	DGND	82	DGND	112	SOC_I2C2_SCL
23	VOUT0_DATA5	53	McASP0_AXR5	83	McASP1_AXR8	113	I2C1_SCL
24	CON_VPFE0_DATA7	54	CON_VPFE0_DATA12	84	MUX_McASP6_ACLKX	114	SOC_I2C2_SDA
25	VOUT0_DATA7	55	McASP0_AXR6	85	McASP1_AXR7	115	I2C1_SDA
26	AUDIO_EXT_REFCLK1	56	CON_VPFE0_DATA11	86	McASP6_AFSR	116	NC
27	VOUT0_DATA8	57	McASP0_ACLKX	87	CON_UB921_INTB	117	NC
28	VOUT0_DATA22	58	SPI3_CS0	88	MUX_McASP6_AFSX	118	EXP_RSTz
29	VOUT0_DATA9	59	McASP0_AFSX	89	JAMR3_GPIO2	119	DGND
30	UB926_GPIO1	60	McASP1_AFSX	90	MUX_McASP6_AXR1	120	DGND

4.3 Board ID EEPROM

The Infotainment Expansion board is identified by its version and serial number, which are stored in onboard EEPROM. The EEPROM CAT24C256WI-GT3 is accessible on the address 0x52 WKUP I2C0 I2C BUS.

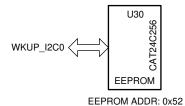


Figure 4-2. Board ID EEPROM

Table 4-3. Board ID Memory Header Information

Header	Field Name	Size (bytes)	Description	Value Written to EEPROM
	MAGIC	4	Magic Number	0xEE3355AA
	TYPE	1	Fixed length and variable position board ID header	0x1
		2	Size of payload	0xF7
BRD_ INFO	TYPE	1	payload type	0x10
	Length	2	offset to next header	0x002E
	Board_Name	16	Name of the board	"J7X-INFO-EXP"
	Design_Rev	2	Revision number of the design	Variable
	PROC_Nbr	4	PROC number	"0086"
	Variant	2	Design variant number	Variable
	PCB_Rev	2	Revision number of the PCB	Variable
	SCHBOM_Rev	2	Revision number of the schematic	Variable
	SWR_Rev	2	first software release number	Variable
	VendorID	2	Vendor ID	Variable
	Build_Week	2	week of the year of production	Variable
	Build_Year	2	year of production	Variable
	BoardID	6	Reserved. Not populated with any value	NA
	Serial_Nbr	4	incrementing board number	Variable

Above board ID details will be programmed on the EEPROM from the address 0x0h.

R2, R3, R5, R6

4.4 Audio Codec Interface

The infotainment expansion board has two TI 's Automotive Audio Codec IC Mfr. Part# PCM3168A-Q1, each supports three stereo Inputs and four stereo outputs. External Audio input and output signals are terminated to 3.5 mm stacked audio jack (stereo mode) Mfr. Part# STX-4235-3/3-N with appropriate filters circuitry.

TI's Audio OPAMP Mfr. Part# OPA2322AI used to convert the single ended to differential as well as to convert the differential to single ended signals. The MODE pin is held LOW to select I2C as control interface and Codec is configured over I2C interface. Default I2C address is set to 0x46 &0x47 for Codec –B and Codec-A, respectively. The device reset is controlled by the I2C GPIO expander.

Microphone Input ports can be configured for active and passive microphones and also can be configured for Line Input. This Input port configuration can be set by the resistor option as shown in Table 4-4.

Tuble 4 4: Mile III Toll Colling for CODEO A G CODEO B				
		Install	Remove	
PASSIVE-MIC (default)	BIAS + PREAMP	R2, R3, R5, R6	R1, R4	
ACTIVE-MIC	BIAS ONLY	R1, R2, R4, R5	R3, R6	

R1, R4

Table 4-4. MIC I/P Port Config for CODEC-A & CODEC-B

4.4.1 Port Mapping

LINE-INPUT

7x Standard 3.5 mm stacked 2by1 Stereo Audio Jack Mfr. Part# STX-4235-3/3-N is provided for:

NO BIAS/PREAMP

- 4x MIC IN
- 2x Line IN
- 8x Line OUT

The infotainment expansion board audio ports are mapped to audio codec as shown in Figure 4-3.

