Sitara™ Processor Power Distribution Networks: Implementation and Analysis

Sitara MPU

4 Introduction

ABSTRACT

The purpose of a power distribution network (PDN) is primarily to provide clean and reliable power to the active devices on the system. The printed circuit board (PCB) is a critical component of the system-level PDN delivery network. As such, optimal design of the PCB power distribution network is of utmost importance for high performance microprocessors. This application report provides implementation guidelines and recommendations for designing printed circuit board (PCB) power delivery networks (PDN) for the Texas Instruments Sitara™ family of microprocessors.

Table of Contents

I Illifoduction	
1.1 Acronyms Used in This Document	
2 Guidelines for PCB Stack-Up	3
3 Physical Layout Optimization of the PDN	5
4 Static PDN Analysis (IR Drop Optimization)	8
5 Dynamic Analysis of PCB PDN	
5.1 Selecting Decoupling Capacitors to Meet Z _{TARGET}	11
6 Checklist for PDN	
7 Implementation Examples and PDN Targets	14
7.1 AM570x	14
7.2 AM571x	16
7.3 AM572x	19
7.4 AM574x	<mark>22</mark>
7.5 AM65xx/DRA80xM	<mark>25</mark>
7.6 AM62xx	28
7.7 AM64xx	29
7.8 AM62Ax	32
7.9 AM62Px	35
7.10 AM62Lx	38
8 Revision History	40
List of Figures	
Figure 2-1. Minimize Loop Inductance by Optimizing Layer Assignments in the PCB	3
Figure 2-2. Example Stack-Up Utilizing High-Density Interconnect Vias	4
Figure 2-3. Example Stack-Up Utilizing Plated-Through-Hole (PTH) Vias	
Figure 3-1. Characteristics of a "Real" Capacitor With ESL and ESR	5
Figure 3-2. Typical Impedance Profile of a Capacitor	
Figure 3-3. Example of "Co-Planar' Shielding of Power Net Using Ground Guard-Band	6
Figure 3-4. Capacitor Mounting Geometries	7
Figure 4-1. Depiction of Sheet Resistivity and Resistance	
Figure 4-2. PCB IR Drop Budget	8
Figure 4-3. Sense Line Placement	9
Figure 4-4. Allowable Power Input Voltage Difference	
Figure 5-1. Components of a Typical Power Distribution Network (PDN)	
Figure 5-2. Decoupling Frequency Range of PCB Components	10
Figure 5-3. Example Capacitor Placement	12

	INSTRUMENT
rademarks	www.ti.co

Figure 7-1. AM62P PCB Stack upFigure 7-2. AM62P PCB Impedance	35
Figure 7-2. AM62P PCB Impedance	36
Figure 7-3. AM62L PCB Stack up	38
Figure 7-4. AM62L PCB Impedance	38
List of Tables	
Table 1-1. Acronyms	2
Table 7-1. AM570x PDN Targets and Decoupling Example	15
Table 7-2. AM571x PDN Targets and Decoupling Example	
Table 7-3. AM572x PDN Targets and Decoupling Example	
Table 7-4. AM574x PDN Targets and Decoupling Example	
Table 7-5. AM65xx/DRA80xM PDN Targets and Decoupling Example	27
Table 7-6. AM62xx PDN Targets and Decoupling Example	29
Table 7-7. AM64xx PDN Targets and Decoupling Example	
Table 7-8. AM62Ax PDN Targets and Decoupling Example	33
Table 7-9. AM62Px PDN Targets and Decoupling Example	
Table 7-10. AM62Lx PDN Targets and Decoupling Example	39

Trademarks

Sitara[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

1 Introduction

This application report provides implementation guidelines and recommendations for designing printed circuit board (PCB) power delivery networks (PDN) for the Texas Instruments Sitara family of microprocessors. This application report will:

- Discuss PCB PDN design methodology
- · Provide general PCB PDN design recommendations and requirements
- · Discuss the rationale behind these design requirements
- Provide suggestions and methods that PCB designers can implement to ensure that the PDN requirements for a specific processor are met.
- Provide PDN targets for Sitara-class microprocessors

1.1 Acronyms Used in This Document

Table 1-1. Acronyms

Acronym	Description
AC	Alternating current
BGA	Ball grid array
DC	Direct current (static)
Df	Loss tangent
Dk	Dielectric constant
EDA	Electronic design automation
EM	Electromigration
ESL	Effective series inductance
ESR	Effective series resistance
FDTIM	Frequency domain target impedance method
HDI	High density interconnect (for example, buried/blind via)
IR	Product of current (I) x resistance (R)
РСВ	Printed circuit board
PDN	Power distribution network
PM-IC/PMIC	Power management integrated circuit
PTH	Plated through hole
RLC	Resistance, inductance, and capacitance
SMPS	Switch mode power supply

Table 1-1. Acronyms (continued)

Acronym	Description
SMT	Surface mount technology
SRF	Self resonant frequency
VIP	Via in pad
VRM	Voltage regulator module

Note

Notwithstanding any provision to the contrary, TI makes no warranty expressed, implied, or statutory, including any implied warranty of merchantability of fitness for a specific purpose, for customer boards. The data described in this document are intended as guidelines only.

2 Guidelines for PCB Stack-Up

The PCB stack-up (or layer assignment) is an important factor in ensuring optimal performance of a power distribution scheme. An optimized PCB stack-up for improved power integrity performance can be achieved by following these recommendations:

- Power and ground plane pairs/"islands" should be closely coupled together. The capacitance formed between
 the planes can be used to decouple the power supply. Whenever possible the power and ground planes
 should be solid to provide a continuous return path for return current.
- Use a thin dielectric between the power and ground plane pair. Capacitance is inversely proportional to the separation of the plane pair so minimizing the separation distance (the dielectric thickness) will help to maximize the capacitance.
- Keep the power and ground plane pair as close to the PCB top and bottom surfaces as possible (see Figure 2-1). This will help to minimize the associated loop inductance of the decoupling capacitors, vias, and the power/ground plane pair spreading loop inductance.

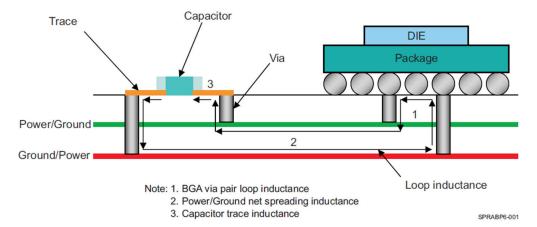


Figure 2-1. Minimize Loop Inductance by Optimizing Layer Assignments in the PCB

Guidelines for PCB Stack-Up www.ti.com

The placement of power and ground planes in the PCB stack-up (determined by layer assignment) has a significant impact on the parasitic inductance of the power current path as shown above. For this reason, it is recommended to consider layer order in the early stages of the PCB PDN design cycle, putting high priority supplies in the top half of the stack-up and low-priority supplies in the bottom half of the stack-up as shown in the examples below. Figure 2-2 and Figure 2-3 show examples of typical PCB stack-ups designed with power distribution performance in mind. Device-specific stack-up examples can be found in Section 8.

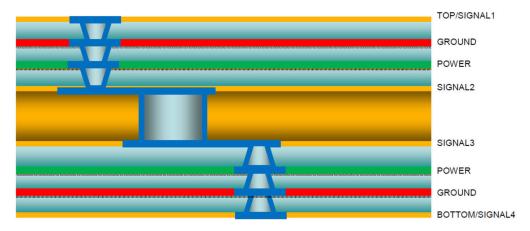


Figure 2-2. Example Stack-Up Utilizing High-Density Interconnect Vias

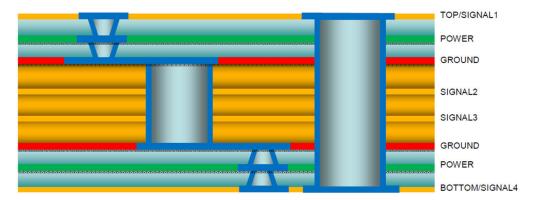


Figure 2-3. Example Stack-Up Utilizing Plated-Through-Hole (PTH) Vias

3 Physical Layout Optimization of the PDN

The following are important requirements that need to be implemented in the PCB PDN design:

- External power trace routing between components should be as wide as possible as wider traces result in reduced DC resistance and consequently a lower static IR drop. They also provide for lower loop inductance and higher capacitance.
- Whenever possible, attempt to achieve a ratio of 1:1 (or better) for component pins and associated vias. Do not share vias among multiple capacitors.
- · Placement of decoupling capacitors and associated vias should be as close to the processor ball as possible.
- The maximum current-carrying capacity of each transitional via should be evaluated through simulation to
 determine the appropriate number of vias required to connect components. This ensures that the currentcarrying ability of a via interconnect network is sufficient for the needs of each particular component. When
 a via interconnect, or a network of same, is unable to supply sufficient current, this is referred to as "via
 starvation".
- TI highly recommends that both static and dynamic IR drop analysis (discussed in Section 4 and Section 5) be performed on any new PCB design prior to fabrication. These analyses should be used to assess the appropriate number of vias and geometrical trace width dimensions required to meet the IR drop requirements of system components.
- Whenever possible for the internal layers (both signal routing and power plane), wide traces and copper area fills are recommended for PDN layout. As discussed in previous sections of this document, routing power nets in planes provides for more inter-plane capacitance and improves high frequency performance of the PDN.
- Decoupling capacitors should be mounted with minimum impact to inductance. A capacitor has
 characteristics not only of capacitance but also inductance and resistance. Figure 3-1 shows the parasitic
 model of a real capacitor. A real capacitor should be treated as an RLC circuit with effective series resistance
 (ESR) and effective series inductance (ESL).

Figure 3-1. Characteristics of a "Real" Capacitor With ESL and ESR

The magnitude of the impedance of this series model is given in Equation 1.

$$\begin{split} \left|Z\right| &= \sqrt{\text{ESR}^2 + \left(w\text{ESL} - \frac{1}{wC}\right)^2} \\ \text{where} \\ w &= 2\pi f \end{split} \tag{1}$$

Figure 3-2 shows the resonant frequency response of a typical capacitor with self-resonant frequency of 55 MHz. The impedance of the capacitor is a combination of its series resistance and reactive capacitance and inductance as shown per Equation 1.

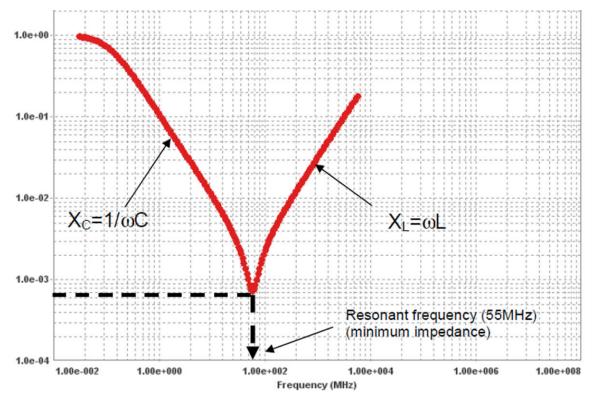


Figure 3-2. Typical Impedance Profile of a Capacitor

Try to avoid different power nets coupling on the PCB by using "co-planar" shielding whenever appropriate.
 Figure 3-3 depicts an example of co-planar shielding for two different power nets (VDD_MPU_IVA and VDD_CORE).

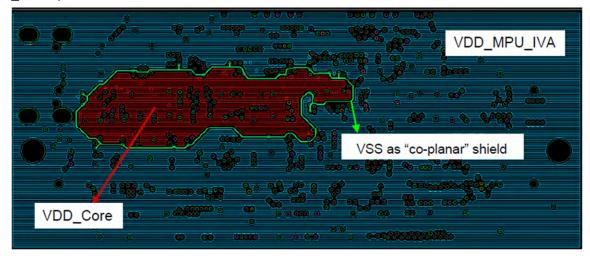


Figure 3-3. Example of "Co-Planar' Shielding of Power Net Using Ground Guard-Band

As the capacitors have both series inductance and resistance that will impact their effectiveness, it is critical that the following recommendations are adopted in placing them on the power distribution network. Whenever possible make sure to mount the capacitor with the geometry that will minimize the mounting inductance and resistance. The capacitor mounting inductance and resistance includes the inductance and resistance of the pads, the trace, and the associated vias.

The length of a trace used to connect a capacitor has a significant impact on the parasitic inductance and resistance of the mounting. This trace should be as short and wide as possible. Wherever possible, minimize the trace by locating vias near the solder pad landing. Further improvements can be made to the mounting by placing vias to the side of capacitor lands or by doubling the number of vias. If the PCB manufacturing process allows, and if cost-effective, via-in-pad (VIP) geometries are strongly recommended.

