TPS7H1121-SEP Single-Event Effects (SEE)

ABSTRACT

The purpose of this study is to characterize the single-event effects (SEE) performance due to heavy-ion irradiation of the TPS7H1121-SEP. Heavy-ions with LET_{EFF} of 48 MeV·cm²/mg were used to irradiate 12 total devices. Flux of 8.78×10^4 to 1.60×10^5 ions/cm²/s and fluence of $\approx 10^7$ ions/cm² per run were used for the characterization. The results demonstrated that the TPS7H1121-SEP is SEL-free up to 48 MeV·cm²/mg at T = 125°C and SEB/SEGR free up to 48 MeV·cm²/mg at T = 25°C. Output signals including V_{OUT} (3% window), PG (edge trigger at 50% below nominal), and SS (edge trigger at 50% below nominal) were monitored to check for transients and or SEFIs. The device showed to be SET and SEFI free up to 48 MeV·cm²/mg at T = 25°C.

Table of Contents

1 Introduction	
2 Single-Event Effects (SEE)	
3 Device and Test Board Information	
3.1 Device and Test Board Information Continued	
4 Irradiation Facility and Setup	
5 LET _{EFF} and Range Calculation	
6 Test Setup and Procedures	
7 Destructive Single-Event Effects (DSEE)	
7.1 Single-Event Latch-up (SEL) Results	
7.2 Single-Event Burnout (SEB) and Single-Event Gate Rupture (SEGR) Results	
8 Single-Event Transients (SET)	
9 Event Rate Calculations	
10 Summary	
A References	20
List of Figures	
Figure 3-1. Photograph of Decapped TPS7H1121-SEP [Left] and Pinout Diagram [Right][Right]	
Figure 3-2. TPS7H1121-SEP EVM Top View	
Figure 3-3. TPS7H1121-SEP EVM Schematics	
Figure 4-1. Photograph of the TPS7H1121EVM in Front of the Heavy-lon Beam Exit Port at the TAMU Cyclotron	
Figure 5-1. Generalized Cross-Section of the LBC7 Technology BEOL Stack on the TPS7H1121-SEP [Left] and Key Id	
Parameters [Right]	
Figure 6-1. Block Diagram of the SEE Test Setup for the TPS7H1121-SEP	
Figure 7-1. SEL Current Versus Time for Run #1 of the TPS7H1121-SEP at T = 125°C (V _{OUT} = 13.3V)	
Figure 7-2. SEL Current Versus Time for Run #3 of the TPS7H1121-SEP at T = 125°C (V _{OUT} = 0.6V)	
Figure 7-3. SEB On Current Versus Time for Run #10 of the TPS7H1121-SEP at T = 25°C (V _{OUT} = 13.3V)	
Figure 7-4. SEB Off Current Versus Time for Run #11 of the TPS7H1121-SEP at T = 25°C (V _{OUT} = 0V)	
Figure 7-5. SEB On Current vs Time for Run #14 of the TPS7H1121-SEP at T = 25°C (V _{OUT} = 0.6V)	17
lint of Tables	
List of Tables	_
Table 1-1. Overview Information	
Table 5-1. Ion LET _{EFF} and Range in Silicon	
Table 6-1. Equipment Settings and Parameters Used During the SEE Testing of the TPS7H1121-SEP	
Table 7-1. Summary of TPS7H1121-SEP SEL Test Condition and Results	
Table 7-2. Summary of TPS7H1121-SEP SEB/SEGR Test Condition and Results	
Table 8-1. Scope Settings	
Table 8-2. Summary of TPS7H1121-SEP SET Test Condition and Results	
Table 9-2. SEB/SEGR Event Rate Calculations for Worst-Week LEO and GEO Orbits	19

Trademarks

All trademarks are the property of their respective owners.

www.ti.com Introduction

1 Introduction

The TPS7H1121-SEP is a radiation-tolerant, low-dropout linear regulator (LDO) which operates over a wide input voltage range and is optimized for powering devices in a space environment. The device is capable of sourcing up to 2A over a 2.25V to 14V input. It offers excellent stability and features a programmable current limit with a wide adjustment range. To support the complex power requirements of FPGAs, DSPs, and micro-controllers, the TPS7H1121-SEP provides enable on and off functionality, programmable soft start, and a power good open-drain output.

The device is offered in a 24-pin plastic package. General device information and test conditions are listed in Table 1-1. For more detailed technical specifications, user-guides, and application notes please go to TPS7H1121-SEP product page.