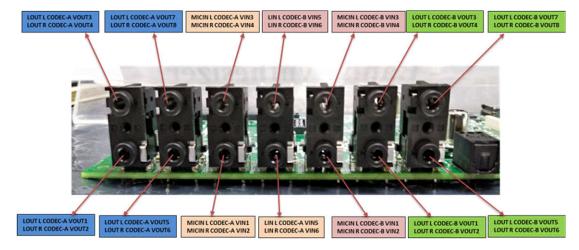


Figure 4-3. Audio Input and Outputs

4.5 FPD link De-Serializer Interface (Audio)

Infotainment expansion board uses FPD link III De-serializer IC Mfr. Part# DS90UB926QSQE for recover the audio signals from the FPD-Link interface. The de-serializer recovers up to eight digital audio channels, frame sync plus I2S channel across digital link. HSD connector Mfr. Part# D4S20G-400A5-C is used to receive the input signal.

The recovered eight audio data signal and AFSX connected directly to McASP port of J7 SoC through CP board B-B connector. And I2S signals from de-serializer are connected to McASP port of J7 SoC through DIR/FPDLink MUX selection IC(U17) on Infotainment board. For MUX channel selection through GPIO Expander, see Section 5.2.

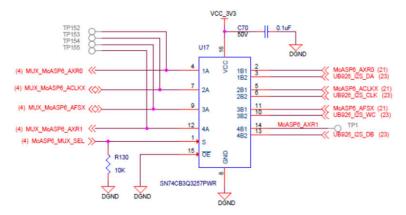


Figure 4-4. DIR/FPDLink Mux Selection

The I2C signals from SOC being used for controlling/configuring of the de-serializer and remote device. A 57.6K Ω Pull up and 121K Ω pull down is provided on ID[X] pin to set the 7'b I2C address to 0x3B.

The default mode set for the de-serializer is mode0. For the resistor population option to set different modes, see Figure 4-5.

Power +12 V is provided to the HSD connector using a power switch TPS1H100AQPWPRQ1 to power an external board. By default, power switch is OFF and it can be enabled by a GPIO expander signal (PWR_SW_UB926).

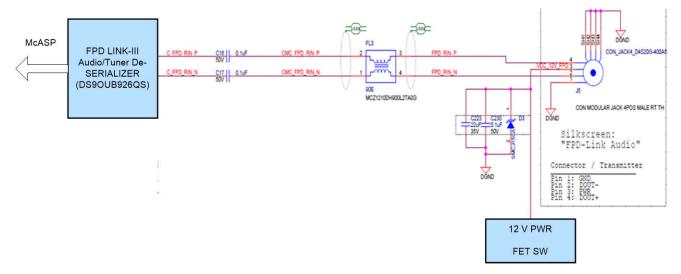


Figure 4-5. FPD Link De-Serializer Interface

4.6 DIR Interface

Infotainment expansion board is having a TI's Digital Audio Interface Receiver (DIR) IC Mfr. Part# DIR9001-Q1 to process the external digital audio input signal. The DOUT, SCKO, BCKO & LRCKO Outputs of DIR IC is connected to CP Board McASP signals Using a MUX/DMUX IC U14 Mfr. Part# SN74AVC8T245PWR and U17 IC Mfr. Part# SN74CB3Q3257PWR on INFO Board.

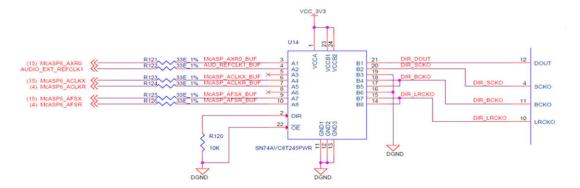


Figure 4-6. DIR 1:2 DeMux

RCA Jack Mfr. Part# RCJ-041 (Black) used to receive the external audio with buffer/filter circuitry. The input can be selected between DIR coaxial cable and a SPDIF optical input by using a switch (SW1).

