Simplify 4-20mA Current and Voltage Output 3-Wire Transmitters With XTR200

Introduction

Field transmitters are often used in industrial applications to communicate data from a sensor or transmitter back to a control center or programmable logic controller (PLC). The most common types are 2-wire or 3-wire current transmitters that typically output 4mA to 20mA. As sensors and transmitter systems shrink to fit small sensor housings for space-constrained environments, there is a need to integrate more functionality into the current transmitter device. XTR200 is the newest integrated analog output driver for 3-wire current transmitter systems. The device can output either current or voltage, selectable with a mode pin. XTR200 is designed for standard industrial signal ranges of 0mA to 20mA, 4mA to 20mA, or 0V to 10V.

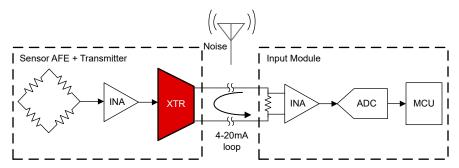


Figure 1. Field transmitter simplified diagram

Minimize board space with XTR200

XTR200 is a fully integrated, analog transmitter that offers more integration and precision in a small-form 3mm by 2mm package. Highlighted specifications include:

- Wide supply voltage of 8V to 60V allows for flexibility in surge protection and helps reduce number of external components
- Specified over the full industrial temperature range of -40°C to +125°C
- Low span error of ±0.01% (typ) in current mode
- Low gain error of ±0.007% (typ) in voltage mode
- Low input offset voltage of ±200µV and offset drift of ±0.5µV/°C
- Available in small 3mm by 2mm, 10-pin WSON surface-mount package

Integrated features include:

- Integrated PMOS transistor: The internal PMOS transistor is protected by short circuit protection circuity and is able to handle a wide range of load resistances. An optional external PNP or PMOS transistor can implemented to reduce power dissipation by delivering the majority of the load current when used in high-temperature environments with high supply voltages.
- Error diagnostics: The device provides internal error diagnosis capability with the error flag pin detecting several fault conditions including over-temperature, short-circuit current limit, open-circuit load, and short to ground at the SET pin.
- **Output disable:** XTR200 provides an output disable pin to maintain a reliable, glitch-free start up output during power on or multiplexing.

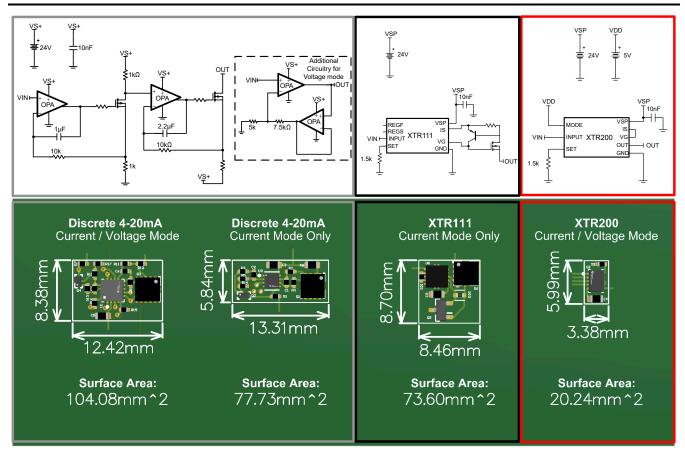


Figure 2. Design size comparison

Figure 2 shows that XTR200 saves over 70% of board space compared to the discrete design and previous generation devices such as the XTR111. The discrete designs use typical small-size quad and dual operational amplifiers, 0402 package resistors, and a P-Channel MOSFET. Previous generation XTRs such as the XTR111 require external circuitry (transistors Q5, Q6) for functionality that add to total board space and complexity. In contrast, XTR200 provides a small design footprint to optimize board space while maintaining excellent performance. Decoupling capacitors and SET resistors are included in the XTR design, but other input and output signal chain devices and error flag components are left out in the size comparison.

Application and end equipments

XTR200 can be used in a wide variety of end equipments outside of field transmitters for 4-20mA loops. Common end equipments include but not limited to field transmitters, programmable logic controllers (PLCs), data acquisition systems, and server power supplies.

This device is well suited for:

- 4-20mA current and 0-10V voltage output 3-wire transmitters
- Current monitoring in server power supplies (Modular Hardware System-Common Redundant Power Supplies [M-CRPS])
- Current source for sensor excitation:
 - RTD sensors
 - IEPE vibration sensors
 - Wheatstone bridge sensors

Learn more about how the XTR200 can help reduce space and improve performance while simplifying the bill of materials (BOM), and start evaluating with the following resources:

Learn More

- XTR200 Data sheet
- Learn how to use XTR200 in M-CRPS current monitoring systems
- Reference frequently asked questions about 4-20mA current loop transmitters in our E2E FAQs.
- Learn about 4-20mA transmitters in our Precision Labs series

Evaluate the Design

- · Leverage existing simulation models available in TINA-TI or PSPICE-FOR-TI
- XTR200 Evaluation Module

For additional assistance, ask questions to TI engineers on the TI E2E Amplifiers Support Forum.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated