Application Note
Enabling Matter on Sitara MPU

i3 TEXAS INSTRUMENTS

Krunal Bhargav, Randolph Sapp, Divyansh Mittal
ABSTRACT

This application note explores the implementation and usage of the Matter connectivity protocol on Sitara
processor devices. The following sections outline the enablement and demonstration of Matter, including
example data collected from SK-AM6X devices.

Table of Contents

B L1 oo [Lo i o o TSR 2
2 CUrrent IMPIEMENLAtION... ... ettt e e e et e e e e et e e e e e e e et aeeeeeeeaabaeeeeeeannareeaeeeaatreeaaeaaanes 2
B =1 o] (=1 1 =Y o | RN 2
T 4 ToT o £ =Y o] o SR 6
B SUIMMIANY ...ttt et e ettt e ettt e e e st e e e eeee e teeeeamteeeaaneee e s seeeaneeeeamneee e s eeeeamseeeeaneeee s teeeamseeesnnseeeanseeeanneeeaneeeeansenenns 8
Lo 3 ==Y =) 4 (o= 9
T REVISION HISTOKY i e e ettt e e oottt e e oo the et e e e e a bt eeeee e e aneeeee e e e nseeeeeeeanbeeeeeeaanneeeaeeeansnneaeaaannnes 9

Lo UL I o B 1o 1= TSI (U] o OSSO 6
Figure 4-2. Creating @n ENAPOINT........o .ot et e et e ettt e e et e e sttt e e nteeeemseeeeaeeeeamteeeeaneeeeaneeeeanteeeeanneeeaneeeenn 6
[T [N (CR R B = (o =Tex (=To J = g To [0 To T | o oY R PP PP URT TP 7
Figure 4-4. Pairing With ENAPOINT DEVICE.......ccoiiiiiiiie ettt e e e ettt e e e e st e e e e e e b ee e e e e eenneeeeeas 7
Figure 4-5. SUCCESSTUI PaIMNG eei ittt ettt e et e st e ettt eeamte e e eaeeeesseeeeaaeeeeaneeeeameeeeanseeeenseeeanneeeanneeesnneas 8
Figure 4-6. Setting LOCK Status t0 LOCKEM.........ccuiiiiiieee et e ettt et e e s e e et e e e e e e e enteeeeneeeenneeas 8
Figure 4-7. Lock Status in ENAPOINT LOG.cceiiiiiiiiiie ettt e et e et e e sttt e e st e e e aeeeeeteeeeanteeeemneeeenneeeeanseeesnneeeaneeeenn 8
Trademarks

All trademarks are the property of their respective owners.

SPRADGYA - JANUARY 2024 — REVISED NOVEMBER 2025 Enabling Matter on Sitara MPU 1
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG9A&partnum=

13 TEXAS
INSTRUMENTS

Introduction www.ti.com

1 Introduction

Matter is an open-source application-layer connectivity protocol that specializes in creating a uniform method of
interacting with loT devices. It's built on top of IP allowing it to work natively over multiple network standards,
such as WiFi (802.11), Ethernet (802.3), and Thread (802.15.4).

2 Current Implementation

The most common implementation of this protocol is the reference implementation present in the chip-tool in the
connectedhomeip project at: https://github.com/project-chip/connectedhomeip. This repository contains:

* An implementation of the Matter server

» A definition of the messaging interface

» All the required networking utils for broadcasting and listening for broadcast events, including:
— A mDNS server
— ADNS resolver

» Tools for enabling bluetooth provisioning

» A definition of every possible endpoint cluster type

* An example for every endpoint cluster

* An example of a Controller / Administrator application

There are only two things that are importatant for a simple demo: an Administrator and an Endpoint. As such,
the focus will be on the chip-tool and lock-app examples. Starting with chip-tool, this example application has

a Command Line Interface (CLI) that acts as an Administrator capable of linking to endpoints and issuing
commands or fetching status based on the clusters enabled by that endpoint. The lock-app is an example of an
endpoint that would normally be controlling an electronic latch. This application registers a handful of commands
like:

e Lock

¢ Unlock

* Unbolt

* GetUser
» SetUser

* GetDoorState
« SetDoorState
» SetCredential
* GetCredential

Where each of these commands are registered with chiptool and have accompanying log and state change
messages that are broadcast when called.