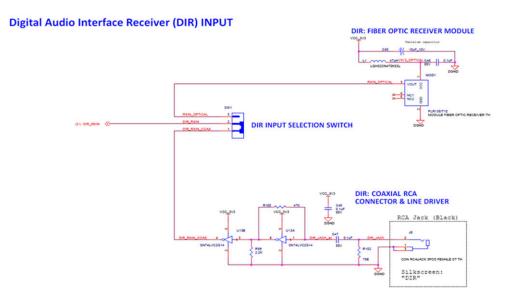


Figure 4-7. DIR Interface Selection Switch

Table 4-5. DIR Interface Selection Switch

SW1	Input Type
1-2	Co-Axial RCA
2-3	Fiber Optic Receiver

4.7 DIT Interface

Infotainment Expansion board includes an RCA Jack Mfr. Part# RCJ-042 (Red) to transmit the Digital Audio signal, one McASP Port data signal from SoC connected to RCA jack as shown in Figure 4-8.

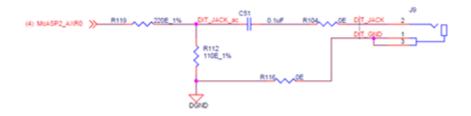


Figure 4-8. DIT Interface

4.8 Legacy Audio/JAMR3 Connectors

There are 3 B-B expansion connectors available on infotainment board to interface legacy audio/JAMR3 expansion board.

8 McASP data signals, frame sync and clock signals from the connector is directly connected to INFO-CP B-B expansion connector. WKUP_I2CO & I2C3 signals from Infotainment board connected to the connector for accessing the board ID information and configuration. The device reset is controlled by the I2C GPIO expander on Infotainment Board.

The 12 V power supply is available from infotainment board for powering the expansion board. VCC_3V3 Supply is connected to the expansion connector to enable regulators on the expansion board.

Table 4-6. J14-Legacy Audio Interface Connector Pin Out

J14 connector Pin Out				
Pin No.	Net Name	Pin No.	Net Name	
1	NC	21	NC	
2	DGND	22	NC	
3	NC	23	NC	
4	DGND	24	NC	
5	NC	25	NC	
6	NC	26	NC	
7	NC	27	NC	
8	NC	28	NC	
9	NC	29	DGND	
10	DGND	30	DGND	
11	EXP_I2C4_SCL	31	NC	
12	EXP_I2C4_SDA	32	NC	
13	NC	33	JAMR3_GPIO0	
14	NC	34	JAMR3_GPIO1	
15	NC	35	JAMR3_GPIO2	
16	NC	36	NC	
17	NC	37	NC	
18	NC	38	NC	
19	DGND	39	DGND	
20	DGND	40	DGND	

Table 4-7. J20-JAMR3 Interface Connector Pin Out

J20 connector Pin Out				
Pin No.	Net Name	Pin No.	Net Name	
1	NC	21	EXP_I2C2_SDA	
2	NC	22	EXP_I2C2_SCL	
3	NC	23	NC	
4	NC	24	NC	

Table 4-7. J20-JAMR3 Interface Connector Pin Out (continued)

J20 connector Pin Out				
Pin No.	Net Name	Pin No.	Net Name	
5	NC	25	NC	
6	NC	26	NC	
7	NC	27	NC	
8	NC	28	NC	
9	NC	29	NC	
10	NC	30	NC	
11	NC	31	NC	
12	NC	32	NC	
13	JAMR3_RESETn	33	NC	
14	NC	34	NC	
15	NC	35	NC	
16	NC	36	NC	
17	NC	37	NC	
18	NC	38	NC	
19	DGND	39	NC	
20	DGND	40	NC	

Table 4-8. J17-JAMR3 Interface Connector Pin Out

J17 connector Pin Out					
Pin No.	Net Name	Pin No.	Net Name		
1	NC	61	NC		
2	NC	62	NC		
3	NC	63	NC		
4	NC	64	NC		
5	NC	65	NC		
6	NC	66	NC		
7	NC	67	NC		
8	NC	68	NC		
9	NC	69	NC		
10	NC	70	NC		
11	NC	71	NC		
12	NC	72	NC		
13	NC	73	NC		
14	NC	74	NC		
15	NC	75	NC		
16	NC	76	APP_BD_PORz		
17	NC	77	DGND		
18	NC	78	DGND		
19	NC	79	NC		
20	NC	80	NC		
21	NC	81	NC		
22	McASP11_AXR6	82	NC		
23	McASP11_AXR4	83	NC		
24	McASP11_AXR5	84	NC		
25	NC	85	NC		
26	DGND	86	NC		