Table 1-1. Overview Information

DESCRIPTION ⁽¹⁾	DEVICE INFORMATION			
TI Part Number	TPS7H1121-SEP			
Orderable Number	TPS7H1121MPWPTSEP			
Device Function	Low-dropout Regulator			
Technology	LBC7 (Linear BiCMOS 7)			
Exposure Facility	Radiation Effects Facility, Cyclotron Institute, Texas A&M University (15 MeV/nucleon) And Facility for Rare Istotope Beams, K500 Cyclotron (KSEE), Michigan State University (19.5 MeV/nucleon)			
Heavy Ion Fluence per Run	1.00 × 10 ⁷ ions/cm ²			
Irradiation Temperature	25°C (for SEB/SEGR testing), 25°C (for SET testing), and 125°C (for SEL testing)			

⁽¹⁾ TI may provide technical, applications or design advice, quality characterization, and reliability data or service, providing these items shall not expand or otherwise affect Tl's warranties as set forth in the Texas Instruments Incorporated Standard Terms and Conditions of Sale for Semiconductor Products and no obligation or liability shall arise from Semiconductor Products and no obligation or liability shall arise from Tl's provision of such items.

Single-Event Effects (SEE) www.ti.com

2 Single-Event Effects (SEE)

The primary concern for the TPS7H1121-SEP is the robustness against the destructive single-event effects (DSEE): single-event latch-up (SEL), single-event burnout (SEB), and single-event gate rupture (SEGR). In mixed technologies such as the BiCMOS process used on the TPS7H1121-SEP, the CMOS circuitry introduces a potential for SEL susceptibility.

SEL can occur if excess current injection caused by the passage of an energetic ion is high enough to trigger the formation of a parasitic cross-coupled PNP and NPN bipolar structure (formed between the p-sub and n-well and n+ and p+ contacts) [1,2]. The parasitic bipolar structure initiated by a single-event creates a high-conductance path (inducing a steady-state current that is typically orders-of-magnitude higher than the normal operating current) between power and ground that persists (is *latched*) until power is removed, the device is reset, or until the device is destroyed by the high-current state. The TPS7H1121-SEP was tested for SEL at the maximum recommended input voltage (V_{IN}) of 14V. The output of the TPS7H1121-SEP was configured to the max (13.3V) and min (0.6V) voltages. The output load was configured depending on the output voltage. During the 13.3V testing a constant resistance value of 6.6 Ω was used to create a 2A load on the output. During the 0.6V testing a load high enough to maintain a device temperature of 125°C was used. For the 9 devices tested under SEL conditions, the TPS7H1121-SEP did not exhibit any SEL with heavy-ions with LET_{EFF} = 48 MeV·cm²/mg at flux 9.51 × 10⁴ to 1.46 × 10⁵ ions/cm²/s, fluence of \approx 10⁷ ions/cm², and a die temperature of \approx 125°C. To see more details on the SEL testing of the TPS7H1121-SEP, please refer to Section 7.1.

The TPS7H1121-SEP was evaluated for SEB/SEGR at a maximum input voltage of 14V in the enabled and disabled mode with the output voltage configured to be either 13.3V or 0.6V. For the 0.6V case, the load was set to a CR value of 6Ω for a load of 0.1A to prevent the device from heating $\gtrsim 25^{\circ}$ C, while for the 13.3V case, the load was set to 6.6Ω to get a load of 2A. Because the MOSFET has shown to be susceptibility to burnout decrement with temperature [5], the device was evaluated while operating under room temperatures, so no external thermal control device was used. During the SEB/SEGR testing, not a single current event was observed, demonstrating that the TPS7H1121-SEP is SEB/SEGR-free up to LET_{EFF} = 48 MeV·cm²/mg at a flux of 8.78×10^4 to 1.60×10^5 ions/cm²/s, fluences of $\approx 10^7$ ions/cm², and a die temperature of $\approx 25^{\circ}$ C. To see more details on the SEB/SEGR testing of the TPS7H1121-SEP, please refer to Section 7.2.

For SET testing, the TPS7H1121-SEP was characterized at a V_{IN} of 5 and 12V. V_{OUT} was configured to be 3.3V with a CR value of 3.3 Ω for a load of 1A. During SET testing the V_{OUT} , SS, and PG signals were monitored. During SET testing, not a single transient was observed, demonstrating that the TPS7H1121-SEP is SET/SEFI-free up to LET_{EFF} = 48 MeV·cm²/mg at a flux of 1.02 × 10⁵ to 1.31 × 10⁵ ions/cm²/s, fluences of \approx 10⁷ ions/cm², and a die temperature of \approx 25°C. To see more details on the SET testing of the TPS7H1121-SEP, please refer to Section 8.

