AM275x Power Estimation Tool

Introduction

The power estimation spreadsheet provides power consumption estimates based on measured and simulated data; these estimates are delivered *as is* with no stated level of precision. Power consumption depends on electrical parameters, silicon process variations, environmental conditions, and use cases running on the processor during operation. Verify actual power consumption in the real system. This tool is meant for estimating power consumption during realistic operating modes; the tool is not intended for power supply sizing. This power estimation spreadsheet is preliminary and subject to change. Download the *AM275x Power Estimation Tool Spreadsheet*.

Note

This is a preliminary tool and TI is continuing to characterize more devices; therefore, data is updated and the Power Estimation Tool (PET) revised along with new findings.

Using the Power Estimation Tool

The input part of the spreadsheet consists of two sections: *Processing Elements* and *I/O Elements*. The output part of the spreadsheet is under *Power Report*.

To use the input part the spreadsheet, users must modify the fields with the appropriate usage parameters. Cells designed for user input are in blue. Fields that cannot be modified are pink. Fields in green are the output calculated power. Configure the blue cells to a value most closely aligned with the intended scenario.

The purpose of these sections is:

- · Processing Elements:
 - Configure frequency of operation for R5Fs and C7x
 - User estimated percent utilization of each core
- I/O Elements:
 - Subset of commonly used major interfaces with selectable mode
 - Subset of commonly used major interfaces with percent utilization
- Power Report:
 - Power estimation output by rail

Processing Elements

This section allows you to set the operating frequency, mode and load each compute core with utilization between 0%–100% (inclusive). Utilization here refers to the amount of time the core is utilized/active (expressed in-terms of percentage) within a fixed time frame. Table 1 lists the selectable options.

Table 1. Selectable Options for Frequency, Mode, and Utilization

Processing Element	Frequency (MHz)	Utilization
DM_R5	1000, 800, 400	0%-100%
R5FFS0	1000, 800, 400	0% – 100%
R5FFS1	1000, 800, 400	0% – 100%
C7x0	1000, 750, 500, 400, 250	0% – 100%
C7x1	1000, 750, 500, 400, 250	0% – 100%

Note

Users also select the junction temperature, power estimation mode, and VDD_CORE in this section. The clock speed of 1000MHz is contingent upon the core voltage, specifically being at or above 0.85 volts.

Processing Elements can mimic OPNs, so users can use the following values to more accurately simulate OPNs.

I/O Elements

This section lets you select both the modes and the utilization of subsets of the commonly used I/Os. Utilization here refers to the amount of time the corresponding interface is utilized or active, or both (expressed in-terms of percentage) within a fixed time frame.

Table 2 lists the selectable options.

Table 2. Selectable Options of Mode and Utilization

Interface		Mode	Utilization
CANFD (also known as MCAN)	 12mbs_3p3v 8mbs_3p3v 5mbs_3p3v 1mbs_3p3v 250kbs_3p3v 12mbs_1p8v 	 8mbs_1p8v 5mbs_1p8v 1mbs_1p8v 250kbs_1p8v unused off 	0%–100%
ECAP	 pwm_out_5m_3p3v pwm_out_1m_3p3v pwm_out_5m_1p8v pwm_out_1m_1p8v capture_in_5m_3p3v 	capture_in_1m_3p3vcapture_in_5m_1p8vcapture_in_1m_1p8vunusedoff	0%–100%
EPWM	on_3p3von_1p8vunusedoff		0%–100%
Ethernet_0 and Ethernet_1	 rgmii_1000_1p8v rgmii_100_1p8v rgmii_10_1p8v rmii_100_1p8v rmii_10_1p8v rgmii_1000_3p3v 	 rgmii_100_3p3v rgmii_10_3p3v rmii_100_3p3v rmii_10_3p3v unused off 	0%–100%
I2C	 i2c_400k_1p8v i2c_100k_1p8v i2c_400k_3p3v i2c_100k_3p3v unused off 		0%–100%
WKUP_I2C	 i2c_3p4m_1p8v i2c_1m_1p8v i2c_400k_1p8v i2c_100k_1p8v i2c_400k_3p3v i2c_100k_3p3v off 		0%-100%

Table 2. Selectable Options of Mode and Utilization (continued)

Interface	·	Mode Mode	
MCASP	 8Ch_RX_48_ksps_24b_3p3v 4Ch_RX_48_ksps_24b_3p3v 2Ch_RX_48_ksps_24b_3p3v 16Ch_TX_48_ksps_24b_3p3v 8Ch_TX_48_ksps_24b_3p3v 4Ch_TX_48_ksps_24b_3p3v 2Ch_TX_48_ksps_24b_3p3v 16Ch_RXTX_48ksps_24b_3p3v 12Ch_RXTX_48ksps_24b_3p3v 8Ch_RXTX_48ksps_24b_3p3v 4Ch_RXTX_48ksps_24b_3p3v 2Ch_RXTX_48ksps_24b_3p3v 4Ch_RXTX_48ksps_24b_3p3v 2Ch_RXTX_48ksps_24b_3p3v 8Ch_RXTX_48ksps_24b_3p3v 8Ch_RXTX_48ksps_24b_3p3v 8Ch_RXTX_48ksps_24b_3p3v 	 4Ch_RX_48_ksps_24b_1p8v 2Ch_RX_48_ksps_24b_1p8v 16Ch_TX_48_ksps_24b_1p8v 8Ch_TX_48_ksps_24b_1p8v 4Ch_TX_48_ksps_24b_1p8v 2Ch_TX_48_ksps_24b_1p8v 16Ch_RXTX_48ksps_24b_1p8v 12Ch_RXTX_48ksps_24b_1p8v 8Ch_RXTX_48ksps_24b_1p8v 8Ch_RXTX_48ksps_24b_1p8v 4Ch_RXTX_48ksps_24b_1p8v 4Ch_RXTX_48ksps_24b_1p8v 4Ch_RXTX_48ksps_24b_1p8v unused off 	0%-100%
FSS	 qspi_ddr_controller_160_3p3v qspi_ddr_controller_133_3p3v qspi_sdr_controller_133_3p3v qspi_sdr_controller_108_3p3v ospi_ddr_controller_160_3p3v ospi_ddr_controller_133_3p3v ospi_sdr_controller_133_3p3v ospi_sdr_controller_108_3p3v qspi_ddr_controller_160_1p8v 	 qspi_ddr_controller_133_1p8v qspi_sdr_controller_133_1p8v qspi_sdr_controller_108_1p8v ospi_ddr_controller_160_1p8v ospi_ddr_controller_133_1p8v ospi_sdr_controller_133_1p8v ospi_sdr_controller_108_1p8v unused off 	0%–100%
SPI	 Controller_25_Mbaud_3p3v Controller_12.5_Mbaud_3p3v Controller_6.25_Mbaud_3p3v Controller_3.125_Mbaud_3p3v Controller_2.083_Mbaud_3p3v Controller_1.563_Mbaud_3p3v Peripheral_25_Mbaud_3p3v Peripheral_12.5_Mbaud_3p3v Peripheral_6.25_Mbaud_3p3v Peripheral_3.125_Mbaud_3p3v Peripheral_3.125_Mbaud_3p3v Peripheral_2.083_Mbaud_3p3v Controller_25_Mbaud_1p8v 	 Controller_12.5_Mbaud_1p8n Controller_6.25_Mbaud_1p8v Controller_3.125_Mbaud_1p8v Controller_2.083_Mbaud_1p8v Controller_1.563_Mbaud_1p8v Peripheral_25_Mbaud_1p8v Peripheral_12.5_Mbaud_1p8v Peripheral_6.25_Mbaud_1p8v Peripheral_3.125_Mbaud_1p8v Peripheral_3.125_Mbaud_1p8v Peripheral_2.083_Mbaud_1p8v unused off 	0%-100%
UART	 3p6m_1p8v 1m_1p8v 112k_1p8v 3p6m_3p3v 1m_3p3v 112k_3p3v unused off 		0%–100%

Power Report

The power estimation tool generates a power analysis report in the *Power Report* section. The report lists power supply name, voltage in Volts (V), and power consumption mW per power rail groups. VDD_CORE is selected in *Processing Elements* because the voltage determines if 1000MHz frequency is available, and the input is reflected in the summary.

Trademarks

All trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025