Table 4-8. J17-JAMR3 Interface Connector Pin Out (continued)

J17 connector Pin Out	Not Name	Din No	Not Name
Pin No.	Net Name	Pin No.	Net Name
27	DGND	87	NC
28	EXP_I2C1_SDA	88	NC
29	McASP11_ACLKX	89	NC
30	EXP_I2C1_SCL	90	NC
31	McASP11_AFSX	91	NC
32	NC	92	NC
33	McASP11_AXR1	93	NC
34	NC	94	NC
35	McASP11_AXR3	95	NC
36	NC	96	NC
37	McASP11_AXR0	97	NC
38	McASP11_AXR7	98	NC
39	McASP11_AXR2	99	NC
40	NC	100	NC
41	NC	101	NC
42	NC	102	JAMR3_I2S_WC
43	NC	103	JAMR3_I2S_DA
44	NC	104	JAMR3_I2S_CLK
45	NC	105	JAMR3_I2S_DB
46	NC	106	NC
47	NC	107	NC
48	NC	108	NC
49	VCC_12V	109	NC
50	VCC_12V	110	NC
51	VCC_12V	111	NC
52	VCC_12V	112	NC
53	VCC_12V	113	NC
54	VCC_12V	114	NC
55	NC	115	DGND
56	NC NC	116	DGND
57	EXP_DC_3V3	117	NC NC
58		118	NC NC
59	EXP_DC_3V3	119	NC NC
	EXP_DC_3V3		
60	EXP_DC_3V3	120	NC

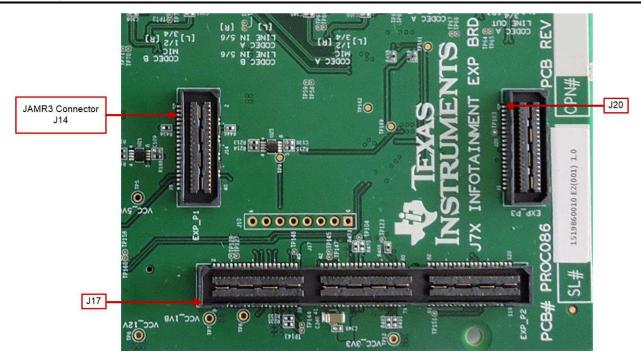


Figure 4-9. JAMR3 Interface Connectors

4.9 VIN/VOUT Mux Selection

The multiplexed video Input/Output signals from Expansion connector connected to three 12 bit 1:3 De-muxer U10, U11 and U12 IC Mfr. Part# SN74CBT16214CDGGR. One channel (Port B1) of the de-muxer interfaced with HDMI transmitter, the second channel (Port B2) interfaced with parallel camera interface and the third channel (Port B3) interfaced with FPD display port on the infotainment expansion board. For Mux selection GPIO details, see Section 5.2.

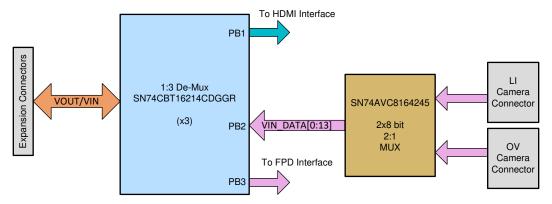


Figure 4-10. VIN/VOUT Mux Selection

Table 4-9. VIN/VOUT Mux Selection Table

Selection Inputs	Inputs/Outputs	
S2 S1 S0	A1	Function
HHL	VOUT	A1 port = B1 port (HDMI)- Default
ннн	VIN	A1 port = B2 port (Camera)
HLH	VOUT	A1 port = B3 port (FPD Link)

4.10 HDMI Interface Bridge

TI's HDMI transmitter IC Mfr. Part# TFP410-PAP is used for converting the 24-bit RGB video signals from VOUT port of SOC into HDMI output signals. The output of the HDMI transmitter chip terminated to a HDMI connector Mfr. Part# 10029449-001RLF by interfacing suitable filter and ESD circuitry.

Power +5 V is provided to the HDMI connector using current limit load switch TPD12S016PWR for current limiting and overall ESD protection for the HDMI controller. The current limit load switch is controlled by a GPIO expander signal (HDMI_DDC_OE). DDC signals are level translated using standard I2C level translator PCA9306DCT over TPD12S016 for improved drive strength.