3 Device and Test Board Information

The TPS7H1121-SEP is packaged in a 24-pin plastic package as shown in Figure 3-1. The TPS7H1121EVM evaluation module was used to evaluate the performance and characteristics of the TPS7H1121-SEP under heavy ion radiation. The TPS7H1121EVM (Evaluation Module) is shown in Figure 3-2. The EVM schematic is shown in Figure 3-3.

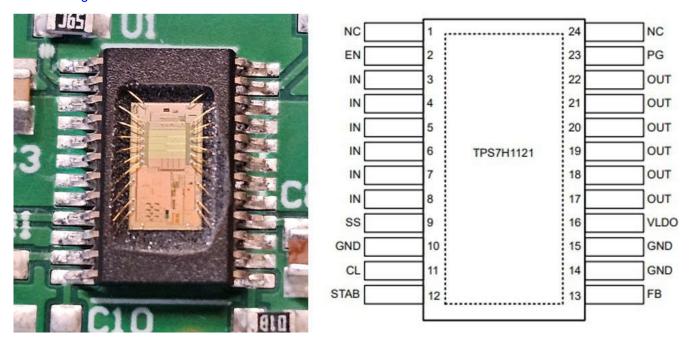


Figure 3-1. Photograph of Decapped TPS7H1121-SEP [Left] and Pinout Diagram [Right]

Note: The package was delidded to reveal the die face for all heavy-ion testing.

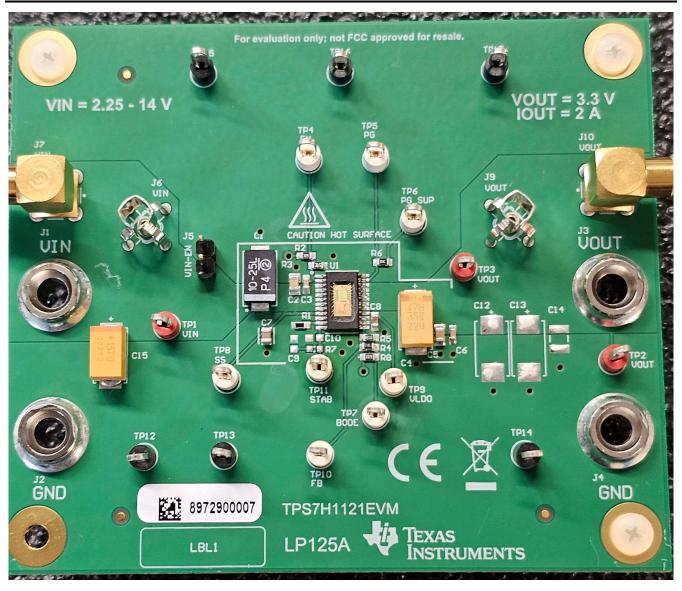


Figure 3-2. TPS7H1121-SEP EVM Top View

3.1 Device and Test Board Information Continued

TPS7H1121EVM - Schematic

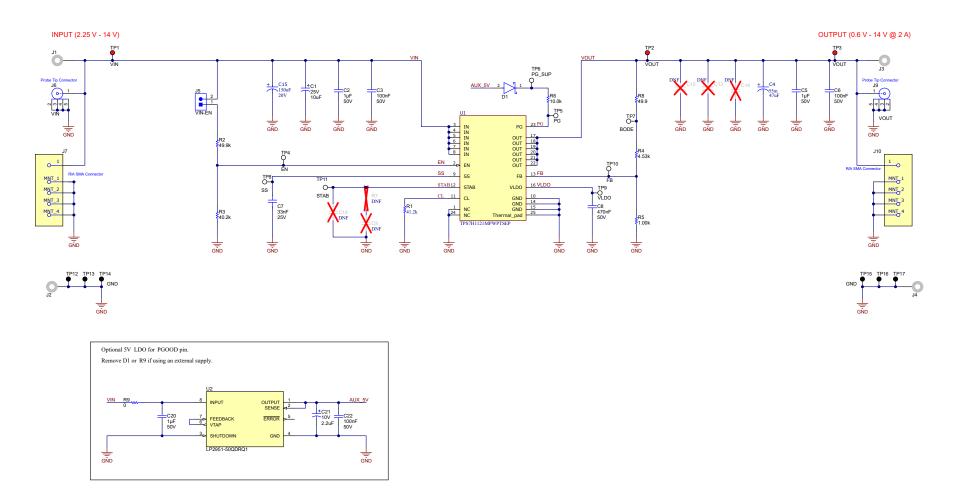


Figure 3-3. TPS7H1121-SEP EVM Schematics

4 Irradiation Facility and Setup

The heavy-ion species used for the SEE studies on this product were provided and delivered by two facilities:

- Texas A&M University (TAMU) Cyclotron Radiation Effects Facility using a K500 superconducting cyclotron and an advanced electron cyclotron resonance (ECR) ion source. At the fluxes used, ion beams had good flux stability and high irradiation uniformity over a 1-in diameter circular cross-sectional area for the in-air station. Uniformity is achieved by magnetic defocusing. The flux of the beam is regulated over a broad range spanning several orders of magnitude. For these studies, ion flux of 9.68 × 10⁴ to 1.60 × 10⁵ ions/cm²/s was used to provide heavy-ion fluences of approximately 10⁷ ions/cm². The TAMU facility uses a beam port that has a 1-mil Aramica window to allow in-air testing while maintaining the vacuum within the particle accelerator. The in-air gap between the device and the ion beam port window was maintained at 40mm for all runs.
- Michigan State University (MSU) Facility for Rare Isotope Beams (FRIB) using a K500 superconducting cyclotron (KSEE) and an advanced electron cyclotron resonance (ECR) ion source. At the fluxes used, ion beams had good flux stability and high irradiation uniformity as the beam is collimated to a maximum of 40mm x 40mm square cross-sectional area for the in-air and vacuum scintillators. Uniformity is achieved by scattering on a Cu foil and then performing magnetic defocusing. The flux of the beam is regulated over a broad range spanning several orders of magnitude. For these studies, ion flux of 8.78 × 10⁴ to 1.07 × 10⁵ ions/cm²/s was used to provide heavy-ion fluences of 10⁷ ions/cm². The KSEE facility uses a beam port that has a 3-mil polyethylene naphthalate (PEN) window to allow in-air testing while maintaining the vacuum within the particle accelerator. The in-air gap between the device and the ion beam port window was maintained between 50mm for all runs.

For the experiments conducted on this report, 109 Ag was the ion used, which was used to obtain LET_{EFF} of 48 MeV·cm²/mg. The total kinetic energies for the ions were:

- 109Ag (TAMU) = 1.633 GeV (15 MeV/nucleon)
 - Ion uniformity for these experiments was between 93% and 98%
- ¹⁰⁹Ag (KSEE) = 2.123 GeV (19.5 MeV/nucleon)
 - Ion uniformity for these experiments was 91%

Figure 4-1 shows the TPS7H1121EVM used for data collection at TAMU.

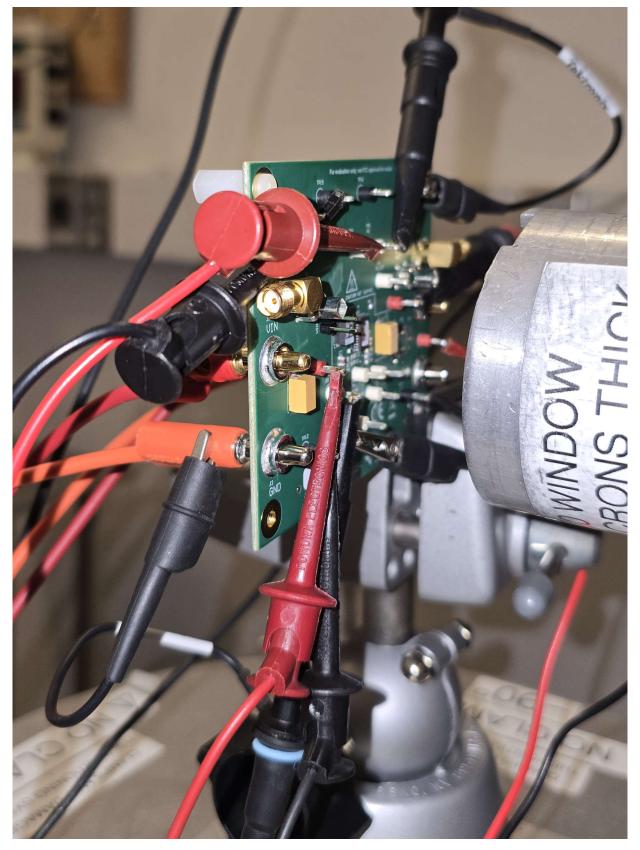


Figure 4-1. Photograph of the TPS7H1121EVM in Front of the Heavy-Ion Beam Exit Port at the TAMU Cyclotron