3 Enablement

For our demo, we have used AM62P and AM62L. Any SoC working with Linux and able to connect to a network
can be used in general. For more information, refer: AM62P and AM62L. With regards to software, the following
steps may be used for cross-compilaton on a host PC:

1. On your Ubuntu host machine, download and install an SDK corresponding tho the kernel version you want
to use, like: AM62L 11.00 SDK Installer.
2. Untar the rootfs inside the SDK using:

cd <SDK Install Path>/filesystem/<device>
tar -xf tisdk-default-image-am621xx-evm.rootfs.tar.xz -C temp/

Keep the the path of this extracted directory handy.
3. Clone and update the Matter repo using the following:

git clone --recurse-submodules git@github.com:project-chip/connectedhomeip.git
cd connectedhomeip

git pull

git submodule update --init

2 Enabling Matter on Sitara MPU SPRADGYA — JANUARY 2024 — REVISED NOVEMBER 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://github.com/project-chip/connectedhomeip
https://www.ti.com/product/AM62P
https://www.ti.com/product/AM62L
https://dr-download.ti.com/software-development/software-development-kit-sdk/MD-YjEeNKJJjt/11.00.15.05/ti-processor-sdk-linux-am62lxx-evm-11.00.15.05-Linux-x86-Install.bin
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG9A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Enablement

The repo size is large and will take some time to clone.
4. Download the build_matter_example.sh script and place inside the Matter's root directory:

#!/bin/bash
set -e

Matter aarch64 Cross-Compilation Build Script (Unified)

This script handles all necessary fixes and configurations:
- Bluezoo dependency fix for Python 3.10

- TI SDK toolchain wrapper creation

- Complete Matter build process

FHBHFHHHHH

if [[$# -ne 1]1]; then
echo "Error: Please enter exactly one example-name as argument"
echo "Usage: $0 <your_argument>"
exit 1

fi

EXAMPLE_NAME="$1"
#

CONFIGURATION - MODIFY THESE VARIABLES FOR YOUR SETUP
#

SDK Path
SDK_PATH="/home/<user>/ti-processor-sdk-1inux-am62T1xx-evm-11.00.15.05"

Path to your aarch64 sysroot
SYSROOT_AARCH64="$SDK_PATH/fiTlesystem/am621xx-evm/temp" # TI SDK sysroot

Toolchain binary prefix (TI SDK uses aarch64-oe-T1inux)
TOOLCHAIN_TARGET="aarch64-oe-1inux" # TI SDK compatible target

Path to your aarch64 cross-compilation toolchain (using TI SDK native toolchain)
TOOLCHAIN_PREFIX="$SDK_PATH/11inux-devkit/sysroots/x86_64-arago-1linux/usr/bin/
$TOOLCHAIN_TARGET" # TI SDK toolchain

Path to connectedhomeip repository (relative to script location)
REPO_PATH="." # CHANGE THIS 1if different
echo "=== Matter aarch64 Cross-Compilation Build Script (Unified) ===
echo "Toolchain: $TOOLCHAIN_TARGET"

echo "Sysroot: $SYSROOT_AARCH64"

echo "Example: $EXAMPLE_NAME"

echo ""

echo
echo "STEP 1: FIX BLUEZOO DEPENDENCY ISSUE"
echo "

REQUIREMENTS_FILE="$REPO_PATH/scripts/tests/requirements.txt"
if [-f "$REQUIREMENTS_FILE"]; then
Check if bluezoo is already commented out
if grep -q "Abluezoo" "$REQUIREMENTS_FILE"; then
echo "Commenting out bluezoo dependency (requires Python 3.11+)...
sed -1 's/Abluezoo/#bluezoo/' "$REQUIREMENTS_FILE"
: echo "v Bluezoo dependency commented out"
else
echo "v Bluezoo dependency already fixed"

fi
else
echo "warning: Requirements file not found at $REQUIREMENTS_FILE"
fi
echo " "
echo "STEP 2: VERIFY PATHS AND TOOLCHAIN"
echo " "

Construct toolchain binary paths

export CC_AARCH64="$TOOLCHAIN_PREFIX/${TOOLCHAIN_TARGET}-gcc"
export CXX_AARCH64="$TOOLCHAIN_PREFIX/${TOOLCHAIN_TARGET}-g++"
export AR_AARCH64="$TOOLCHAIN_PREFIX/${TOOLCHAIN_TARGET}-ar"
export STRIP_AARCH64="$TOOLCHAIN_PREFIX/${TOOLCHAIN_TARGET}-strip"
export LD_AARCH64="$TOOLCHAIN_PREFIX/${TOOLCHAIN_TARGET}-1d"

SPRADGYA - JANUARY 2024 — REVISED NOVEMBER 2025 Enabling Matter on Sitara MPU 3
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://github.com/TexasInstruments/Beyond-SDK/blob/main/collaterals/appnotes/spradg9-Enabling_Matter_on_Sitara_MPU/build_matter_example.sh
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG9A&partnum=

13 TEXAS
INSTRUMENTS

Enablement www.ti.com

Add toolchain to PATH for any remaining usage
export PATH="$TOOLCHAIN_PREFIX:$PATH"

if [! -f "$CC_AARCH64"]; then
echo "Error: Compiler not found at $CC_AARCH64"
echo "Please check your TOOLCHAIN_PREFIX and TOOLCHAIN_TARGET variables"
exit 1

fi

if [! -d "$SYSROOT_AARCH64"]; then
echo "Error: Sysroot not found at $SYSROOT_AARCH64"
echo "Please check your SYSROOT_AARCH64 path"
exit 1

fi

if [| -d "$REPO_PATH"]; then
echo "Error: Repository not found at $REPO_PATH"
echo "Please check your REPO_PATH variable"
exit 1

fi

echo "v Toolchain: $($CC_AARCH64 --version | head -1)"
echo "v Sysroot: $SYSROOT_AARCH64"

echo "v Repository: $REPO_PATH"

echo " "
echo "STEP 3: CREATE TOOLCHAIN WRAPPER"
echo "

cd "$REPO_PATH"

#

Create toolchain wrapper directory
WRAPPER_DIR="$PWD/toolchain-wrapper-bin"
mkdir -p "$WRAPPER_DIR"

Create symbolic 1links with the names GN expects
echo "Creating symbolic 1links for GN compatibility...
Tn -sf "$TOOLCHAIN_PREFIX/${TOOLCHAIN_TARGET}-gcc" "$WRAPPER_DIR/aarch64-11inux-gnu-gcc"

Tn -sf "$TOOLCHAIN_PREFIX/${TOOLCHAIN_TARGET}-g++" "$WRAPPER_DIR/aarch64-1inux-gnu-g++"

Tn -sf "$TOOLCHAIN_PREFIX/${TOOLCHAIN_TARGET}-ar" "$WRAPPER_DIR/aarch64-1inux-gnu-ar"

Tn -sf "$TOOLCHAIN_PREFIX/${TOOLCHAIN_TARGET}-strip" "$WRAPPER_DIR/aarch64-T1inux-gnu-strip"

Tn -sf "$TOOLCHAIN_PREFIX/${TOOLCHAIN_TARGET}-1d" "$WRAPPER_DIR/aarch64-11inux-gnu-1d"

Tn -sf "$TOOLCHAIN_PREFIX/${TOOLCHAIN_TARGET}-objdump" "$WRAPPER_DIR/aarch64-T1inux-gnu-objdump"
Tn -sf "$TOOLCHAIN_PREFIX/${TOOLCHAIN_TARGET}-nm" "$WRAPPER_DIR/aarch64-11inux-gnu-nm"

echo "v Created toolchain wrapper directory: $wWRAPPER_DIR"
echo "Contents:"
Ts -Ta "$WRAPPER_DIR/"

Add wrapper to PATH

export PATH="$PwWD/toolchain-wrapper-bin:$PATH"
echo " "
echo "STEP 4: SETUP BUILD ENVIRONMENT"

echo " "

source scripts/activate.sh

echo "Testing cross-compilation..."

echo 'int main(){return 0;}' > test.c

$CC_AARCH64 --sysroot="$SYSROOT_AARCH64" -0 test test.c
file test

rm test test.c

echo "v Cross-compilation test passed”

echo " "
echo "STEP 5: CONFIGURE AND BUILD"
echo "

#Check if the example exists

if [! -d "examples/${EXAMPLE_NAME}"]; then
echo -e "No such '$EXAMPLE_NAME' exists in examples!! \nExiting !!"
exit 1

#Check if example does not need specific platform 1like Tinux to build

elif [[$(find ./examples/ -maxdepth 2 -type f -name

args.gni | grep -c "$EXAMPLE_NAME") -gt 0]]; then
ROOT_PATH="examples/$EXAMPLE_NAME"

#Check if example needs specific platform to build and Tinux platform is available

4 Enabling Matter on Sitara MPU SPRADGYA — JANUARY 2024 — REVISED NOVEMBER 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG9A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Enablement

elif [[$(find ./examples/ -type f -name "args.gni"

-path "*/Tinux/*" | grep -c "$EXAMPLE_NAME") -gt 0]]; then
ROOT_PATH="examples/$EXAMPLE_NAME/1inux"

#%heck if example needs specific platform to build but linux platform is NOT available

else
echo -e "'$EXAMPLE_NAME' 1is not supported on Linux!! \nExiting !!"

. exit 1

i

gn gen "out/${EXAMPLE_NAME}-arm64" --root="$ROOT_PATH" --args="

target_cpu=\"armé64\"

target_os=\"Tinux\"

sysroot=\"$SYSROOT_AARCH64\"

is_clang=false

treat_warnings_as_errors=false

target_cflags = [
\"-D_GNU_SOURCE\",
\"-D__USE_GNU\",
\"-pthread\",
\"-DCHIP_DEVICE_CONFIG_WIFI_STATION_IF_NAME=\\\"wlanO\\\"\",
\" -DCHIP_DEVICE_CONFIG_LINUX_DHCPC_CMD=\\\"udhcpc -b -i %s \\\"\",

]
target_ldflags=[\"-pthread\"]

echo "Building $EXAMPLE_NAME..."
ninja -C "out/${EXAMPLE_NAME}-arm64"

echo " "
echo "STEP 6: VERIFY BUILD RESULTS"

echo " "
EXECUTABLE_NAME=$(awk -F'"' '/executable\("/ {print $2}' $ROOT_PATH/BUILD.gn)

echo "Expected executable name: $EXECUTABLE_NAME"
BINARY_PATH="out/${EXAMPLE_NAME}-arm64/${EXECUTABLE_NAME}"
if [-f "$BINARY_PATH"]; then

file "$BINARY_PATH"

echo "v Build complete! Binary located at: $BINARY_PATH"

else
echo "Error: Build failed, binary not found at $BINARY_PATH"
exit 1
fi
echo " "
echo "BUILD SUMMARY"
echo " "

echo "Target: aarch64 (ARM64)"

echo "Toolchain: $TOOLCHAIN_TARGET"

echo "Example: $EXAMPLE_NAME"

echo "output: out/${EXAMPLE_NAME}-arm64/${EXECUTABLE_NAME}"

acho "™

echo "Al1 fixes applied:"

echo "v Bluezoo dependency commented out for Python 3.10 compatibility"
echo "v TI SDK native toolchain configured for compatibility"

echo "v Toolchain wrapper created for GN naming conventions"”

echo "v Matter build completed successfully"

echo
echo "To modify configuration, edit the variables at the top of this script:”

echo "- TOOLCHAIN_PREFIX: $TOOLCHAIN_PREFIX"

echo "- SYSROOT_AARCH64: $SYSROOT_AARCH64"

echo "- TOOLCHAIN_TARGET: $TOOLCHAIN_TARGET"

echo "- EXAMPLE_NAME: $EXAMPLE_NAME"

acho "™

echo "To build a different example, run the script with other example's name as argument."

5. Modify the build_matter_example.sh to update the following variables:

a. SDK_PATH -> Path of installed Processor SDK.
b. SYSROOT_AARCHG6E4 -> Path of extracted filesystem in Processor SDK.