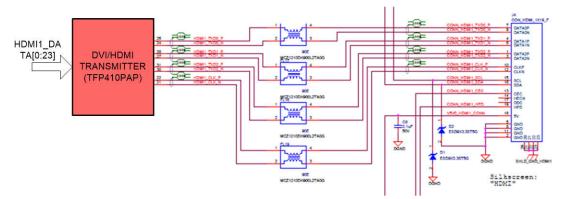


Figure 4-11. HDMI Interface Bridge

4.11 FPD Link Display Serializer Interface

FPD Link III serializer IC DS90UB921 is used for converting the 24 bit RGB signals Video signals from SOC into FPD link III signals. The serialized FPD link III output is terminated to HSD connector (Mfr Part# D4S20G-400A5-C). To route the VOUT signals from SOC to FPD link serializer from the default HDMI transmitter, see Table 4-9 and Section 5.2.

I2C signals of J7 SOC being used for controlling and configuring the Display serializer. A 30.9 K Ω Pull up and 95.3K Ω pull down is provided on ID[X] pin to set the 7'b I2C address to 0x1A.

Power +12 V is provided to the HSD connector using a power switch TPS1H100AQPWPRQ1 to power the FPD Link-III display board. The power switch is controlled by a GPIO expander signal (PWR_SW_UB921). There is an optional clock cleaner circuit Mfr Part#:CDCE813-Q1 is available on infotainment board to clean the input clock signal coming from CP board and pass it to FPD link III Serializer.

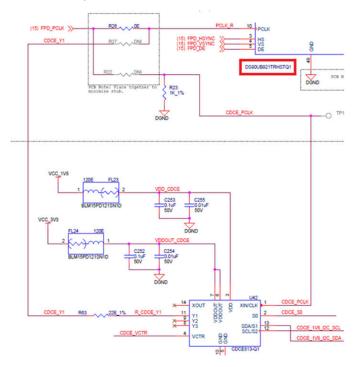


Figure 4-12. Optional Clock Cleaner to FPD Link Serializer

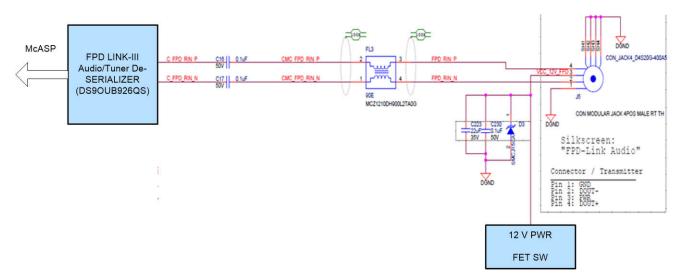


Figure 4-13. FPD Link Display Serializer Interface

4.12 Parallel Camera Interface

There are two camera module connectors present on infotainment expansion board to support parallel camera interface:

- · 32 pin Omni Vision camera module connector
- 36 Pin Leopard imaging camera module connector

Parallel camera data & SYNC signals from both connectors are connected to a 2x 2:1 Camera selection MUX IC Part#: SN74AVCB164245VR. GPIO signal CAM_SEL_OV# is used to select between OV-camera and LI-Camera modules. By default, OV camera signal path is enabled. For GPO mapping, see Section 5.2.

The output of camera selection mux is connected to VIN/VOUT selection mux. To route the parallel camera signals to VPFE port of SoC, see Table 4-9 and Section 5.2.

SPI, Reset, PCLK and Power down signals are terminated with Camera connector through 3x level translation circuit IC Part# SN74AVC4T245DGVR (U3, U4 and U5). Camera I2C signals are level translated using IC part# PCA9306DCT.

Note

Camera modules will not be the part of delivery kit.

4.12.1 Camera Clock

An optional 24 MHz oscillator IC U38 output is connected to camera module through a buffer IC U35 Mfr. Part# SN74LVC2G125DCUR.

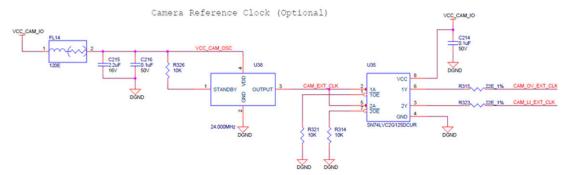


Figure 4-14. Camera Clock

4.12.2 LI Camera Module Connector

There is one camera-LI module connectors J6 (Part # 52559-3652) on the board.

Table 4-10 contains the pin out of the LI-camera module connectors.

Table 4-10. LI-Camera Module Connector Pin Out

J6 connector Pin Out	Table 4-10. LI-Camera Module Connector Pin Out				
Pin No. Net Name					
1	VCC_CAM_3V3				
2	VCC_CAM_3V3				
3	VCC_CAM_3V3				
4	VCC_CAM_5V0				
5	VCC_CAM_5V0				
6	DGND				
7	CAM_LI_EXT_CLK				
8	DGND				
9	R_LI_VIN_PCLK				
10	DGND				
11	LI_VIN_VD				
12	LI_VIN_HD				
13	LI_VIN_DATA13				
14	LI_VIN_DATA12				
15	LI_VIN_DATA11				
16	LI_VIN_DATA10				
17	LI_VIN_DATA9				
18	LI_VIN_DATA8				
19	LI_VIN_DATA7				
20	LI_VIN_DATA6				
21	LI_VIN_DATA5				
22	LI_VIN_DATA4				
23	LI_VIN_DATA3				
24	LI_VIN_DATA2				
25	DGND				
26	DGND				
27	LI_VIN_DATA1				
28	LI_VIN_DATA0				
29	CAM_I2C_SCL				
30	CAM_I2C_SDA				
31	LI_SPI3_MISO				
32	LI_SPI3_CLK				
33	LI_CAM_RST#				
34	LI_SPI3_CS0				
35	LI_CAM_TRIGGER				
36	LI_SPI3_MOSI				

4.12.3 OV Camera Module Connector

There is one camera-OV module connector J3 (Part # SSQ-116-02-L-D-RA) on the board.

Table 4-11 contains the pin out of the OV camera module connectors.

Table 4-11. OV-Camera Module Connector Pin Out

J3 connector Pin Out					
Pin No.	Net Name	Pin No.	Net Name		
1	OV_VIN_DATA5	17	OV_VIN_PCLK_R		
2	OV_VIN_DATA4	18	DGND		
3	OV_VIN_DATA7	19	VCC_CAM_5V0		
4	OV_VIN_DATA6	20	CAM_OV_EXT_CLK		
5	OV_VIN_DATA9	21	VCC_CAM_5V0		
6	OV_VIN_DATA8	22	DGND		
7	OV_VIN_DATA11	23	OV_VIN_DATA3		
8	OV_VIN_DATA10	24	OV_VIN_DATA2		
9	NC	25	OV_VIN_DATA1		
10	R_OV_CAM_PWDN	26	OV_VIN_DATA0		
11	NC	27	NC		
12	CAM_I2C_SDA	28	NC		
13	OV_VIN_HD	29	NC		
14	CAM_I2C_SCL	30	NC		
15	OV_VIN_VD	31	DGND		
16	DGND	32	DGND		

Figure 4-15. OV and LI-Camera Module Connector Pin1 Marking

5 Jacinto7 EVM Interface/IO Mapping

5.1 Interface Mapping

J721E EVM interface mapping on infotainment expansion is provided in Table 5-1.

Table 5-1. Interface Mapping

INFO Peripheral	INFO Interface	J721E Connectivity
Audio Codec – A (U32)	McASP0 Port (Net name MCASP0_AXR[6:0]*)	McASP0
Audio Codec – B (U19)	McASP0 Port (Net name MCASP0_AXR[13:7]*)	McASP0
FPD Link III Serializer (Display) (U8)	VOUT0 Port (Net name VOUT0_DATA_*)	VOUT0
FPD Link III De-Serializer (Audio) (U2)	McASP1 (Net name MCASP1_AXR_*, UB926_I2S_*)	McASP1 McASP6
Digital Audio Interface Receiver (U45,J8,MOD1)	McASP6 (Net name MCASP6_AXR_*)	McASP6
Digital Audio Interface Transmit (J9)	McASP2 (Net name MCASP2_AXR0)	McASP2
Parallel Camera (OV/LI) (J3 & J6)	VPFE0 (Net name VPFE0_DATA_*)	(see mux selection) VPFE0 or UB921_DIN or HDMI1_DATA
HDMI Transmitter (U41)	VOUT0 (Net name HDMI1_DATA_*)	(see mux selection) VPFE0 or UB921_DIN or HDMI1_DATA
Config EEPROM(U30)	I2C0 (Net name WKUP_I2C0_*)	WKUP_I2C0
Legacy Audio/JAMR3 Interface (J14 , J17 & J20)	McASP11 (Net name MCASP11_AXR_*)	McASP11

5.2 Infotainment Board GPIO Mapping

GPIO expander signal mapping is as shown in Table 5-2.