5 LET_{EFF} and Range Calculation

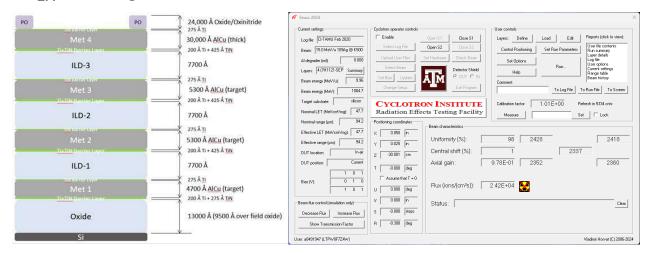


Figure 5-1. Generalized Cross-Section of the LBC7 Technology BEOL Stack on the TPS7H1121-SEP [Left] and Key Ion Parameters [Right]

The TPS7H1121-SEP is fabricated in the TI Linear BiCMOS 250-nm process with a back-end-of-line (BEOL) stack consisting of 4 levels of standard thickness aluminum. The total stack height from the surface of the passivation to the silicon surface is 10.885-µm based on nominal layer thickness as shown in Figure 5-1.

Accounting for energy loss through the degrader, copper foil, beam port window, air gap, and the BEOL stack of the TPS7H1121-SEP, the effective LET (LET_{EFF}) at the surface of the silicon substrate and the range was determined with:

- SEUSS 2024 software (provided by TAMU and based on the latest SRIM-2013 [7] models)
- MSU Stack-Up Calculator (provided by MSU FRIB and based on the latest SRIM-2013 [7] models)

The results are shown in Table 5-1.

Table 5-1. Ion LET_{EFF} and Range in Silicon

Facility	Beam Energy (MeV/ nucleon)	Ion Type	Degrader Steps (#)	Degrader Angle (°)	Copper Foil Width (µm)	Beam Port Window	Air Gap (mm)	Angle of Incidence	LET _{EFF} (MeV·cm²/ mg)	Range in Silicon (µm)
TAMU	15	¹⁰⁹ Ag	0	0	-	1-mil Aramica	40	0	47.7	94.2
KSEE	19.5	¹⁰⁹ Ag	-	-	5	3-mil PEN	50	0	48	92.58

6 Test Setup and Procedures

There were two input supplies used to power the TPS7H1121-SEP which provided V_{IN} and EN. The V_{IN} for the device was provided by Ch. 3 of an N6705C power module and ranged from 5V and 12V for SET to 14V for SEL and SEB/SEGR. EN was powered by Ch. 1 of an E36311A power supply and ranged from 0V for SEB Off to 5V for all other testing.

The instrument used to load the TPS7H1121-SEP was a Chroma 63600 E-Load that was used in Constant Resistance (CR) mode. The value of CR was adjusted depending on the type of test. For all DSEE testing with V_{OUT} = 13.3V, the CR value was set to achieve a max load of 2A. For the SEB testing during the V_{OUT} = 0.6V case, the CR value was set to achieve a load of 100mA as the CR value was set such that it does not heat the device too much to maintain a valid test case. For the SEL testing during the V_{OUT} = 0.6V case, the CR value was set to achieve a load that provided the correct amount of device heating to achieve a die temperature of 125°C; on the other hand, during the V_{OUT} = 13.3V case, the CR value was set to result in a load of 2A. For all SET testing, the CR value was set to achieve a nominal load of 1A.

The primary signal monitored on the EVM was V_{OUT} . This was monitored using a NI PXIe-5172 scope card that was set to trigger on a 3% window based on the nominal measured value of V_{OUT} . Secondary signals monitored include PG and SS. A second NI PXIe-5172 scope card was used to monitor PG on a negative edge trigger, set 50% below the nominal value of PG. A third NI PXIe-5172 scope card was used to monitor SS on a negative edge trigger, also set 50% below the nominal value of SS. During SEE testing, the output signals were monitored to maintain proper device functionality throughout the run. During SEB Off testing, all outputs were monitored on a positive edge trigger at 500mV to detect if the device incorrectly turned on while the device was disabled.

All other equipment was controlled and monitored using a custom-developed LabVIEW program (PXI-RadTest) running on a HP-Z4 desktop computer. The computer communicates with the PXI chassis through an MXI controller and NI PXIe-8381 remote control module.

Table 6-1 shows the connections, limits, and compliance values used during the testing. Figure 6-1 shows a block diagram of the setup used for SEE testing of the TPS7H1121-SEP.

Table 6-1. Equipment Settings and Parameters Used During the SEE Testing of the TPS7H1121-SEP

PIN NAME	EQUIPMENT USED	CAPABILITY	COMPLIANCE	RANGE OF VALUES USED
V _{IN}	N6705C (CH #3)	60V, 17A	5A	5 to 14V
EN	E36311A (CH #1)	6V, 5A	0.1A	0V, 5V
V _{OUT}	PXIe-5172 (1)	100 MS/s	_	100 MS/s
PG	PXIe-5172 (2)	100 MS/s	_	100 MS/s
SS	PXIe-5172 (3)	100 MS/s	_	100 MS/s
V _{OUT}	Chroma 63600 E-Load	80A	High	_

All boards used for SEE testing were fully checked for functionality. Dry runs were also performed to maintain that the test system was stable under all bias and load conditions prior to being taken to the TAMU and KSEE facilities. During the heavy-ion testing, the LabVIEW control program powered up the TPS7H1121-SEP device and set the external sourcing and monitoring functions of the external equipment. After functionality and stability was confirmed, the beam shutter was opened to expose the device to the heavy-ion beam. The shutter remained open until the target fluence was achieved (determined by external detectors and counters). During irradiation, the NI scope cards continuously monitored the signals. When the output exceeded the pre-defined 3% window trigger or negative edge triggers, a data capture was initiated. No sudden increases in current were observed (outside of normal fluctuations) on any of the test runs and indicated that no SEL or SEB/SEGR events occurred during any of the tests.

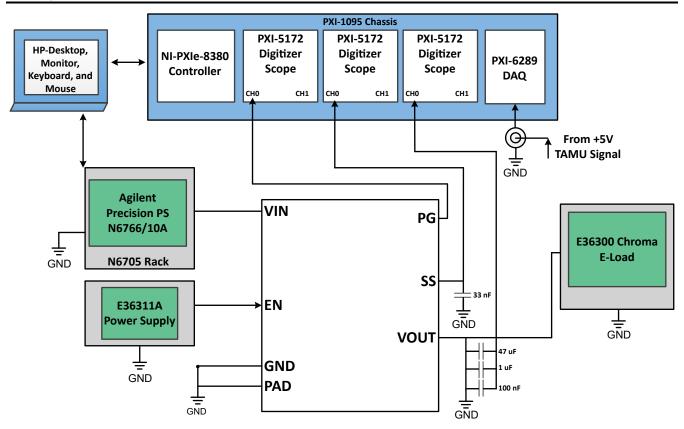


Figure 6-1. Block Diagram of the SEE Test Setup for the TPS7H1121-SEP

7 Destructive Single-Event Effects (DSEE)

7.1 Single-Event Latch-up (SEL) Results

During the SEL characterization, the device was heated using the load (0.6V case) or with external heat (13.3V case). When using external heat, the device was heated to 125°C by using a Closed-Loop PID controlled heat gun (MISTRAL 6 System (120V, 2400W)). The temperature of the die was constantly monitored during testing at TAMU through an IR camera integrated into the control loop to create closed-loop temperature control, while at KSEE, a standalone FLIR thermal camera was used to verify temperature prior to exposure.

The species used for SEL testing was Silver (\$^{109}\$Ag at 15 MeV/nucleon and 19.5 MeV/nucleon at TAMU and KSEE, respectively). For both ions an incident angle of 0° was used to achieve an LET_EFF = 48MeV·cm²/mg (for more details refer to Table 5-1). The kinetic energy in the vacuum for \$^{109}\$Ag is 1.633 GeV and 2.123 GeV for TAMU and KSEE, respectively. A flux of 9.51 × 10⁴ to 1.46 × 10⁵ ions/cm²/s and a fluence of approximately 107 ions/cm² per run was used. Run duration to achieve this fluence was approximately 2 minutes. The nine units were powered up and exposed to the heavy-ions using the maximum recommended input voltage of 14V. No SEL events were observed during all nine runs, indicating that the TPS7H1121-SEP is SEL-free up to 48 MeV·cm²/mg. Table 7-1 shows the SEL test conditions and results. Figure 7-1 and Figure 7-2 show plots of the current vs time for runs #1 and #3.

Table 7-1. Summary of TPS7H1121-SEP SEL Test Condition and Results

Run Number	Unit Number	Facility	ION	LET _{EFF} (MeV·cm²/ mg)	FLUX (ions/cm ² /s)	FLUENCE (ions/cm²)	V _{OUT} (V)	I _{OUT} (A)	SEL (Number of Events)
1	1	TAMU	¹⁰⁹ Ag	47.7	1.31 × 10 ⁵	1 × 10 ⁷	13.3	2	0
2	2	TAMU	¹⁰⁹ Ag	47.7	1.46 × 10 ⁵	1 × 10 ⁷	13.3	2	0
3	3	TAMU	¹⁰⁹ Ag	47.7	1.19 × 10 ⁵	1 × 10 ⁷	0.6	0.485	0
4	4	TAMU	¹⁰⁹ Ag	47.7	9.68 × 10 ⁴	1 × 10 ⁷	13.3	2	0
5	5	TAMU	¹⁰⁹ Ag	47.7	1.31 × 10 ⁵	1 × 10 ⁷	0.6	0.311	0
6	6	TAMU	¹⁰⁹ Ag	47.7	1.27 × 10 ⁵	1 × 10 ⁷	0.6	0.6	0
7	7	TAMU	¹⁰⁹ Ag	47.7	1.23 × 10 ⁵	1 × 10 ⁷	13.3	2	0
8	8	KSEE	¹⁰⁹ Ag	48	9.53 × 10 ⁴	1 × 10 ⁷	0.6	0.2	0
9	9	KSEE	¹⁰⁹ Ag	48	9.51 × 10 ⁴	1 × 10 ⁷	13.3	2	0

Using the MFTF method described in *Single-Event Effects (SEE) Confidence Interval Calculations* application report and combining (or summing) the fluences of the nine runs at 125°C (9 × 10⁷), the upper-bound cross-section (using a 95% confidence level) is calculated as:

 $\sigma_{SEL} \le 4.10 \text{ x } 10^{-8} \text{ cm}^2/\text{device for LET}_{EFF} = 48 \text{ MeV} \cdot \text{cm}^2/\text{mg}$ and T = 125°C.

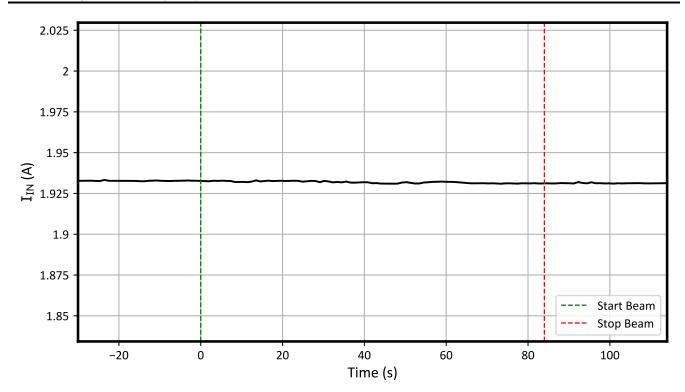


Figure 7-1. SEL Current Versus Time for Run #1 of the TPS7H1121-SEP at T = 125°C (V_{OUT} = 13.3V)

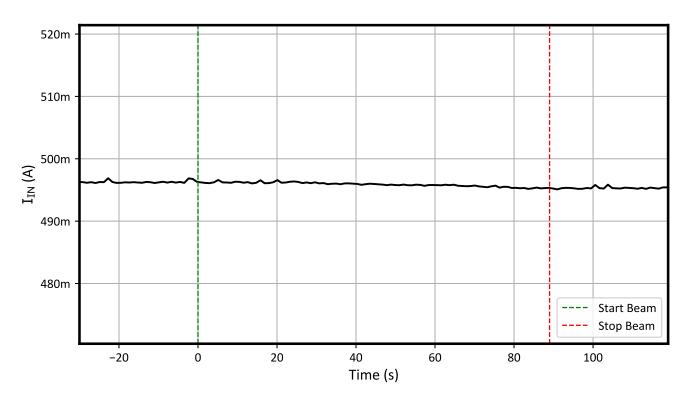


Figure 7-2. SEL Current Versus Time for Run #3 of the TPS7H1121-SEP at T = 125°C (V_{OUT} = 0.6V)

7.2 Single-Event Burnout (SEB) and Single-Event Gate Rupture (SEGR) Results

During the SEB/SEGR characterization, the device was tested at room temperature of approximately 25°C. The device was tested under both the enabled and disabled mode. For the SEB-Off test, the device was disabled using the EN-pin by forcing 0V (using CH #1 of a Keysight E36311A PS). During the all SEB/SEGR testing, not a single input current event was observed.