The most common via placement geometries are proved below, in order of preference for reducing parasitic impact:

- 1. Via-In-Pad (VIP)
- 2. Dual Offset Via
- 3. Single Offset Via
- 4. Pad to Via Trace (short)
- 5. Pad to Via Trace (long)

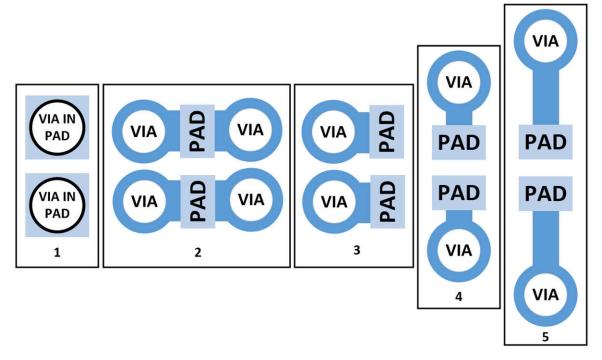


Figure 3-4. Capacitor Mounting Geometries

In addition to mounting inductance and resistance associated with placing a capacitor on the PCB, the effectiveness of a decoupling capacitor also depends on the spreading inductance and resistance that the capacitor sees with respect to the load. The spreading inductance and resistance is strongly dependent on the layer assignment in the PCB stack-up (see Figure 2-1).

4 Static PDN Analysis (IR Drop Optimization)

Delivering reliable power to circuits is always of critical importance as IR drops can occur at every level in a chip, package, and board system. Components that are distant from their associated power source are particularly susceptible to IR drop, and designs that rely on battery power must further minimize voltage drop to avoid unacceptable power loss. Early DC assessments made through simulation help to determine power distribution basics such as the best available entry point for power, layer stack-up choices, and estimates for the amount of copper needed to carry the required current.

The resistance Rs of a plane conductor for a unit length and unit width is called the surface resistivity (ohms per square).

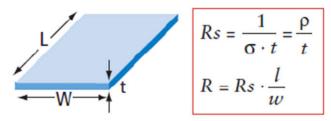


Figure 4-1. Depiction of Sheet Resistivity and Resistance

Ohm's Law (V=IR) relates conduction current to voltage drop, and at DC, the relation coefficient is a constant representing the resistance of the conductor. Conductors also dissipate power due to their resistance. Both voltage drop and power dissipation are proportional to the resistance of the conductor. Static IR or DC analysis/design methodology consists of designing the power distribution network such that the voltage drop (under DC operating conditions) across the power and ground pads of the application processor device is within a specified value of the nominal voltage to ensure proper functionality of the device. The PCB-level static IR drop budget is defined between the *pins/pads* of the power management device (PMIC/VRM/SMPS) and the *BGA balls* on the application processor device to which the power management device is supplying power (see Figure 4-2).

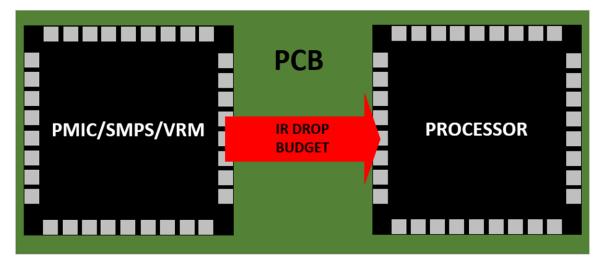


Figure 4-2. PCB IR Drop Budget

Given the total system-level margin allowed for proper device functionality, allowable voltage variation at the BGA of the device is typically specified at 2.5% of the nominal voltage. ¹ For devices implementing remotesense functionality, it is a requirement that the power management device feedback/sense line(s) be placed as close to the relevant processor power balls as physically possible (see Figure 4-3) and that a supply input voltage difference of ≤5 mV under maximum current loading is maintained across all balls connected to a common power rail. This 5 mV maximum represents any voltage difference that may exist between a remote sense point and any associated power input (see Figure 4-4).

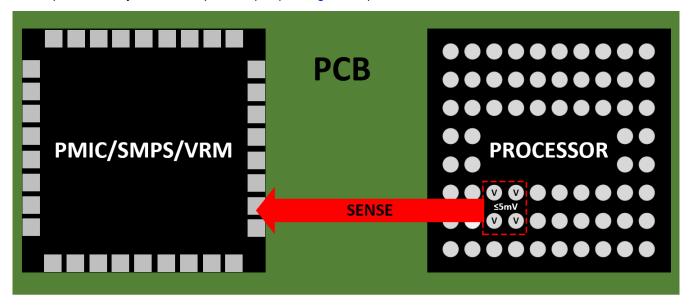


Figure 4-3. Sense Line Placement

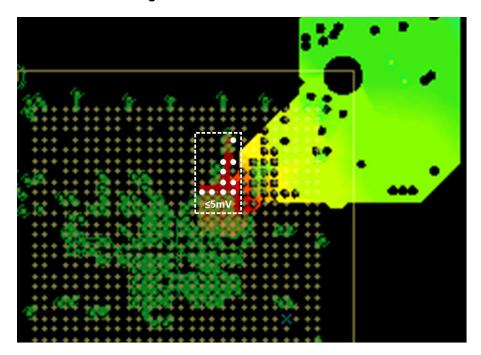


Figure 4-4. Allowable Power Input Voltage Difference

¹ This is a generic recommendation and may not apply to your specific processor. For processor requirements, see the device-specific data sheet.

5 Dynamic Analysis of PCB PDN

The typical elements of the PDN are shown in Figure 5-1; which includes the chip-level power distribution with thin-oxide decoupling capacitors. The package-level power distribution with planes and mid-frequency decoupling capacitors; and the board-level (for example, PCB) power distribution with planes, low-frequency ceramic and bulk decoupling capacitors, and the voltage regulator module (VRM).

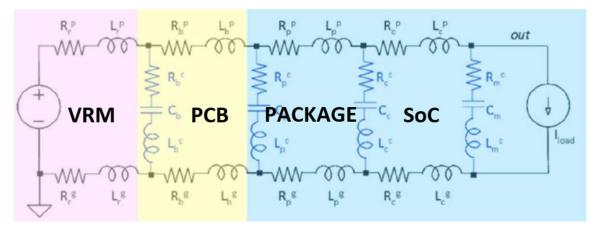


Figure 5-1. Components of a Typical Power Distribution Network (PDN)

The frequency ranges covered by these elements are shown in Figure 5-2. As the primary focus is on optimizing the PCB PDN for high performance, the methodology is developed around the areas over which the PCB designer has control over and can influence early in the design phase.

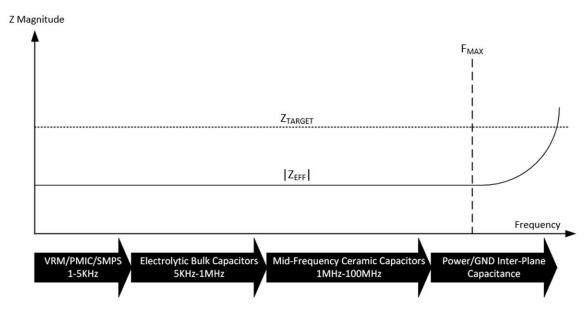


Figure 5-2. Decoupling Frequency Range of PCB Components

The VRM/PMIC/SMPS (or simply voltage regulator device) is the first major component of the PDN. It observes its output voltage and adjusts the amount of current being supplied to keep the voltage constant. Most common voltage regulators make this adjustment on the order of milliseconds to microseconds. They are effective at maintaining output voltage for events at all frequencies from DC to a few kilohertz (depending on the regulator dynamic response time). For all transient events that occur at frequencies above this range, there is a time delay before the voltage regulator can respond to the new level of demand. During this time delay the rail suffers from voltage droop. A power delivery network has an impedance (Z_{PDN}) associated with the path from the voltage regulator module to the processor. The magnitude of noise (voltage ripple) seen on a given power rail is proportional to the impedance (Z_{PDN}) and the transient current ($I_{TRANSIENT}$) draw associated with that rail.

Based on Ohm's Law,

$$V_{RIPPLE} = I_{TRANSIENT} \times Z_{PDN}$$
 (2)

Typically the transient current is application-specific and is determined by a particular switching scenario. As a board designer, you have the ability to minimize the voltage ripple by reducing Z_{PDN} either by reducing the inductance, or by maximizing the capacitance. To ensure that the voltage ripple noise is within the processor's specification, the Z_{PDN} must be designed to meet a certain impedance, referred to as the target impedance (Z_{TARGET}). Using frequency domain target impedance method (FDTIM) to describe the behavior of a power delivery system has been widely accepted.

The key concept of the FDTIM is the determination of the target impedance Z_{TARGET} (see Equation 3) for the power rail under consideration. For reliable operation of a power delivery system, its impedance spectrum needs to be maintained below the target value at the frequencies from DC to FMAX (see Figure 5-2). FMAX is the point in frequency after which adding a reasonable number of decoupling capacitors does not bring the power rail impedance |ZEFF| below the target impedance (Z_{TARGET}) due to the dominance of the parasitic planar spreading inductance and package inductances.

$$Z_{TARGET} = \frac{Voltage \ Rail \times \%Ripple}{0.5 \times IMax}$$
(3)

5.1 Selecting Decoupling Capacitors to Meet Z_{TARGET}

To maintain power integrity throughout the entire frequency range of interest, the power distribution network relies on the voltage regulator module (VRM/SMPS), the on-board discrete bulk electrolytic and ceramic decoupling capacitors, and the inter-plane capacitances (capacitance from the power-ground sandwich in the board stack-up). For a first-order analysis, the VRM of the power management integrated circuit (PMIC) can be modeled as a series-connected resistor and inductor. A PMIC, at low frequencies (up to 500 KHz-1 MHz), typically has low impedance and is capable of responding to the instantaneous requirements of the processor. The ESR and ESL values for the VRM are therefore very low. Beyond lower frequencies, the VRM impedance is primarily inductive, making it incapable of meeting the transient current requirement of the device. The bulk and ceramic discrete decoupling capacitors must provide the required low impedance from the point at which the VRM becomes inductive. The effectiveness of the bulk and mid-frequency decoupling capacitors (1 MHz-70 MHz, depending on the capacitor's ESL and ESR) is limited by its placement (due to loop inductance), value, and type. Refer to Figure 5-3 for a capacitor placement example. Note that in order to minimize the loop inductance, the mid-frequency capacitors have been placed directly underneath the processor (on the bottom side of the PCB).

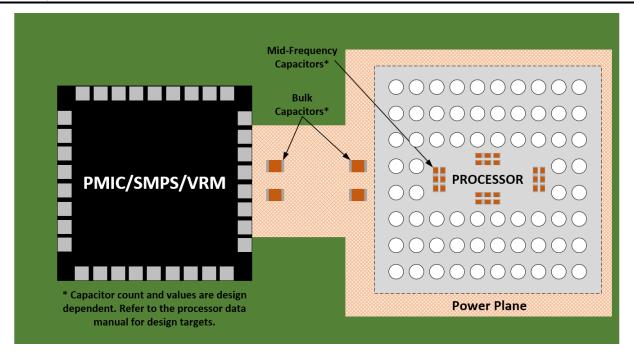


Figure 5-3. Example Capacitor Placement

The bulk capacitors should be located near the point of entry of the supply entrance to the board. The decoupling capacitors maintain the PDN impedance at the required value beyond the VRM frequency and until the frequency at which mid-frequency capacitors become useful. The mid-frequency SMT capacitors are useful in the 10 to 150 MHz range and higher. These capacitors are primarily ceramic capacitors that come in several dielectric types (NPO, X7R, X5R, and Y5V) and several sizes (1206, 0805, 0603, 0402, and so forth). The mid-frequency capacitors are much smaller than the bulk capacitors and can be placed closer to the transistor circuit. Since the ceramic capacitors are smaller, they have lower ESR and ESL and lower capacitance than bulk capacitors, leading to a higher resonance frequency with smaller impedance at resonance. Therefore, ceramic capacitors can be used at higher frequencies. Typical mid-frequency capacitors have capacitance in the range of 1 nF -100 nF, ESR in the range of 10-100 m Ω , and ESL in the range of 0.5 nH -1 nH.

The concept of "loop inductance" is a useful metric for quantifying the effectiveness of the decoupling capacitors of a power distribution network. To calculate the "loop inductance" associated with decoupling capacitor placement, Equation 4 can be used:

$$L_{eff} = \frac{Imaginary (Z(Power,GND pads of decap))}{2 \times \pi \times Frequency} \tag{4}$$

Where L_{eff} is the effective loop inductance, Z (power, GND pads of decap) represents the Z-parameters of the port defined across the power and ground pads of the corresponding decap. The frequency should be chosen in the "flat" region of the Z-parameter response, typically in the 50 MHz – 70 MHz range.

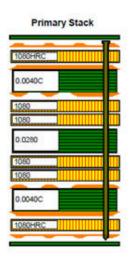
www.ti.com Checklist for PDN

6 Checklist for PDN

Although this list is not inclusive of every parameter and variable that must be considered when designing a PCB, a PDN-optimized PCB design will implement these guidelines:

- Power and ground plane pairs (or "islands") should be closely coupled together. The capacitance formed between the planes can be used to decouple the power supply at high frequencies.
- Whenever possible, the power and ground planes should be solid as this provides a continuous return path for return current.
- Use a thin dielectric thickness between the power and ground plane pair. Capacitance is inversely proportional to the separation of the plane pair so minimizing the separation distance (such as, the dielectric thickness) will maximize the resulting capacitance.
- The placement of power and ground planes in the PCB stack-up (determined by layer assignment) has a significant impact on the parasitic inductances of power current path. For this reason, it is recommended to consider layer order in the early stages of the PCB PDN design cycle, placing high priority supplies in the upper-half of the stack-up and low priority supplies in the lower half of the stack-up. This helps to minimize the loop inductance caused by decoupling capacitors and their associated vias.
- External power trace routing between components should be as wide as possible as wider traces result in reduced DC resistance and consequently a lower static IR drop.
- Whenever possible, attempt to achieve a ratio of 1:1 (or better) for component pins and associated vias. Do not share vias among multiple capacitors.
- Placement of decoupling capacitors and their associated vias should be as close to the processor ball as possible. Reserve the space directly underneath the processor for this purpose.
- Use of short and wide surface traces to connect capacitor pads to the vias connected to the planes below is preferred.
- Use of large diameter vias is preferred for reduced inductance/resistance.
- 1 oz 2 oz Cu weight for power / ground plane is preferred to enable better PCB heat spreading, which helps
 to reduce processor junction temperatures. In addition, it is preferable to have the power / ground planes be
 located adjacent to the PCB surface on which the processor is mounted.
- Place the VRM as close as possible to the processor and on the same side of the PCB. In cases where a
 power management IC (PMIC) is implemented as the VRM, it should be aligned to minimize distance for the
 highest current rail.

7 Implementation Examples and PDN Targets


This section provides device-specific PDN targets and implementation examples that meet these targets.

Note

The decoupling capacitor counts and/or capacitor values presented in this document are PCB designspecific and should not be used in lieu of PCB simulations. It is the responsibility of the PCB designer to ensure that any design meets the provided PDN targets.

7.1 AM570x

Layer	Calc Thickness
Layer - 1	0.0005
	0.0033
Layer - 2	0.0012
	0.0041
Layer - 3	0.0006
	0.0054
	0.0280
	0.0055
Layer - 4	0.0006
	0.0041
Layer - 5	0.0012
	0.0032
Layer - 6	0.0020

Description	Dk / Df
Taiyo 4000-MP 1/4oz Sig (Std Plt)	4.70 / 0.0330
370H	4.03 / 0.0210
1oz P/G	
370H	4.54 / 0.0190
1/2oz Mix	
370H	4.17 / 0.0210
370H	4.30 / 0.0180
370H	4.16 / 0.0210
1/2oz Mix	
370H	4.54 / 0.0190
1oz P/G	
370H	4.05 / 0.0210
1/4oz Sig (Std Plt) Taiyo 4000-MP	4.70 / 0.0330

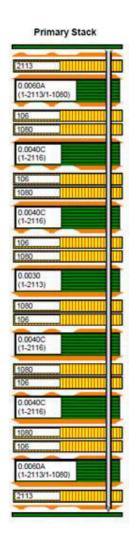
Materials: Isola 370H High-Tg FR4

Requirement	Req. Thickness	Tol +	Tol -	Calc Thick
Incl. Plating & Mask	0.0620	0.0062	0.0062	0.0622
Incl. Mask over Laminate	0.0580	0.0058	0.0058	0.0582
Incl. Plating	0.0610	0.0061	0.0061	0.0612
After Lamination	0.0576	0.0029	0.0029	0.0578
Over Laminate	0.0570	0.0057	0.0057	0.0572

Impedance Type	Layer	Design	Actual	Pitch	Plane	Target	Tol (ohms)	Predict
1 Surface MS	L1	0.0050	0.0050	_ 💯				
A. A	-			*	L2	50	5	49.89
2 EC Microstrip	L1	0.00480	0.0046	0.0110				00.74
		0.00480	0.0046		L2	90	9	90.71
3 EC Microstrip	L1	0.00440	0.0042	0.0140				
		0.00440	0.0042		L2	100	10	100.04
4 Stripline	L3	0.00525	0.0054	- S	L2		-	5004
	-	-			L5	50 5	50.01	
5 EC Stripline	L3	0.00450	0.0045	0.0140	L2		140	
		0.00450	0.0045		L5	100	10	100.18
6 EC Stripline	L3	0.0050	0.0050	0.0110	L2			
	<u> </u>	0.0050	0.0050		L5	90	9.0	89.67

Impedance Type	Layer	Design	Actual	Pitch	Plane	Target	Tol (ohms)	Predict
7 Stripline	L4	0.00525	0.0054		L2			
			-		L5	50	5	50.03
8 EC Stripline	L4	0.00450	0.0045	0.0140	L2	17794	1987	
		0.00450	0.0045		L5	100	10	100.22
9 EC Stripline	L4	0.0050	0.0050	0.0110	L2			
		0.0050	0.0050	5]	L5	90	9	89.71
0 EC Microstrip	L6	0.00440	0.0041	0.0140	L5	-	1927	Clubble
		0.00440	0.0041			100	10	99.6
1 EC Microstrip	L6	0.00480	0.0046	0.0110	L5	22.5	1/4	
	1.5	0.00480	0.0046	51	ै	90	9	89.44
12 Surface MS	L6	0.0050	0.0048	- 2	L5			
			-	¥.		50	5	49.88

Table 7-1. AM570x PDN Targets and Decoupling Example


	Static PDN Target	7-1. AWI37		Capacit	Numbe	er of De	ecoupli , (1) (2) (3	ng 3) (4) (5)	(6) (9)			
Supply Name ⁽¹⁰⁾	Max R _{eff} (mΩ) ⁽⁷⁾	Dec Cap Max LL (nH) ^{(6) (8)}	Max Impedance (mΩ)	Frequency of Interest (MHz)	100 nF	220 nF	470 nF	1 µF	2.2 μF	4.7 μF	10 μF	22 µF
VDD_CORE	18	2	57	≤20			5	4			1	
VDD_DSP	22	2.5	54	≤20			6	5			2	
VDDS_DDR1	10	2.5	200	≤100			12	1			1	
CAP_VBBLDO_DSP	N/A	6	N/A	N/A				1				
CAP_VBBLDO_GPU	N/A	6	N/A	N/A				1				
CAP_VBBDLO_IVA	N/A	6	N/A	N/A				1				
CAP_VBBLD0_MPU	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE1	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE2	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE3	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE4	N/A	6	N/A	N/A				1				
CAP_VDDRAM_DSP	N/A	6	N/A	N/A				1				
CAP_VDDRAM_GPU	N/A	6	N/A	N/A				1				
CAP_VDDRAM_IVA	N/A	6	N/A	N/A				1				
CAP_VDDRAM_MPU	N/A	6	N/A	N/A				1				

- (1) For more information on peak-to-peak noise values, see the *Recommended Operating Conditions* table in the device-specific data manual.
- (2) ESL must be as low as possible and not exceed 0.5 nH.
- (3) The power delivery network (PDN) impedance characteristics are defined versus the device activity (that runs at different frequency) based on the *Recommended Operating Conditions* table in the *Specifications* chapter of the device-specific data manual.
- (4) The static drop requirement drives the maximum acceptable PCB resistance between the PMIC or the external SMPS and the processor power balls.
- (5) Assuming that the external SMPS (power IC) feedback sense is taken close to processor power balls.
- (6) High-frequency (30 MHz 70 MHz) PCB decoupling capacitors.
- (7) Maximum R_{eff} from VRM/SMPS/PMIC to processor.
- (8) Maximum loop inductance for decoupling capacitor.
- (9) Decoupling capacitor counts and values are provided as a baseline recommendation only. TI recommends that all PCB designs be simulated prior fabrication to ensure that the processor PDN requirements are met.
- (10) Ganged rails must meet all requirements of each member rail.

7.2 AM571x

	Calc
Layer	Thickness
Layer - 1	0.0005 0.0017
E1 69	0.0037
Layer - 2	0.0012
	0.0060
Layer - 3	0.0006
	0.0048
Layer - 4	0.0006
	0.0041
Layer - 5	0.0006
	0.0048
Layer - 6	0.0006
	0.0041
Layer - 7	0.0006
	0.0048
Layer - 8	0.0006
	0.0030
Layer - 9	0.0006
	0.0048
Layer - 10	0.0006
	0.0041
Layer - 11	0.0006
	0.0048
Layer - 12	0.0006
	0.0041
Layer - 13	0.0006
	0.0048
Layer - 14	0.0006
	0.0060
Layer - 15	0.0012
VIDEO VAN	0.0037
Layer - 16	0.0017 0.0005

Description	Dk / Df
Taiyo 4000-BN 1/4oz Mix (Std Plt)	4.71 / 0.0330
370H	4.34 / 0.0210
1oz P/G	
370H	4.33 / 0.0210
1/2oz Mix	
370H	4.06 / 0.0210
1/20z P/G	
370H	4.54 / 0.0190
1/2oz Mix	
370H	4.06 / 0.0210
1/2oz P/G	
370H	4.54 / 0.0190
1/2oz Mix	
370H	4.06 / 0.0210
1/20z P/G	
370H	4.57 / 0.0190
1/2oz P/G	
370H	4.06 / 0.0210
1/2oz Mix	
370H	4.54 / 0.0190
1/20Z P/G	
370H	4.06 / 0.0210
1/2oz Mix	
370H	4.54 / 0.0190
1/2oz P/G	
370H	4.06 / 0.0210
1/2oz Mix	
370H	4.33 / 0.0210
1oz P/G	
370H	4.34 / 0.0210
1/4oz Mix (Std Plt) Taiyo 4000-BN	4.71 / 0.0330

Materials: Isola 370H High-Tg FR4

Requirement	Req. Thickness	Tol+	Tol -	Calc Thick
Incl. Plating & Mask	0.0800	0.0080	0.0080	0.0816
Incl. Mask over Laminate	0.0766	0.0077	0.0077	0.0782
Incl. Plating	0.0790	0.0079	0.0079	0.0806

Requirement	Req. Thickness	Tol+	Tol -	Calc Thick
After Lamination	0.0762	0.0038	0.0038	0.0778
Over Laminate	0.0756	0.0076	0.0076	0.0772

Job Comment

Sim to pn 516581 Rev F and 517391A

Impedance Type	Layer	Design	Actual	Pitch	Plane	Target	Tol (ohms)	Predic	
1 Surface MS	L1	0.00550	0.0055	23	23		-	40.00	
CALLED TO CALLED THE	-		-	- 80	L2	50	5	49.83	
2 EC Microstrip	L1	0.00470	0.0047	0.0100		227	<u></u>		
	100	0.00470	0.0047		L2	90	9	89.73	
EC Microstrip	L1	0.0040	0.0040	0.0105		400	200	00.70	
4	100	0.0040	0.0040	8	L2	100	10	99.29	
Stripline	L3	0.00450	0.0045		L2		74	50.74	
	134			- 20	L4	50	5	50.71	
EC Stripline	L3	0.0050	0.0050	0.0120	L2				
	15	0.0050	0.0050	- 1	L4	90	9.0	90.96	
EC Stripline	L3	0.00370	0.0037	0.0090	L2		400		400.00
and the second second	1	0.00370	0.0037	-	L4	100	10	100.20	
Stripline	L5	0.00370	0.0037		L4		· ·		
	-		-	-	L6	50	5	49.84	
EC Stripline	L5	0.00360	0.0036	0.0120	L4	CONT		98.59	
	125	0.00360	0.0036		L6	100	10.0		
Stripline	L7	0.00370	0.0037		L6	60	- 12	100000	
	134		1.4		L8	50	5	49.84	
EC Stripline	L7	0.00360	0.0036	0.0120	L6	400	40.0	00.50	
	150	0.00360	0.0036	78	L8	100	10.0	98.59	
1 Stripline	L10	0.00370	0.0037	- 13	L9				
	100) (*)	•	L11	50	5	49.84	
2 EC Stripline	L10	0.00360	0.0036	0.0120	L9	7935	1000000	150.75	
	-	0.00360	0.0036	-	L11	100	10.0	98.59	
3 Stripline	L12	0.00370	0.0037		L11			20.00	
patients:	j W	100	3.5	10	L13	50	5	49.84	
4 EC Stripline	L12	0.00360	0.0036	0.0120	L11	100	40.0	00.55	
	-	0.00360	0.0036	-	L13		10.0	98.59	
5 Stripline	L14	0.00450	0.0045	- 8	L13	22			
		-		- 3	L15	50	5	50.71	

Impedance Type	Layer	Design	Actual	Pitch	Plane	Target	Tol (ohms)	Predict
16 EC Stripline	L14	0.00370	0.0037	0.0090	L13			
	2.	0.00370	0.0037		L15	100	10	100.20
7 Surface MS	L16	0.00550	0.0055	- 10	L15		- 52	
			-	- 4	2	50	5	49.84
18 EC Microstrip	L16	0.00470	0.0047	0.0100	L15			00.70
	100	0.00470	0.0047	54	2	90	9	89.73
19 EC Microstrip	L16	0.0040	0.0040	0.0105	L15	400	10	99.29
and a vertice of the control of		0.0040	0.0040		-	100	10	
20 EC Microstrip	L1	0.00350	0.0035	0.0120		15,28028	1 P2/2027	HOUSE
	95	0.00350	0.0035		L2	110	11.0	109.02
21 EC Microstrip	L1	0.00560	0.0056	0.0120				
	100	0.00560	0.0056		L2	87	8.7	86.46
22 EC Microstrip	L16	0.00560	0.0056	0.0120	L15			20.00
		0.00560	0.0056			87	8.7	86.46

Table 7-2. AM571x PDN Targets and Decoupling Example

				J		-	•					
	Static PDN Target	Dynamic PDN Targets				Number of Decoupling Capacitors Per Supply (1) (2) (3) (4) (5) (6) (9)						
Supply Name ^(†0)	Max R _{eff} (mΩ) ⁽⁷⁾	Dec Cap Max LL (nH) ^{(6) (8)}	Max Impedance (mΩ)	Frequency of Interest (MHz)	100 nF	220 nF	470 nF	1 µF	2.2 µF	4.7 μF	10 μF	22 µF
VDD_CORE	27	2	87	≤50	6	1	1	1	1	1		
VDD_MPU	10	2	57	≤20	8	1	1	1	1	1		1
VDD_DSP VDD_GPU VDD_IVA	13	2.5	54	≤20	8	1	1	1	1	1	1	1
VDDS_DDR1	10	2.5	200	≤100	8	4		2		2		1
CAP_VBBLDO_DSP	N/A	6	N/A	N/A				1				
CAP_VBBLDO_GPU	N/A	6	N/A	N/A				1				
CAP_VBBDLO_IVA	N/A	6	N/A	N/A				1				
CAP_VBBLD0_MPU	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE1	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE3	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE4	N/A	6	N/A	N/A				1				
CAP_VDDRAM_DSP	N/A	6	N/A	N/A				1				
CAP_VDDRAM_GPU	N/A	6	N/A	N/A				1				
CAP_VDDRAM_IVA	N/A	6	N/A	N/A				1				
CAP_VDDRAM_MPU	N/A	6	N/A	N/A				1				

- (1) For more information on peak-to-peak noise values, see the *Recommended Operating Conditions* table in the device-specific data manual.
- (2) ESL must be as low as possible and not exceed 0.5 nH.
- (3) The power delivery network (PDN) impedance characteristics are defined versus the device activity (that runs at different frequency) based on the *Recommended Operating Conditions* table in the *Specifications* chapter of the device-specific data manual.
- (4) The static drop requirement drives the maximum acceptable PCB resistance between the PMIC or the external SMPS and the processor power balls.
- (5) Assuming that the external SMPS (power IC) feedback sense is taken close to processor power balls.
- (6) High-frequency (30 MHz 70 MHz) PCB decoupling capacitors.
- (7) Maximum R_{eff} from VRM/SMPS/PMIC to processor.
- (8) Maximum loop inductance for decoupling capacitor.
- (9) Decoupling capacitor counts and values are provided as a baseline recommendation only. TI recommends that all PCB designs be simulated prior fabrication to ensure that the processor PDN requirements are met.
- (10) Ganged rails must meet all requirements of each member rail.

7.3 AM572x

Layer	Calc Thickness	Primary Stack	Description
Layer - 1	0.0005 0.0017		Taiyo 4000-BN 1/4oz Mix (Std Pit)
	0.0039	106	370H
Layer - 2	0.0025		2oz P/G
	0.0060	0.0060A (1-2113/1-1080)	370H
Layer - 3	0.0006	(147131-1666)	1/2oz Mix
	0.0047	106	370H
Layer - 4	0.0006		1/20Z P/G
	0.0035	0.0035A (1-2113)	370H
Layer - 5	0.0006	(12110)	1/2oz Mix
	0.0039	106	370H
Layer - 6	0.0006	Library Control	1/20z P/G
	0.0035	0.0035A (1-2113)	370H
Layer - 7	0.0006	(1-2113)	1/2oz Mix
	0.0040	106	370H
Layer - 8	0.0006		1/2oz P/G
	0.0030	0.0030 (1-2113)	370H
Layer - 9	0.0006		1/202 P/G
	0.0040	106	370H
Layer - 10	0.0006		1/2oz Mix
	0.0035	0.0035A (1-2113)	370H
Layer - 11	0.0006	(142113)	1/20Z P/G
	0.0040	106	370H
Layer - 12	0.0006		1/2oz Mix
	0.0035	0.0035A (1-2113)	370H
Layer - 13	0.0006	(1213)	1/20z P/G
	0.0048	1060	370H
Layer - 14	0.0006	106	1/2oz Mix
	0.0060	0.0060A (1-2113/1-1080)	370H
Layer - 15	0.0025	(1-2110/1-1000)	2oz P/G
	0.0039	106	370H
Layer - 16	0.0017 0.0005	biiiiooneense	1/4oz Mix (Std Pit) Taryo 4000-BN

Description	Dk / Df
Taiyo 4000-BN 1/4oz Mix (Std Pit)	4.71 / 0.0330
370H	3.95 / 0.0210
2oz P/G	
370H	4.33 / 0.0210
1/2oz Mix	
370H	4.07 / 0.0210
1/20Z P/G	
370H	4.40 / 0.0210
1/2oz Mix	
370H	3.95 / 0.0210
1/20z P/G	
370H	4.40 / 0.0210
1/2oz Mix	
370H	3.94 / 0.0210
1/20z P/G	
370H	4.57 / 0.0190
1/202 P/G	
370H	3.94 / 0.0210
1/2oz Mix	
370H	4.40 / 0.0210
1/20Z P/G	
370H	3.94 / 0.0210
1/2oz Mix	
370H	4.40 / 0.0210
1/20z P/G	
370H	4.06 / 0.0210
1/2oz Mix	
370H	4.33 / 0.0210
2oz P/G	
370H	3.95 / 0.0210
1/4oz Mix (Std Pit) Taryo 4000-BN	4.71 / 0.0330
10.70 4000 011	4.1110.0000

Materials: Isola 370H High-Tg FR4

Requirement	Req. Thickness	Tol +	Tol -	Calc Thick
Incl. Plating & Mask	0.0800	0.0080	0.0080	0.0788
Incl. Mask over Laminate	0.0766	0.0077	0.0077	0.0754
Incl. Plating	0.0790	0.0079	0.0079	0.0778
After Lamination	0.0762	0.0038	0.0038	0.0750
Over Laminate	0.0756	0.0076	0.0076	0.0744

Impedance Type	Layer	Design	Actual	Pitch	Plane	Target	Tol (ohms)	Predict		
1 Surface MS	L1	0.0050	0.0060			227	50548	10000		
	140	-		-	L2	50	5	51.11		
2 EC Microstrip	L1	0.00440	0.0052	0.0105	1 8					
المست	372	0.00440	0.0052		L2	90	9	90.68		
3 EC Microstrip	L1	0.00380	0.0048	0.0120	- 8	1337	Photo:	100000		
	4.0	0.00380	0.0048		L2	100	10	99.26		
Stripline	L3	0.00450	0.0045		L2	550	9000	1000000		
					L4	50	5	50.37		
EC Stripline	L3	0.0050	0.0050	0.0120	L2					
		0.0050	0.0050		L4	90	9	90.45		
Stripline	L5	0.0040	0.0033		L4	3355	22551	225	1000	777077932
	120	-		-	L6	50	5	48.65		
Stripline	L7	0.00330	0.0033	8	L6	1 651	1 12			
	1 22	125	19	*	L8	50	5	48.96		
Stripline	L10	0.00330	0.0033	¥.	L9	50	35.00	NAME OF THE PARTY OF		
			•	-	L11		5	48.96		
Stripline	L12	0.0040	0.0033		L11		8207	and the		
		1.	10.00		L13	50	5	48.96		
0 Stripline	L14	0.00450	0.0045		L13					
(0)	383	1789	55		L15	50	5	50.71		
1 Surface MS	L16	0.0050	0.0060		L15	200	8933	14000		
	2.40	(4)	-		-	50	5	51.11		
2 EC Microstrip	L16	0.00350	0.0044	0.0105	L15					
	350	0.00350	0.0044	*		100	10	99.49		
3 EC Microstrip	L1	0.00380	0.0038	0.0120		ļ.		occupation.		
CHAN YOUNGERS AND A SECOND		0.00380	0.0038	-	L2	1		110.77		
4 EC Microstrip	L1	0.0060	0.0060	0.0120				500000		
		0.0060	0.0060		L2			87.59		
5 EC Microstrip	L16	0.0060	0.0060	0.0120	L15					
	3.50	0.0060	0.0060	(*)		1		87.60		

Table 7-3. AM572x PDN Targets and Decoupling Example

	Table	7-0. Allio72x 1 Bit Targets and Decoupling Example										
	Static PDN Target			Number of Decoupling I Targets Capacitors Per Supply (1) (2) (3) (4) (5) (6) (9)								
Supply Name ⁽¹⁰⁾	Max R _{eff} (mΩ) ⁽⁷⁾	Dec Cap Max LL (nH) (6) (8)	Max Impedance (mΩ)	Frequency of Interest (MHz)	100 nF	220 nF	470 nF	1 µF	2.2 μF	4.7 μF	10 μF	22 µF
VDD_CORE	27	2	87	≤50	6	1	1	1	1	1		
VDD_MPU	10	2	57	≤20	12	2	2	3	1	1		1
VDD_DSPEVE	13	2.5	54	≤20	8	1	1	2	1	1	1	
VDD_IVA	48	2	800	≤100	5		1			1		
VDD_GPU	18	2.5	207	≤50	6	1	1	1	1	1		
VDDS_DDR1	10	2.5	200	≤100	8	4		2		2		1
VDDS_DDR2	10	2.5	200	≤100	8	4		2		2		1
CAP_VBBLDO_DSPEVE	N/A	6	N/A	N/A				1				
CAP_VBBLDO_GPU	N/A	6	N/A	N/A				1				
CAP_VBBDLO_IVA	N/A	6	N/A	N/A				1				
CAP_VBBLD0_MPU	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE1	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE2	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE3	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE4	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE5	N/A	6	N/A	N/A				1				
CAP_VDDRAM_DSPEVE1	N/A	6	N/A	N/A				1				
CAP_VDDRAM_DSPEVE2	N/A	6	N/A	N/A				1				
CAP_VDDRAM_GPU	N/A	6	N/A	N/A				1				
CAP_VDDRAM_IVA	N/A	6	N/A	N/A				1				
CAP_VDDRAM_MPU1	N/A	6	N/A	N/A				1				
CAP_VDDRAM_MPU2	N/A	6	N/A	N/A								

- (1) For more information on peak-to-peak noise values, see the *Recommended Operating Conditions* table in the device-specific data manual.
- (2) ESL must be as low as possible and not exceed 0.5 nH.
- (3) The power delivery network (PDN) impedance characteristics are defined versus the device activity (that runs at different frequency) based on the *Recommended Operating Conditions* table in the *Specifications* chapter of the device-specific data manual.
- (4) The static drop requirement drives the maximum acceptable PCB resistance between the PMIC or the external SMPS and the processor power balls.
- (5) Assuming that the external SMPS (power IC) feedback sense is taken close to processor power balls.
- (6) High-frequency (30 MHz 70 MHz) PCB decoupling capacitors.
- (7) Maximum R_{eff} from VRM/SMPS/PMIC to processor.
- (8) Maximum loop inductance for decoupling capacitor.
- (9) Decoupling capacitor counts and values are provided as a baseline recommendation only. TI recommends that all PCB designs be simulated prior fabrication to ensure that the processor PDN requirements are met.
- (10) Ganged rails must meet all requirements of each member rail.

7.4 AM574x

	Cust	Calc	Deimono Charle	Description	DI- / DE
Layer	Thickness	Thickness	Primary Stack	Description	Dk / Df
Layer - 1		0.0005 0.0017		Taiyo 4000 LDI 1/4oz Sig (Std PIt)	3.50 / 0.0019
•		0.0033	1080HRC	370H	4.03 / 0.0210
Layer - 2		0.0012		1oz P/G	
		0.0060	0.0060 (1-1652)	370H	4.43 / 0.0200
Layer - 3		0.0006		1/2oz Sig	
		0.0044	108	370H	4.12 / 0.0210
Layer - 4		0.0006		1/2oz P/G	
		0.0041	0.0040C (1-2116)	370H	4.54 / 0.0190
Layer - 5		0.0006		1/2oz Sig	
		0.0044	1080	370H	4.12 / 0.0210
Layer - 6		0.0006	0.00400	1/2oz P/G	
		0.0041	0.0040C (1-2116)	370H	4.54 / 0.0190
Layer - 7		0.0006		1/2oz Sig	
		0.0044	1080	370H	4.12 / 0.0210
Layer - 8		0.0006	0.0030	1/2oz P/G	
		0.0030	(1-2113)	370H	4.57 / 0.0190
Layer - 9		0.0006		1/2oz P/G	
		0.0044	1080	370H	4.12 / 0.0210
Layer - 10		0.0006	0.0040C	1/2oz Sig	
		0.0041	(1-2116)	370H	4.54 / 0.0190
Layer - 11		0.0006		1/2oz P/G	
		0.0044	1080	370H	4.12 / 0.0210
Layer - 12		0.0006	0.0040C	1/2oz Sig	
		0.0041	(1-2116)	370H	4.54 / 0.0190
Layer - 13		0.0006		1/2oz P/G	
		0.0044	1080	370H	4.12 / 0.0210
Layer - 14		0.0006	0.0000	1/2oz Sig	
		0.0060	0.0060 (1-1652)	370H	4.43 / 0.0200
Layer - 15		0.0012		1oz P/G	
1 18		0.0033	1080HRC	370H	4.03 / 0.0210
Layer - 16		0.0017 0.0005	0	1/4oz Sig (Std Plt) Taiyo 4000 LDI	3.50 / 0.0019

Requirement	Req. Thickness	Tol +	Tol -	Calc Thick
Incl. Plating & Mask	0.0800	0.0080	0.0080	0.0784
Incl. Mask over Laminate	0.0766	0.0077	0.0077	0.0750
Incl. Plating	0.0790	0.0079	0.0079	0.0774
After Lamination	0.0762	0.0038	0.0038	0.0746

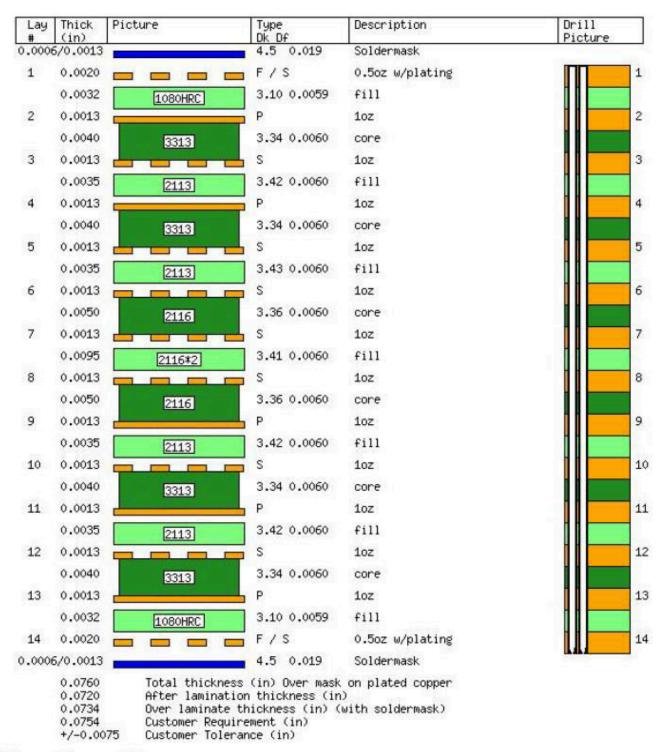

Impedance Type	Layer	Design	Actual	Plotted	Pitch	Plane	Target	Tol (ohms)	Predict
1 Surface MS	L1	0.00520	0.0052	0.00558	-	-		_	
	-	-	-	-	-	L2	50	5	49.67
2 EC Microstrip	L1	0.00390	0.0039	0.00428	0.0105	-	400	40	
	-	0.00390	0.0039	0.00428	-	L2	100	10	99.86
3 EC Microstrip	L1	0.00540	0.0054	0.00578	0.0120	-	0.7	0.7	07.00
	-	0.00540	0.0054	0.00578	-	L2	87	8.7	87.08
4 Stripline	L3	0.00430	0.0043	0.0048	-	L2		_	50.00
	-	-	-	-	-	L4	50	5	50.09
5 EC Stripline	L3	0.00350	0.0035	0.0040	0.0090	L2	400	40	400.00
	-	0.00350	0.0035	0.0040	-	L4	100	10	100.69
6 Stripline	L5	0.00350	0.0035	0.0040	-	L4		-	50.05
	-	-	-	-	-	L6	50	5	50.05
7 Stripline	L7	0.00350	0.0035	0.0040	-	L6		_	50.05
	-	-	-	-	-	L8	50	5	50.05
8 Stripline	L10	0.00350	0.0035	0.0040	-	L9	50	_	50.05
	-	-	-	-	-	L11	50	5	50.05
9 Stripline	L12	0.00350	0.0035	0.0040	-	L11	50	-	50.05
	-	-	-	-	-	L13	50	5	50.05
10 EC Stripline	L12	0.00340	0.0034	0.0039	0.0120	L11	400	40	00.40
	-	0.00340	0.0034	0.0039	-	L13	100	10	99.46
11 Stripline	L14	0.00430	0.0043	0.0048	-	L13	50	-	50.00
	-	-	-	-	-	L15	50	5	50.09
12 EC Stripline	L14	0.00350	0.0035	0.0040	0.0090	L13	400	40	400.60
	-	0.00350	0.0035	0.0040	-	L15	100	10	100.69
13 Surface MS	L16	0.00520	0.0052	0.00558	-	L15	EO	5	40.67
	-	-	-	-	-	-	50	5	49.67
14 EC Microstrip	L16	0.00390	0.0039	0.00428	0.0105	L15	100	40	00.00
	-	0.00390	0.0039	0.00428	-	-		10	99.86
15 EC Microstrip	L16	0.00540	0.0054	0.00578	0.0120	L15	0.7	0.7	07.00
	-	0.00540	0.0054	0.00578	-	-	87	8.7	87.08

Table 7-4. AM574x PDN Targets and Decoupling Example

	Static PDN Target		Dynamic PDN Ta	Number of Decoupling Capacitors Per Supply (1) (2) (3) (4) (5) (9)								
Supply Name ⁽¹⁰⁾	Max R _{eff} (mΩ) ⁽⁷⁾	Dec Cap Max LL (nH) ^{(6) (8)}	Max Impedance (mΩ)	Frequency of Interest (MHz)	100 nF	220 nF	470 nF	1 µF	2.2 μF	4.7 μF	10 μF	22 µF
VDD_MPU	18	2	57	≤20	2		4	5			2	
VDD_DSPEVE	22	1.6	40	≤30	2		4	5			2	
VDD_CORE	32	1.6	43	≤30			5	4			1	
VDD_GPU	22	2.1	48	≤30	2		4	3			1	
VDD_IVA	48	2.1	179	≤30	2		2	2			1	
VDDS_DDR1	18	1.5	130	≤100			8	1			1	
VDDS_DDR2	18	1.5	130	≤100			8	1			1	
CAP_VBBLDO_DSPEVE	N/A	6	N/A	N/A				1				
CAP_VBBLDO_GPU	N/A	6	N/A	N/A				1				
CAP_VBBDLO_IVA	N/A	6	N/A	N/A				1				
CAP_VBBLD0_MPU	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE1	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE2	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE3	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE4	N/A	6	N/A	N/A				1				
CAP_VDDRAM_CORE5	N/A	6	N/A	N/A				1				
CAP_VDDRAM_DSPEVE1	N/A	6	N/A	N/A				1				
CAP_VDDRAM_DSPEVE2	N/A	6	N/A	N/A				1				
CAP_VDDRAM_GPU	N/A	6	N/A	N/A				1				
CAP_VDDRAM_IVA	N/A	6	N/A	N/A				1				
CAP_VDDRAM_MPU1	N/A	6	N/A	N/A				1				
CAP_VDDRAM_MPU2	N/A	6	N/A	N/A				1				

- (1) For more information on peak-to-peak noise values, see the *Recommended Operating Conditions* table in the device-specific data manual.
- (2) ESL must be as low as possible and not exceed 0.5 nH.
- (3) The power delivery network (PDN) impedance characteristics are defined versus the device activity (that runs at different frequency) based on the *Recommended Operating Conditions* table in the *Specifications* chapter of the device-specific data manual.
- (4) The static drop requirement drives the maximum acceptable PCB resistance between the PMIC or the external SMPS and the processor power balls.
- (5) Assuming that the external SMPS (power IC) feedback sense is taken close to processor power balls.
- (6) High-frequency (30 MHz 70 MHz) PCB decoupling capacitors.
- (7) Maximum R_{eff} from SMPS/PMIC to processor.
- (8) Maximum loop inductance for decoupling capacitor.
- (9) Decoupling capacitor counts and values are provided as a baseline recommendation only and are based on a specific PCB design. TI recommends that all PCB designs be simulated prior fabrication to ensure that the processor PDN requirements are met.
- (10) Ganged rails must meet all requirements of each member rail.

7.5 AM65xx/DRA80xM

Notes and Recommendations: Trace widths measured at base of trace All dimensions in inches (unless otherwise noted)

Impedance Constraint Information (I)

Imp	Impedance		Affe	ct Lyr	Cust	Line Wi		CenterT	'oCenter	Ref	Plane	Targ	Tol	Predicted
#	Type	7765	(1)	(2)	L/W	(1)	(2)	(1)	(2)	Top	Bot	ohms	ohms	ohms@2GHz
1	EC CPW MS		1	None	0.0105	0.0112	0.1	0.0155	0.06925	None	4	85	8.5	85.73
2	EC MS		1	None	0.0062	0.0062	0.0062	0.0115		None	2	80	8	79.89
3	EC MS		1	None	0.0041	0.0041	0.0041	0.0085		None	2	90	9	89.50
4	EC MS		1	None	0.0042	0.0042	0.0042	0.0116		None	2	100	10	99.65
5	Surf MS		1	None	0.0082	0.0082				None	2	40	4	41.01
6	Surf MS		1	None	0.0052	0.0052				None	2	50	5	51.29
7	EC SL		3	None	0.0043	0.0043	0.0043	0.0087		4	2	80	8	79.81
8	Stripline		3	None	0.005	0.005				4	2	40	4	40.60
9	Stripline		3	None	0.0033	0.0033				4	2	50	5	49.63
10	EC SL		5	None	0.0035	0.0035	0.0035	0.0085		6	4	90	9	88.81
11	Stripline		5	None	0.005	0.005				6	4	40	4	40.39
12	Stripline		5	None	0.0033	0.0033				6	4	50	5	49.41
13	EC SL		10	None	0.0043	0.0043	0.0043	0.0087		9	11	80	8	79.75
14	Stripline		10	None	0.005	0.005				9	11	40	4	40.56
15	Stripline		10	None	0.0033	0.0033				9	11	50	5	49.59
16	EC SL		12	None	0.0043	0.0043	0.0043	0.0087		11	13	80	8	79.88
17	EC SL		12	None	0.003	0.003	0.003	0.0109		11	13	100	10	100.52
18	Stripline		12	None	0.005	0.005				11	13	40	4	40.64
19	Stripline		12	None	0.0033	0.0033				11	13	50	5	49.68
20	EC MS		14	None	0.0062	0.0062	0.0062	0.0115		None	13	80	8	80.12
21	EC MS		14	None	0.0041	0.0041	0.0041	0.0085		None	13	90	9	89.70
22	EC MS		14	None	0.0042	0.0042	0.0042	0.0116		None	13	100	10	99.92
23	Surf MS		14	None	0.0082	0.0082				None	13	40	4	41.19
24	Surf MS		14	None	0.0052	0.0052				None	13	50	5	51.49

Trace widths measured at base of trace All dimensions in inches (unless otherwise noted)

Table 7-5. AM65xx/DRA80xM PDN Targets and Decoupling Example

		Number of Decoupling Capacitors Per Supply (2) (3) (4)							
Supply Name (1)	Frequency of Interest (MHz)	0.01 μF	0.1 μF	1 μF	2.2 µF	10 μF			
VDD_CORE	≤25		23	12		4			
VDD_MPU0 VDD_MPU1	≤25		11	4		4			
VDD_MCU	≤25		3	1		2			
VDD_DLL_MMC0 VDD_DLL_MMC1	≤25		2						
VDD_WKUP0 VDD_WKUP1	≤25		4						
CAP_VDDAR_WKUP	N/A			1					
CAP_VDDAR_MPU1_1	N/A			1					
CAP_VDDAR_MPU1_0	N/A			1					
CAP_VDDAR_MPU0_1	N/A			1					
CAP_VDDAR_MPU0_0	N/A			1					
CAP_VDDAR_MCU	N/A			1					
CAP_VDDAR_CORE4	N/A			1					
CAP_VDDAR_CORE3	N/A			1					
CAP_VDDAR_CORE2	N/A			1					
CAP_VDDAR_CORE1	N/A			1					
CAP_VDDAR_CORE0	N/A			1					
CAP_VDDSHV_SDIO CAP_VDDA_1P8_SDIO CAP_VDDA_1P8_IOLDO1 CAP_VDDA_1P8_IOLDO0	N/A	R	Use-o	case depend evice-specifi					
CAP_VDDA_1P8_IOLDO_WKUP	N/A				1				
CAP_VDD_WKUP	N/A			1					

⁽¹⁾ Ganged rails must meet all requirements of each member rail.

⁽²⁾ The decoupling capacitor counts and values presented here are provided as a baseline recommendation only and are based on a specific PCB design. TI recommends that all PCB designs be simulated prior to fabrication to ensure that all processor PDN requirements are met.

⁽³⁾ For more information on peak-to-peak noise values, see the *Recommended Operating Conditions* table in the device-specific data sheet.

⁽⁴⁾ ESL must be as low as possible and not exceed 0.5 nH.

7.6 AM62xx

Layer			Stack up	Description	Processed Thickness	Isolation Distance (Summed)	Copper Coverage	εr	Impedance ID	Supplier Description	Тд
	<u> </u>			Taiyo PSR 4000 HFX DI-GREEN	1.000			3.500		PSR 4000	
1	Ā			Copper Foil 12 microns	1.850		100.000		1, 2, 3, 4, 5, 6, 7	HI-Q Foil	
				Iteq IT180A Prepreg 106 RC71-NEW	1.779	3.558		3.790		IPC-4101E / 99/ 101/ 126	170.000
				Iteq IT180A Prepreg 106 RC71-NEW	1.779	-		3.790		IPC-4101E / 99/ 101/ 126	170.000
2					1.260		60.000				
3				Iteq IT180A 4 mil core 1/1	4.000 1.260	4.000	46.000	4.400	8, 9, 10, 11, 12	IPC-4101E / 99/ 101/ 126	170.000
3		-		Iteg IT180A Prepreg 2113 RC58-NEW	3.298	6.597	40.000	4.130	0, 3, 10, 11, 12	IPC-4101E / 99/ 101/ 126	170.000
				Iteq IT180A Prepreg 2113 RC58-NEW	3.298	-		4.130		IPC-4101E / 99/ 101/ 126	170.000
4				neq 11 100/11 repreg 2 110 11000 11211	1.260		60.000	4.100		11 0 41012 7 007 1017 120	170.000
				Iteq IT180A 5 mil core 1/1	5.000	5.000		4.210		IPC-4101E / 99/ 101/ 126	170.000
5					1.260		57.000				
7	4			Iteq IT180A Prepreg 106 RC71-NEW	1.817	9.823		3.790		IPC-4101E / 99/ 101/ 126	170.000
63 94	61.94			Iteq IT180A Prepreg 7628 RC43-NEW	6.190	-		4.450		IPC-4101E / 99/ 101/ 126	170.000
				Iteq IT180A Prepreg 106 RC71-NEW	1.817	-		3.790		IPC-4101E / 99/ 101/ 126	170.000
ô				Iteq IT180A 5 mil core 1/1	1.260 5.000	5.000	51.000	4.210		IPC-4101E / 99/ 101/ 126	170.000
7				neq 11 100A 3 mill cole 1/1	1.260	3.000	61.000	4.210		IF C-410 IE / 35/ 101/ 120	170.000
				Iteq IT180A Prepreg 2113 RC58-NEW	3.311	6.622		4.130		IPC-4101E / 99/ 101/ 126	170.000
				Iteq IT180A Prepreg 2113 RC58-NEW	3.311			4.130		IPC-4101E / 99/ 101/ 126	170.000
8					1.260		47.000		13, 14, 15, 16, 17		
9				Iteq IT180A 4 mil core 1/1	4.000 1.260	4.000	60.000	4.400		IPC-4101E / 99/ 101/ 126	170.000
9				Iteq IT180A Prepreg 106 RC71-NEW	1.779	3.558	00.000	3.790		IPC-4101E / 99/ 101/ 126	170.000
				Iteq IT180A Prepreg 106 RC71-NEW	1.779	5.556		3.790		IPC-4101E / 99/ 101/ 126	170.000
)	1			Copper Foil 12 microns	1.850	_	100.000	3.730	18, 19, 20, 21, 22, 23	HI-Q Foil	170.000
	Ų '			Taivo PSR 4000 HFX DI-GREEN	1.000		100.000	3.500	10, 13, 20, 21, 22, 23	PSR 4000	

Impedance ID	Impedance Signal Layer	Structure Name	Ref. Plane 1 in Layer	Ref. Plane 2 in Layer	Lower Trace Width (W1)	Trace Separation (S1)	Ground Strip Separation (D1)	Target Impedance	Calculated Impedance	Tol (+/- %)
- 1	1	Coated Microstrip 1B	2	0	9.050	0.000	0.000	40.000	40.030	10.000
2	1	Coated Microstrip 1B	2	0	5.800	0.000	0.000	50.000	50.540	10.000
3	1	Edge Coupled Coated Microstrip 1B	2	0	4.250	7.150	0.000	100.000	101.270	10.000
:4	1	Edge Coupled Coated Microstrip 1B	2	0	4.200	4.400	0.000	90.000	91.560	10.000
5	1	Edge Coupled Coated Microstrip 1B	2	0	6.020	4.800	0.000	80.000	81.230	10.000
6	1	Edge Coupled Coated Microstrip 2B	3	0	4.100	5.750	0.000	120.000	118.350	10.000
7	1	Coated Coplanar Strips With Lower Ground 2B	3	0	16.000	0.000	14.000	50.000	49.090	10.000
8	3	Offset Stripline 1B1A	2	4	5.800	0.000	0.000	40.000	39.930	10.000
9	3	Edge Coupled Offset Stripline 1B1A	2	4	3.200	7.500	0.000	100.000	98.350	10.000
10	3	Edge Coupled Offset Stripline 1B1A	2	4	3.700	6.000	0.000	90.000	89.870	10.000
11	3	Edge Coupled Offset Stripline 1B1A	2	4	4.200	4.300	0.000	80.000	80.240	10.000
12	3	Offset Stripline 1B1A	2	4	3.600	0.000	0.000	50.000	49.920	10.000
13	8	Offset Stripline 1B1A	7	9	5.800	0.000	0.000	40.000	39.930	10.000
14	8	Edge Coupled Offset Stripline 1B1A	7	9	3.200	7.500	0.000	100.000	98.350	10.000
15	8	Edge Coupled Offset Stripline 1B1A	7	9	3.700	6.000	0.000	90.000	89.870	10.000
16	8	Edge Coupled Offset Stripline 1B1A	7	9	4.200	4.300	0.000	80.000	80.240	10.000
17	8	Offset Stripline 1B1A	7	9	3.600	0.000	0.000	50.000	49.920	10.000
18	10	Coated Microstrip 1B	9	0	9.050	0.000	0.000	40.000	40.030	10.000
19	10	Coated Microstrip 1B	9	0	5.800	0.000	0.000	50.000	50.540	10.000
20	10	Edge Coupled Coated Microstrip 1B	9	0	4.250	7.150	0.000	100.000	101.270	10.000
21	10	Edge Coupled Coated Microstrip 1B	9	0	4.200	4.400	0.000	90.000	91.560	10.000
22	10	Edge Coupled Coated Microstrip 1B	9	0	6.020	4.800	0.000	80.000	81.230	10.000
23	10	Edge Coupled Coated Microstrip 2B	8	0	4.100	5.750	0.000	120.000	118.350	10.000

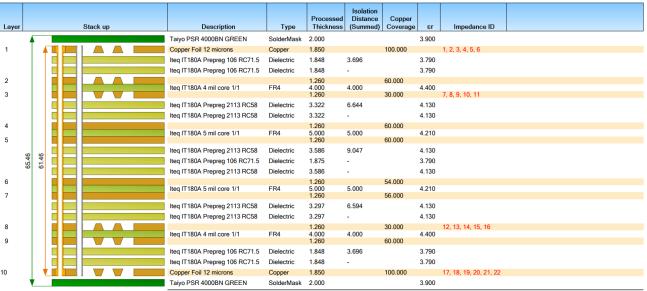


Table 7-6. AM62xx PDN Targets and Decoupling Example

	Static PDN Target	Dynamic l	PDN Targets	.		umber of Decoupling Capacitors Supply (1) (2)(3) (4) (5) (6) (9)					
Supply Name (10) (11)	Max R _{eff} (mΩ) (7)	Frequency of Interest (MHz)	Dec. Cap. Max LL (nH) (6) (8)	Z _{TARGET} (mΩ)	0.1 μF	1 μF	4.7 μF	10 μF			
VDD_CORE	23	≤1	1.5	23	17	1	1	1			
		1-20		31							
		20-50		35							
VDDS_DDR	For more in	formation, see AM62x	DDR Board	Design and	Layout Guid	elines.					

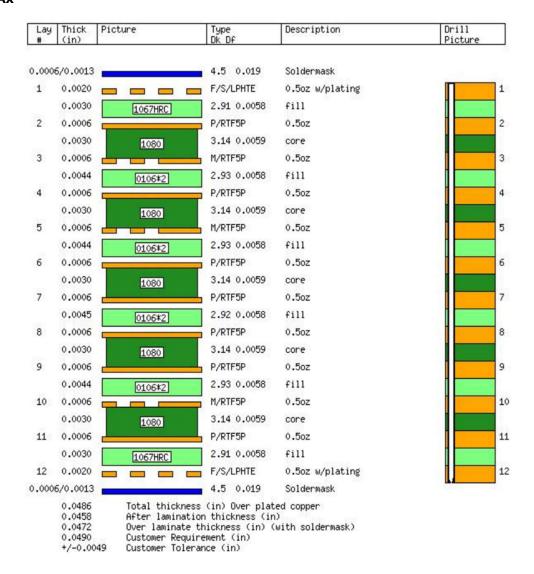
- For more information on peak-to-peak noise values, see the Recommended Operating Conditions table in the device-specific data manual.
- Loop ESL (excluding the intrinsic decap ESL) from the capacitor pads to the SoC BGA must be as low as possible and not exceed 1.5 nH.
- 3. The Power Delivery Network (PDN) impedance characteristics are defined versus the device activity (that runs at different frequency) based on the *Recommended Operating Conditions* table of the *Specifications* chapter of the device-specific processor data manual.
- 4. The static drop requirement drives the maximum acceptable PCB resistance between the PMIC or the external SMPS and the processor power balls.
- This assumes that the external SMPS (power IC) feedback sense is located very close to processor power balls.
- High-frequency (30 MHz to 70 MHz) PCB decoupling capacitors.
- Maximum R_{eff} from VRM/SMPS/PMIC to Processor.
- 8. Maximum Loop Inductance for decoupling capacitor when placed underneath processor BGA.
- The decoupling capacitor counts and values presented here are provided as a baseline recommendation only and are based on a specific PCB design. TI recommends that all PCB designs be simulated prior to fabrication to ensure that all processor PDN requirements are met.
- 10. Ganged rails must meet all requirements of each member rail.
- 11. Rails not listed in this table are not simulated by TI due to low load transients. For more information, see the device-specific EVM layout for example implementation of these rails.

7.7 AM64xx

Copper Thickness = 13.779 | Dielectric Thickness = 47.677 | Solder Mask Thickness = 4.000 | Stack Up Thickness = 61.456 | Stack Up Thickness with Soldermask = 65.456

					120000000000000000000000000000000000000					
	Impedance		Ref.	Ref.	Lower Trace	Trace	Ground Strip			
Impedance ID	Signal Layer	Structure Name	Plane 1 in Layer	Plane 2 in Layer	Width (W1)	Separation (S1)	Separation (D1)	Calculated Impedance	Target Impedance	Tol (+/- %)
1	1	Coated Microstrip 1B	2	0	5.800	0.000	0.000	50.040	50.000	10.000
2	1	Coated Microstrip 1B	2	0	9.050	0.000	0.000	40.010	40.000	10.000
3	1	Edge Coupled Coated Microstrip 1B	2	0	4.200	4.400	0.000	89.900	90.000	10.000
4	1	Edge Coupled Coated Microstrip 1B	2	0	4.250	7.150	0.000	100.000	100.000	10.000
5	1	Edge Coupled Coated Microstrip 1B	2	0	6.020	4.800	0.000	80.140	80.000	10.000
6	1	Edge Coupled Coated Microstrip 1B	4	0	4.100	5.750	0.000	119.080	120.000	10.000
-			1000	900		50000000	70000000		1275233333	
7	3	Edge Coupled Offset Stripline 1B1A	2	4	3.700	6.000	0.000	89.920	90.000	10.000
8	3	Offset Stripline 1B1A	2	4	3.600	0.000	0.000	49.980	50.000	10.000
9	3	Edge Coupled Offset Stripline 1B1A	2	4	4.200	4.300	0.000	80.280	80.000	10.000
10	3	Edge Coupled Offset Stripline 1B1A	2	4	3.200	7.500	0.000	98.410	100.000	10.000
11	3	Offset Stripline 1B1A	2	4	5.800	0.000	0.000	39.980	40.000	10.000
12	8	Edge Coupled Offset Stripline 1B1A	7	9	3.700	6.000	0.000	89.920	90.000	10.000
13	8	Offset Stripline 1B1A	7	9	3.600	0.000	0.000	49.980	50.000	10.000
14	8	Edge Coupled Offset Stripline 1B1A	7	9	4.200	4.300	0.000	80.280	80.000	10.000
15	8	Edge Coupled Offset Stripline 1B1A	7	9	3.200	7.500	0.000	98.410	100.000	10.000
16	8	Offset Stripline 1B1A	7	9	5.800	0.000	0.000	39.980	40.000	10.000
2002	6 W. C.			2000	700000		7000000			
17	10	Edge Coupled Coated Microstrip 1B	9	0	4.200	4.400	0.000	89.900	90.000	10.000
18	10	Coated Microstrip 1B	9	0	5.800	0.000	0.000	50.040	50.000	10.000
19	10	Coated Microstrip 1B	9	0	9.050	0.000	0.000	40.010	40.000	10.000
20	10	Edge Coupled Coated Microstrip 1B	7	0	4.100	5.750	0.000	119.080	120.000	10.000
21	10	Edge Coupled Coated Microstrip 1B	9	0	4.250	7.150	0.000	100.000	100.000	10.000
22	10	Edge Coupled Coated Microstrip 1B	9	0	6.020	4.800	0.000	80.140	80.000	10.000

Table 7-7. AM64xx PDN Targets and Decoupling Example


	Table 1-1.	ANIOTAX I DIN 16	ii geta aiic	Decoup	iiiig Exaii	ihie					
	Static PDN Target	Dynamic I	PDN Targets	•	Number of Decoupling Capacitors Per Supply (1) (2)(3) (4) (5) (6) (9)						
Supply Name (10) (11)	Max R _{eff} (mΩ) (7)	Frequency of Interest (MHz)	Dec. Cap. Max LL (nH) (6) (8)	Z _{TARGET} (mΩ)	0.1 μF	1 μF	4.7 μF	10 μF			
VDD_CORE	23	≤1	1.5	10	11	1	1	1			
		1-20		34							
		20-50		35							
VDDS_DDR	For more in	formation, see AM64x	/AM243x DD	R Board De	sign and Lay	out Guidelin	es.				

- 1. For more information on peak-to-peak noise values, see the *Recommended Operating Conditions* table in the device-specific data manual.
- 2. Loop ESL (excluding the intrinsic decap ESL) from the capacitor pads to the SoC BGA must be as low as possible and not exceed 1.5 nH.
- 3. The Power Delivery Network (PDN) impedance characteristics are defined versus the device activity (that runs at different frequency) based on the *Recommended Operating Conditions* table of the *Specifications* chapter of the device-specific processor data manual.
- 4. The static drop requirement drives the maximum acceptable PCB resistance between the PMIC or the external SMPS and the processor power balls.
- 5. This assumes that the external SMPS (power IC) feedback sense is located very close to processor power balls.
- 6. High-frequency (30 MHz to 70 MHz) PCB decoupling capacitors.
- 7. Maximum R_{eff} from VRM/SMPS/PMIC to Processor.
- 8. Maximum Loop Inductance for decoupling capacitor when placed underneath processor BGA.
- 9. The decoupling capacitor counts and values presented here are provided as a baseline recommendation only and are based on a specific PCB design. TI recommends that all PCB designs be simulated prior to fabrication to ensure that all processor PDN requirements are met.
- 10. Ganged rails must meet all requirements of each member rail.

11. Rails not listed in this table are not simulated by TI due to low load transients. For more information, see the device-specific EVM layout for example implementation of these rails.

7.8 AM62Ax

Notes and Recommendations:

- 1. Assume copper usage: 75% for GND layer, 60% for Mix layer.
- In order to meet impedance, suggest to use 3mil core instead of 4mil core, L1-2%L12-11 Pre-preg is about 2.95mil(1x 1067 PP)
 The final board thickness is 49mil exclude solder mask.
- 3. Suggest to relax tolerance to +/-5ohm for 400HM impedance.
- 4. Suggest to relax tolerance to +/-5ohm for 330HM impedance.
- For "L10 33E single ended(6.3mils for 33E SE)"
 We need adjust 6.3mil to 8mil to meet 33ohm+/-5ohm.
- 6. For "L10 66E differential(5.5mil/6.3mil for 66E differential)" --> We need adjust 5.5mil/6.3mil to 7.4mil/4.4mil to meet 66ohm+/-10%.
- 7. For "L3 66E single ended(3 mils for 66E SE)" --> 3mil line can not be ajusted to more thin. the impedance value only meet 57ohm.
- For "L3 133E differential(3mils/6.5mil for 133E differential)"
 3mil line can not be ajusted to more thin.
 the impedance value only meet 110ohm.

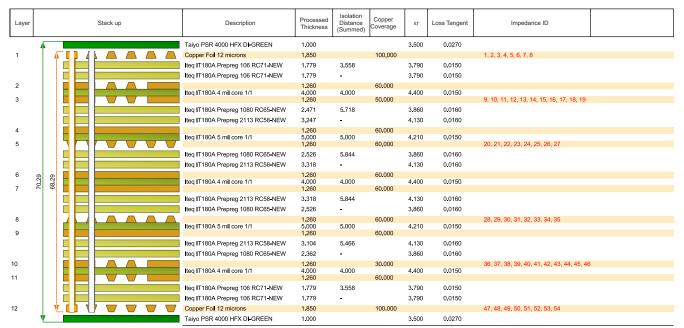
Impedance Constraint Information (I)

Imp	Impedance			ct Lyr	Cust	Line Wi		Spacing			Plane	Targ	Tol	Predicted
#	Туре	-	(1)	1647	L/W	(1)	(2)	(1)	(2)	Top	Bot	ohms	ohms	ohms@2GHz
1	EC MS		1	None	0.004	0.004	0.004	0.0043		None	2	90	9	89.38
2	EC MS		1	None	0.0035	0.0035	0.0035	0.0055		None	2	100	10	99.52
3	Surf MS		1	None	0.0055	0.0055				None	2	50	5	49.28
4	EC SL		3	None	0.005	0.005	0.005	0.004		4	2	80	8	81.17
5	EC SL		3	None	0.004	0.004	0.004	0.004		4	2	90	9	90.86
6	EC SL		3	None	0.0035	0.0035	0.0035	0.005		4	2	100	10	99.70
7	EC SL		3	None	0.003	0.003	0.003	0.0065		4	2	133	13.3	109.88
8	Stripline		3	None	0.0055	0.0058				4	2	40	5	40.04
9	Stripline		3	None	0.004	0.004				4	2	50	5	49.33
10	Stripline		3	None	0.003	0.003				4	2	66	6.6	56.75
11	EC SL		5	None	0.005	0.005	0.005	0.004		6	4	80	8	81.17
12	EC SL		5	None	0.004	0.004	0.004	0.004	91	6	4	90	9	90.86
13	EC SL		5	None	0.0035	0.0035	0.0035	0.005		6	4	100	10	99.70
14	Stripline		5	None	0.0055	0.0058				6	4	40	5	40.04
15	Stripline		5	None	0.004	0.004				6	4	50	5	49.33
16	EC SL		10	None	0.0055	0.0074	0.0074	0.0044		9	11	66	6.6	65.37
17	EC SL		10	None	0.005	0.005	0.005	0.004		9	11	80	8	81.17
18	EC SL		10	None	0.004	0.004	0.004	0.004		9	11	90	9	90.86
19	EC SL		10	None	0.0035	0.0035	0.0035	0.005		9	11	100	10	99.70
20	Stripline		10	None	0.0063	0.008				9	11	33	5	32.59
21	Stripline		10	None	0.0055	0.0058				9	11	40	5	40.04
22	Stripline		10	None	0.004	0.004				9	11	50	5	49.33
23	EC MS		12	None	0.004	0.004	0.004	0.0043		None	11	90	9	89.38
24	EC MS		12	None	0.0035	0.0035	0.0035	0.0055		None	11	100	10	99.52
25	Surf MS		12	None	0.0055	0.0055				None	11	50	5	49.28

Trace widths measured at base of trace All dimensions in inches (unless otherwise noted)

Table 7-8. AM62Ax PDN Targets and Decoupling Example

	Static PDN Target	Dynamic F		Decoupling (y (1) (2)(3) (4)	•		
Supply Name (10) (11)	Max R _{eff} (mΩ) (7)	Frequency of Interest (MHz)	Dec. Cap. Max LL (nH) (6) (8)	Z _{TARGET} (mΩ)	0.1 μF	1 μF	2.2 μF
VDD_CORE	6.8	≤1	1.5	6	4	9	1
		1-20		11			
		20-50		22			


Table 7-8. AM62Ax PDN Targets and Decoupling Example (continued)

	Static PDN Target		DN Targets			Decoupling (y (1) (2)(3) (4)	•
Supply Name (10) (11)	Max R _{eff} (mΩ) (7)	Frequency of Interest (MHz)	Dec. Cap. Max LL (nH) (6) (8)	Z _{TARGET} (mΩ)	0.1 μF	1 μF	2.2 μF
VDDS_DDR	For more info	ormation, see AM62Ax D	DR Board De	sign and Lay	out Guidelines	S.	

- 1. For more information on peak-to-peak noise values, see the *Recommended Operating Conditions* table in the device-specific data manual.
- 2. Loop ESL (excluding the intrinsic decap ESL) from the capacitor pads to the SoC BGA must be as low as possible and not exceed 1.5 nH.
- 3. The Power Delivery Network (PDN) impedance characteristics are defined versus the device activity (that runs at different frequency) based on the *Recommended Operating Conditions* table of the *Specifications* chapter of the device-specific processor data manual.
- 4. The static drop requirement drives the maximum acceptable PCB resistance between the PMIC or the external SMPS and the processor power balls.
- This assumes that the external SMPS (power IC) feedback sense is located very close to processor power balls.
- High-frequency (30 MHz to 70 MHz) PCB decoupling capacitors.
- 7. Maximum R_{eff} from VRM/SMPS/PMIC to Processor.
- 8. Maximum Loop Inductance for decoupling capacitor when placed underneath processor BGA.
- 9. The decoupling capacitor counts and values presented here are provided as a baseline recommendation only and are based on a specific PCB design. TI recommends that all PCB designs be simulated prior to fabrication to ensure that all processor PDN requirements are met.
- 10. Ganged rails must meet all requirements of each member rail.
- 11. Rails not listed in this table are not simulated by TI due to low load transients. For more information, see the device-specific EVM layout for example implementation of these rails.

7.9 AM62Px

Copper Thickness = 16.299 | Dielectric Thickness = 51.988 | Solder Mask Thickness = 2.000 | Stack Up Thickness = 68.287 | Stack Up Thickness with Soldermask = 70.287

Figure 7-1. AM62P PCB Stack up

	Impedance ID	Impedance Signal Layer	Structure Name	Ref. Plane 1 Layer	Ref. Plane 2 Layer	Lower Trace Width (W1)	Trace Sepration (S1)	Ground Strip Separation (D1)	Calculated Impedance	Calculated Target Impedance	Calculated Target (%)
	1	1	Coated Microstrip 1B	2	0	5.900	0.000	0.000	50.130	50.000	10.000
ı	2	1	Edge Coupled Coated Microstrip 1B	2	0	4.100	6.200	0.000	99.940	100.000	10.000
ı	3	1	Edge Coupled Coated Microstrip 2B	3	0	4.000	5.500	0.000	119.710	120.000	10.000
	4	1	Coated Microstrip 1B	2	0	12.500	0.000	0.000	32,930	33.000	10,000
ı	5	1	Coated Microstrip 1B	2	0	9.000	0.000	0.000	40.160	40.000	10.000
	6	1	Edge Coupled Coated Microstrip 1B	2	0	9.100	4.500	0.000	66.170	66.000	10.000
	7	1	Edge Coupled Coated Microstrip 2B	3	0	4.000	7.800	0.000	133.220	133.000	10.000
	8	1	Edge Coupled Coated Microstrip 1B	2	0	6,000	4,500	0.000	80,200	80,000	10,000
	9	3	Offset Stripline 1B2A	2	4	8.000	0.000	0.000	32,610	33.000	10.000
	10	3	Offset Stripline 1B2A	2	4	3.500	0.000	0.000	49.870	50.000	10.000
	11	3	Edge Coupled Offset Stripline 1B2A	2	4	4.300	4.500	0.000	80.400	80.000	10.000
	12	3	Edge Coupled Offset Stripline 1B2A	2	4	3,200	8,000	0.000	99,070	100,000	10,000
	13	3	Edge Coupled Offset Stripline 1B2A	2	4	6.600	4.500	0.000	65,900	66.000	10.000
	14	3	Edge Coupled Offset Stripline 1B2A	2	4	3.700	4.500	0.000	85.450	85.000	10.000
	15	3		2	4	3.600	5.800	0.000	90.450	90.000	10.000
		3	Edge Coupled Offset Stripline 1B2A Offset Stripline 1B2A		4		0.000		39,530		10.000
	16			2		5,700		0.000		40,000	
	17	3	Offset Stripline 1B2A	2	4	3.000	0.000	0.000	53.120	66.000	10.000
	18	3	Edge Coupled Offset Stripline 1B2A	2	4	3.000	16.000	0.000	105.990	133.000	10.000
	19	3	Edge Coupled Offset Stripline 1B2A	2	4	6.600	4.500	0.000	65.900	66.000	10.000
ı	20	5	Offset Stripline 1B2A	4	6	4.250	0.000	0.000	49.850	50.000	10,000
i	21	5	Offset Stripline 1B2A	4	6	9.150	0.000	0.000	33.350	33.000	10.000
i	22	5	Edge Coupled Offset Stripline 1B2A	4	6	3.500	6.300	0.000	98.360	100.000	10.000
i	23	5	Edge Coupled Offset Stripline 1B2A	4	6	8.300	6.166	0.000	66.030	66.000	10.000
ï	24	5	Offset Stripline 1B2A	4	6	6.600	0.000	0.000	40.230	40.000	10.000
i	25	5	Edge Coupled Offset Stripline 1B2A	4	6	4.500	4.500	0.000	83.590	85,000	10.000
ï	26	5	Edge Coupled Offset Stripline 1B2A	4	6	5.200	4.500	0.000	78.770	80.000	10.000
i	27	5	Edge Coupled Offset Stripline 1B2A	4	6	4.000	4.700	0.000	88.320	90.000	10.000
ı	28	8	Edge Coupled Offset Stripline 1B2A	7	9	3.500	6.300	0.000	98.360	100.000	10.000
i	29	8	Offset Stripline 1B2A	7	9	4.250	0.000	0.000	49.850	50,000	10.000
i	30	8	Offset Stripline 1B2A	7	9	9.150	0.000	0.000	33.350	33.000	10.000
ı	31	8	Edge Coupled Offset Stripline 1B2A	7	9	4.500	4.500	0.000	83.590	85.000	10.000
1	32	8	Edge Coupled Offset Stripline 1B2A	7	9	8.300	6.166	0.000	66.030	66.000	10.000
	33	8	Offset Stripline 1B2A	7	9	6,600	0.000	0.000	40.230	40.000	10.000
	34	8	Edge Coupled Offset Stripline 1B2A	7	9	4.000	4.700	0.000	88.320	90.000	10.000
ı	35	8	Edge Coupled Offset Stripline 1B2A	7	9	5.200	4.500	0.000	78.770	80.000	10.000
	36	10	Offset Stripline 1B2A	9	11	3.500	0.000	0.000	49.870	50.000	10.000
	37	10	Edge Coupled Offset Stripline 1B2A	9	11	6.600	4.500	0.000	65.900	66,000	10.000
	38	10	Edge Coupled Offset Stripline 1B2A	9	11	4.300	4.500	0.000	80.400	80.000	10.000
	39	10	Offset Stripline 1B2A	9	11	8.000	0.000	0.000	32.610	33.000	10.000
	40	10	Offset Stripline 1B2A	9	11	5.700	0.000	0.000	39,530	40,000	10,000
	41	10	Edge Coupled Offset Stripline 1B2A	9	11	3.700	4.500	0.000	85.450	85.000	10.000
	42	10	Edge Coupled Offset Stripline 1B2A	9	11	3.200	8.000	0.000	99.070	100.000	10.000
	43	10	Edge Coupled Offset Stripline 1B2A	9	11	6.600	4.500	0.000	65.900	66.000	10.000
	44	10	Offset Stripline 1B2A	9	11	3,000	0.000	0,000	53,120	66.000	10,000
i	45	10	Edge Coupled Offset Stripline 1B2A	9	11	3.600	5.800	0.000	90.450	90.000	10.000
į	46	10	Edge Coupled Offset Stripline 1B2A	9	11	3.000	16.000	0.000	105.990	133.000	10.000
i	47	12	Edge Coupled Coated Microstrip 1B	11	0	4.100	6.200	0.000	99.940	100,000	10.000
í	48	12	Coated Microstrip 1B	11	0	5.900	0.000	0.000	50.130	50.000	10.000
í	49	12	Coated Microstrip 1B	11	0	12.500	0.000	0.000	32.930	33.000	10.000
í	50	12	Coated Microstrip 1B	11	0	9.000	0.000	0.000	40.160	40.000	10.000
í	51	12	Edge Coupled Coated Microstrip 2B	10	0	4.000	5,500	0.000	119.710	120,000	10.000
í	52	12	Edge Coupled Coated Microstrip 2B	10	0	4.000	7.800	0.000	133.220	133.000	10.000
	53	12	Edge Coupled Coated Microstrip 1B	11	0	6.000	4.500	0.000	80.200	80.000	10.000
	54	12	Edge Coupled Coated Microstrip 1B	11	0	9.100	4.500	0.000	66.170	66.000	10.000

Figure 7-2. AM62P PCB Impedance

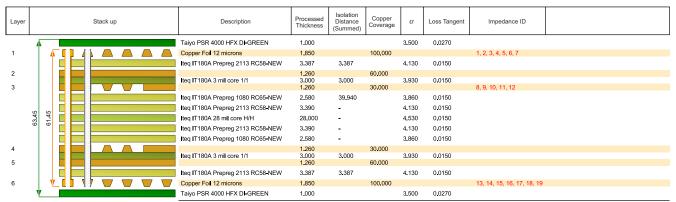


Table 7-9. AM62Px PDN Targets and Decoupling Example

	Static PDN Target	Dynami	c PDN Target	s		Su	oling Capaci pply 4) (5) (6) (9)	
Supply Name (10) (11)	Max R _{eff} (mΩ)	Frequency of Interest (MHz)	Dec. Cap. Max LL (nH) (6) (8)	Z _{TARGET} (mΩ)	0.1 μF	1 μF	2.2 µF	10 μF
VDD_CORE	3	≤1	1.5	12	5	16	1	2
		1-20		20				
		20-50		40	1			
VDDS_DDR	For more inf	formation, see AM62	Px DDR Boar	d Design and	Layout Guide	elines		

- 1. For more information on peak-to-peak noise values, see the *Recommended Operating Conditions* table in the device-specific data manual.
- 2. Loop ESL (excluding the intrinsic decap ESL) from the capacitor pads to the SoC BGA must be as low as possible and not exceed 1.5 nH.
- 3. The Power Delivery Network (PDN) impedance characteristics are defined versus the device activity (that runs at different frequency) based on the *Recommended Operating Conditions* table of the *Specifications* chapter of the device-specific processor data manual.
- 4. The static drop requirement drives the maximum acceptable PCB resistance between the PMIC or the external SMPS and the processor power balls.
- 5. This assumes that the external SMPS (power IC) feedback sense is located very close to processor power balls
- 6. High-frequency (30 MHz to 70 MHz) PCB decoupling capacitors.
- 7. Maximum R_{eff} from VRM/SMPS/PMIC to Processor.
- 8. Maximum Loop Inductance for decoupling capacitor when placed underneath processor BGA.
- 9. The decoupling capacitor counts and values presented here are provided as a baseline recommendation only and are based on a specific PCB design. TI recommends that all PCB designs be simulated prior to fabrication to ensure that all processor PDN requirements are met.
- 10. Ganged rails must meet all requirements of each member rail.
- 11. Rails not listed in this table are not simulated by TI due to low load transients. For more information, see the device-specific EVM layout for example implementation of these rails.

7.10 AM62Lx

Copper Thickness = 8.740 | Dielectric Thickness = 52.713 | Solder Mask Thickness = 2.000 | Stack Up Thickness = 61.453 | Stack Up Thickness with Soldermask = 63.453

Figure 7-3. AM62L PCB Stack up

Impedance ID	Impedance Signal Layer	Structure Name	Ref. Plane 1 Layer	Ref. Plane 2 Layer	Lower Trace Width (W1)	Lower Trace Width (W1)	Trace Sepration (S1)	Ground Strip Separation (D1)	Calculated Impedance	Calculated Target Impedance	Tol (+/- %)
1	1	Coated Microstrip 1B	2	0	8.000	7.000	0.000	0.000	40.160	40.000	10.000
2	1	Coated Microstrip 1B	2	0	5.200	4.200	0.000	0.000	50.070	50.000	10.000
3	1	Edge Coupled Coated Microstrip 1B	2	0	7.800	6.800	4.000	0.000	66.220	66.000	10.000
4	1	Coated Microstrip 1B	2	0	11.100	10.100	0.000	0.000	33.090	33.000	10.000
5	1	Edge Coupled Coated Microstrip 1B	2	0	3.500	2.500	5.800	0.000	99.890	100.000	10.000
6	1	Edge Coupled Coated Microstrip 1B	2	0	5.400	4.400	4.500	0.000	80.030	80.000	10.000
7	1	Edge Coupled Coated Microstrip 1B	2	0	4.000	3.000	4.500	0.000	89.900	90.000	10.000
8	3	Edge Coupled Offset Stripline 1B1A	2	4	4.000	3.000	4.500	0.000	80.260	80.000	10.000
9	3	Offset Stripline 1B1A	2	4	3.700	2.700	0.000	0.000	50.130	50.000	10.000
10	3	Offset Stripline 1B1A	2	4	6.000	5.000	0.000	0.000	40.140	40.000	10.000
11	3	Edge Coupled Offset Stripline 1B1A	2	4	3.200	2.200	10.000	0.000	99.160	100.000	10.000
12	3	Edge Coupled Offset Stripline 1B1A	2	4	3.500	2.500	6.250	0.000	89.860	90.000	10.000
13	6	Coated Microstrip 1B	5	0	8.000	7.000	0.000	0.000	40.160	40.000	10.000
14	6	Coated Microstrip 1B	5	0	11.100	10.100	0.000	0.000	33.090	33.000	10.000
15	6	Coated Microstrip 1B	5	0	5.200	4.200	0.000	0.000	50.070	50.000	10.000
					7.800	6.800	4.000	0.000		66.000	10.000
16	6	Edge Coupled Coated Microstrip 1B	5	0					66.220		
17	6	Edge Coupled Coated Microstrip 1B	5	0	4.000	3.000	4.500	0.000	89.900	90.000	10.000
18	6	Edge Coupled Coated Microstrip 1B	5	0	3.500	2.500	5.800	0.000	99.890	100.000	10.000
19	6	Edge Coupled Coated Microstrip 1B	5	0	5.400	4.400	4.500	0.000	80.030	80.000	10.000

Figure 7-4. AM62L PCB Impedance

Table 7-10. AM62Lx PDN Targets and Decoupling Example

	Static PDN Target	Dynam	ic PDN Targe	ets	Number	of Decoup	oling Capa 2) (3) (4) (5		Supply
Supply Name (9) (10)	Max R _{eff} (mΩ) (6)	Frequency of Interest (MHz)	Dec. Cap. Max LL (nH) (5) (7)	Z _{TARGET} (mΩ)	0.1 μF	1 μF	2.2 μF	4.7 μF	10 μF
VDD_CORE	5	≤1	1.5	19	4	12	1	1	2
		1-20		32					
		20-50		65					
VDDS_DDR	For more in	nformation, see A	M62Lx DDR B	oard Design	and Layout	Guidelines			

- 1. For more information on peak-to-peak noise values, see the *Recommended Operating Conditions* table in the device-specific data manual.
- 2. Loop ESL (excluding the intrinsic decap ESL) from the capacitor pads to the SoC BGA must be as low as possible and not exceed 1.5 nH.
- 3. The Power Delivery Network (PDN) impedance characteristics are defined versus the device activity (that runs at different frequency) based on the *Recommended Operating Conditions* table of the *Specifications* chapter of the device-specific processor data manual.
- 4. The static drop requirement drives the maximum acceptable PCB resistance between the PMIC or the external SMPS and the processor power balls.
- 5. High-frequency (30 MHz to 70 MHz) PCB decoupling capacitors.
- 6. Maximum R_{eff} from VRM/SMPS/PMIC to Processor.
- 7. Maximum Loop Inductance for decoupling capacitor when placed underneath processor BGA.
- 8. The decoupling capacitor counts and values presented here are provided as a baseline recommendation only and are based on a specific PCB design. TI recommends that all PCB designs be simulated prior to fabrication to ensure that all processor PDN requirements are met.
- 9. Ganged rails must meet all requirements of each member rail.
- 10. Rails not listed in this table are not simulated by TI due to low load transients. For more information, see the device-specific EVM layout for example implementation of these rails.

Revision History www.ti.com

8 Revision History

Changes from Revision G (August 2023) to Revision H (October 2025)	Page
Added Section 7.9 and AM62L PDN targets	35
Added Section 7.10 and AM62L PDN targets	
Changes from November 1, 2022 to February 29, 2024 (from Revision F (November 2022) to Revision G (February 2024))	Page
Revision G (February 2024))	
· · · · · · · · · · · · · · · · · · ·	2
Revision G (February 2024)) • Updated the numbering format for tables, figures and cross-references throughout the document	2

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025