Table 5-2. GPIO Expander Signal Mapping

Jacinto7 EVM	-INFO GPIO		SPIO Expan			
I2C Bus/ Address	GPIO Port	Net Name in INFO Board	Direction WRT CTRL	Default State	Active State	Remarks
		INFO GPIO Expander	- 1 Part# TCA641	6ARTWR (AUD	O IO EXPANS	ION)
I2C3/0x21	P00	CODEC_RESETn	Output	PD	Active Low	Used as a Reset signal for Audio Codecs A & B
	P01	JAMR3_RESETn	Output	PD	Active Low	Used as a Reset signal for JAMR3 Interface
	P02	JAMR3_PWR_CTRL	Output	NA	Active High	Power EN for JAMR3 Interface
	P03	UB926_RESETn	Output	PD	Active Low	Used as a Reset signal for FPD Audio De- Serializer
	P04	PWR_SW_UB926	Output	PD	Active High	Used as a Power Enable signal for Audio/FPD connector
	P05	UB926_TUNER_RESET	Output	PD	Active Low	Used as a Reset signal for FPD
	P06	UB926_GPIO_SPARE	Output	NA	NA	SPARE GPIO for FPDLink
	P07	UB926_LOCK	Input	NA	NA	Lock Input from FPDLink
	P10	DIR_RESETn	Output	PD	Active Low	Used as a Reset signal for DIR interface
	P11	DIR_CKSEL	Output	PU	NA	Used for DIR System clock source selection Low: PLL (VCO) clock, High: XTI clock
	P12	DIR_FMT0	Output	PU	NA	DOUT Audio Data output format - 24-bit,
	P13	DIR_FMT1	Output	PU	NA	MSB-first, I2S (Default)
	P14	DIR_PSCK0	Output	PD	NA	System clock of PLL selection
	P15	DIR_PSCK1	Output	PD	NA	
	P16	AUDEXP_P16	NA	NA	NA	Reserved GPIO
	P17	McASP6_MUX_SEL	Output	PD	NA	User for Mux selection b/w DIR or FPDLink
	•	INFO GPIO Expander – 2 F	Part# TCA6416AF	RTWR (VIDEO II	N/OUT IO EXP	ANSION)
I2C1/0x21	P00	NC	NA	NA	NA	Not used
	P01	NC	NA	NA	NA	Not used
	P02	NC	NA	NA	NA	Not used
	P03	NC	NA	NA	NA	Not used
	P04	NC	NA	NA	NA	Not used
	P05	VOUTEXP_P04	NA	NA	NA	Terminated with Test point
	P06	VOUTEXP_P05	NA	NA	NA	Terminated with Test point
	P07	NC	NA	NA	NA	Not used
	P10	HDMI_PDn	Output	PD	Active Low	Used as a Power Down signal for HDMI Transmitter
	P11	HDMI_DDC_OE	Output	PD	Active High	Used for HDMI I2C Translator Enable logic
	P12	HDMI_HPD	Input	NA	NA	Used for detection of HDMI cable Hot plug
	P13	UB921_RESETn	Output	PD	Active Low	Used as a Reset signal for FPD III Display Serializer
	P14	PWR_SW_UB921	Output	PD	Active High	Used as a Power Enable signal for Audio/FPD connector
	P15	UB921_INTB	Input	NA	Active High	FPD III Display Serializer INTB = H, normal INTB = L, Interrupt request
	P16	VOUTEXP_P16	NA	NA	NA	Terminated with Test point
	P17	VOUTEXP_P17	NA	NA	NA	Terminated with Test point