6. Run the script using:

sudo ./build_matter_example.sh <example-name>
For example:

sudo ./build_matter_example.sh chip-tool

sudo ./build_matter_example.sh Tock-app

SPRADGYA - JANUARY 2024 — REVISED NOVEMBER 2025 Enabling Matter on Sitara MPU 5
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG9A&partnum=

13 TEXAS
INSTRUMENTS

Demonstration www.ti.com

7. Note: On running the above script, if you are stuck on "STEP 4: SETUP BUILD ENVIRONMENT" or your
environment is out-of-date, exit the script and run :

sudo -E bash scripts/bootstrap.sh

This will re-create the environment from scratch and will take some time. Re-run the
build_matter_example.sh again.

8. Upon successful build, script will mention the path of output binary: <Matter root>/out/<example_directory>/
<example_executable>.

9. Copy the executable to your target. In our example we have copied 'chip-lock-app' on AM62L and 'chip-tool’
on AM62P with both devices connected on the same network.

The experiments in this application note has been tested with the following version of SDK/repositories in the last
revision:

Processor SDK 11.00.15.05

Matter Repo Commit: €156205783 (master branch)

4 Demonstration

Figure 4-1 shows AM62L using the lock-app and AM62P using the chip-tool interfacing with each other over
Ethernet.

Figure 4-1. Hardware Setup

Figure 4-2 shows how to setup the AM62L device as an endpoint using the lock app.

Figure 4-2. Creating an Endpoint

6 Enabling Matter on Sitara MPU SPRADGYA — JANUARY 2024 — REVISED NOVEMBER 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG9A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Demonstration

Figure 4-3 shows what an expected endpoint log should look like. Note the device configuration information.

Figure 4-3. Expected Endpoint Log
Figure 4-4 shows how an administrator would pair with the endpoint using the chip-tool.

tio [fde

root(d

root@

Figure 4-4. Pairing With Endpoint Device

Figure 4-5 shows the expect log of a successful pairing attempt. Note the CommissioningComplete response in
the log.

SPRADGYA - JANUARY 2024 — REVISED NOVEMBER 2025 Enabling Matter on Sitara MPU 7

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG9A&partnum=

13 TEXAS
INSTRUMENTS

Summary www.ti.com

Figure 4-5. Successful Pairing

Figure 4-6 shows that the status of the endpoint is set to be locked.

tio /dev/ttyUSBO
root@amé evm:~# ./chip-tool doorlock leck-door 1 1 ——timedInteractionTimeoutMs 100 'E]|:|

Figure 4-6. Setting Lock Status to Locked

Figure 4-7 shows the status reported on the endpoint following the lock-door request.

Figure 4-7. Lock Status in Endpoint Log

To see a recorded demonstration of the above with full endpoint and administrator logs being updated in sync,
see the following: https://asciinema.org/a/755835.

5 Summary

The main goal of this application note is to demonstrate how to compile a reference implementation of matter
from the connectedhomeip project and run a simple lock/unlock demo. Even though a AM62L and AM62P
devices is used, the above instructions are applicable to any ARM32 bit and ARM64-bit Tl processors.

8 Enabling Matter on Sitara MPU SPRADGYA — JANUARY 2024 — REVISED NOVEMBER 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://asciinema.org/a/755835
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG9A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com References

6 References

» Texas Instruments, AM62P, product folder.
» Texas Instruments, AM62L, product folder.

7 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from January 30, 2024 to November 21, 2025 (from Revision * (January 2024) to

Revision A (November 2025)) Page
» Updated Matter enablement from Yocto based to Cross-Compilation based approach..............ccccoeviriniinnn.n. 2
* Modified the images and console output to reflect results with latest Matter revision...............ccccovveeeenn. 6
SPRADGYA - JANUARY 2024 — REVISED NOVEMBER 2025 Enabling Matter on Sitara MPU 9

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/product/AM62P
https://www.ti.com/product/AM62L
https://www.ti.com
https://www.ti.com/lit/pdf/SPRADG9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRADG9A&partnum=

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you fully
indemnify Tl and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on
ti.com or provided in conjunction with such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable
warranties or warranty disclaimers for Tl products. Unless Tl explicitly designates a product as custom or customer-specified, TI products
are standard, catalog, general purpose devices.

Tl objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated
Last updated 10/2025

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com/lit/pdf/SZZQ076
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Current Implementation
	3 Enablement
	4 Demonstration
	5 Summary
	6 References
	7 Revision History