Table 5-3. SoC GPIO Mapping

Info Peripheral	Peripheral IO	Direction (for SoC)	Default	Active State	J721E Connectivity
FPD LINK III Display	Interrupt	Input	PU	Active Low	GPIO0_79
Camera Mux Selection	Enable	Output	NA	'0'-OV '1'-LI	GPIO0_78
LI/OV Camera	Trigger	I/O	PD	Active High	GPIO0_31
	Reset	Output	PU	Active Low	GPIO0_32
JAMR3 Interface	JAMR3_GPIO0	I/O	NA	NA	GPIO0_65
	JAMR3_GPIO1	I/O	NA	NA	GPIO0_66
	JAMR3_GPIO2	I/O	NA	NA	GPIO0_67
FPD Link III De- serializer	UB926_GPIO1	I/O	NA	NA	GPIO0_11
	UB926_GPIO2	I/O	NA	NA	GPIO0_45
	UB926_GPIO3	I/O	NA	NA	GPIO0_46
Audio IO Expander	Interrupt	Input	PU	Active Low	GPIO1_23
Video IO Expander	Interrupt	Input	PU	Active Low	GPIO1_24
VIN/VOUT MUX SELECTION	Select0	Output	PD	SEL [1:0] '10'-HDMI	I2C0 (0x20), P14
	Select1	Output	PU	'11'-CAM '01'-FPD	I2C0 (0x20), P15

5.3 I2C Address Mapping

Table 5-4 provides the complete I2C address mapping details on infotainment expansion.

Table 5-4. INFO Expansion I2C Table

J7ES EVM –Infotainment Expansion I2C Table					
I2C Port	Device/Function	Part#	I2C Address		
WKUP_I2C0	Board ID EEPROM	CAT24C256W	0x52		
WKUP_I2C0	JAMR3 EEPROM	CAT24C256WI	0x51		
SoC_I2C0	Reserved	TP55, TP56	NA		
SoC_I2C1	VOUT DDC link	<connector interface=""></connector>	TBD		
SoC_I2C1	I2C GPIO Expander (Video)	TCA6416ARTWR	0x21		
SoC_I2C1	FPD Link-III Serializer (VOUT to FPD)	DS90UB921-Q1	0x1A		
SoC_I2C1	CDCI (clock generator)	CDCE813-Q1	0x65		
SoC_I2C2	Reserved	TP52, TP53	NA		
SoC_I2C3	Audio Codec - A	PCM3168A-Q1	0x47		
SoC_I2C3	Audio Codec - B	PCM3168A-Q1	0x46		
SoC_I2C3	JAMR3 GPIO Expander	PCF8575	0x22 Requires modification on JAMR3		
SoC_I2C3	Legacy Auio/JAMR3 Interface	AFE8310	0x048, 0x049, 0x04A &0x04B		
SoC_I2C3	FPD Link-III De-Serializer (FPD to McASP)	DS90UB926Q-Q1	0x3B		
SoC_I2C3	I2C GPIO Expander (Audio)	TCA6416ARTWR	0x21		
SoC_I2C6	Camera Sensor, Parallel	<connector interface=""></connector>	TBD		

6 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

www.ti.com Revision History

Changes from	Revision A (N	May 2020) to	Revision B	(October 2025
---------------------	---------------	--------------	-------------------	---------------

Page

STANDARD TERMS FOR EVALUATION MODULES

- Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or
 documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance
 with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 Limited Warranty and Related Remedies/Disclaimers:
 - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after the defect has been detected.
 - 2.3 Tl's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. Tl's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by Tl and that are determined by Tl not to conform to such warranty. If Tl elects to repair or replace such EVM, Tl shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI's recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI's instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:

EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGREDATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.

3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types lated in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

3.3 Japan

- 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。
 - https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-delivered-in-japan.html
- 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

- 1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
- 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above. User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けていないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの 措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。
- なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

ンスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

- 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-for-power-line-communication.html
- 3.4 European Union
 - 3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

- 4 EVM Use Restrictions and Warnings:
 - 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
 - 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.
 - 4.3 Safety-Related Warnings and Restrictions:
 - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.
 - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.
 - 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.
- 5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. Disclaimers:

- 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
- 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.
- 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

- 8. Limitations on Damages and Liability:
 - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TIMORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.
 - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, , EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
- 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.
- 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025