The species used for SEL testing were Silver (109 Ag at 15 MeV/nucleon and 19.5 MeV/nucleon at TAMU and KSEE, respectively). For both ions an incident angle of 0° was used to achieve an LET_{EFF} = 48MeV·cm²/mg (for more details refer to Table 5-1). The kinetic energy in the vacuum for 109 Ag is 1.633 GeV and 2.123 GeV for TAMU and KSEE, respectively. Flux of 8.78 × 10^4 to 1.60×10^5 ions/cm²/s and a fluence of approximately 10^7 ions/cm² per run was used. Run duration to achieve this fluence was approximately 2 minutes. The nine units (same as used in SEL testing) were powered up and exposed to the heavy-ions using the maximum recommended input voltage of 14V. No SEB/SEGR current events were observed during the 18 runs, indicating that the TPS7H1121-SEP is SEB/SEGR-free up to LET_{EFF} = 48 MeV·cm²/mg and across the full electrical specifications. Table 7-2 shows the SEB/SEGR test conditions and results. Figure 7-3, Figure 7-4, and Figure 7-5 show plots of the current vs time for runs #10, #11, and #14.

Table 7-2. Summary of TPS7H1121-SEP SEB/SEGR Test Condition and Results

	Table 7-2. Summary of TPS7H1121-SEP SEB/SEGR Test Condition and Results										
Run Number	Unit Number	Facility	ION	LET _{EFF} (MeV·cm²/ mg)	FLUX (ions/cm ² /s)	FLUENCE (ions/cm ²)	Enabled Status	V _{OUT} (V)	I _{OUT} (A)	SEB (Number of Events)	
10	1	TAMU	¹⁰⁹ Ag	47.7	1.40 x 10 ⁵	1.00 x 10 ⁷	EN	13.3	2	0	
11	ı	TAIVIO		9 47.7	1.35 x 10 ⁵	1.00 x 10 ⁷	DIS	0	_	0	
12	2	TAMU	¹⁰⁹ Ag	47.7	1.60 x 10 ⁵	1.00 x 10 ⁷	EN	13.3	2	0	
13	2 170	TAIVIO	тъду	Ag 41.1	1.60 x 10 ⁵	1.00 x 10 ⁷	DIS	0	_	0	
14	3	TAMU	¹⁰⁹ Ag	47.7	1.15 x 10 ⁵	1.00 x 10 ⁷	EN	0.6	0.1	0	
15	3	IAIVIU	TAIVIO	Ag	47.7	1.20 x 10 ⁵	1.00 x 10 ⁷	DIS	0	_	0
16	4	TAMU	¹⁰⁹ Ag	47.7	1.13 x 10 ⁵	1.00 x 10 ⁷	EN	13.3	2	0	
17		TAIVIO	- Ag	Ag 47.7	9.82 x 10 ⁴	1.00 x 10 ⁷	DIS	0	_	0	
18	5	TAMU	TAMII	¹⁰⁹ Ag	47.7	1.16 x 10 ⁵	1.00 x 10 ⁷	EN	0.6	0.1	0
19	3		Ag	47.7	1.19 x 10 ⁵	1.00 x 10 ⁷	DIS	0	_	0	
20	6	TAMU	¹⁰⁹ Ag	47.7	1.25 x 10 ⁵	1.00 x 10 ⁷	EN	0.6	0.1	0	
21	0	TAIVIO	Ag	47.7	1.18 x 10 ⁵	1.00 x 10 ⁷	DIS	0	_	0	
22	7	TAMU	¹⁰⁹ Ag	47.7	1.12 x 10 ⁵	1.00 x 10 ⁷	EN	13.3	2	0	
23	,	TAIVIO	Ag	47.7	1.14 x 10 ⁵	1.00 x 10 ⁷	DIS	0	_	0	
24	Ω	KSEE	10940	18	9.94 x 10 ⁴	1.00 x 10 ⁷	EN	0.6	0.1	0	
25	- 8 KSI	NOLL	¹⁰⁹ Ag	48	8.78 x 10 ⁴	1.00 x 10 ⁷	DIS	0	_	0	
26	9	KSEE	¹⁰⁹ Ag	48	1.07 x 10 ⁵	1.00 x 10 ⁷	EN	13.3	2	0	
27	9	NOEE	Ag	40	9.50 x 10 ⁴	1.00 x 10 ⁷	DIS	0	_	0	

Using the MFTF method described in *Single-Event Effects (SEE) Confidence Interval Calculations* application report, the upper-bound cross-section (using a 95% confidence level) is calculated as:

 $\sigma_{SEB} \le 2.05 \text{ x } 10^{-8} \text{ cm}^2/\text{device for LET}_{EFF} = 48 \text{ MeV} \cdot \text{cm}^2/\text{mg}$ and T = 25°C.

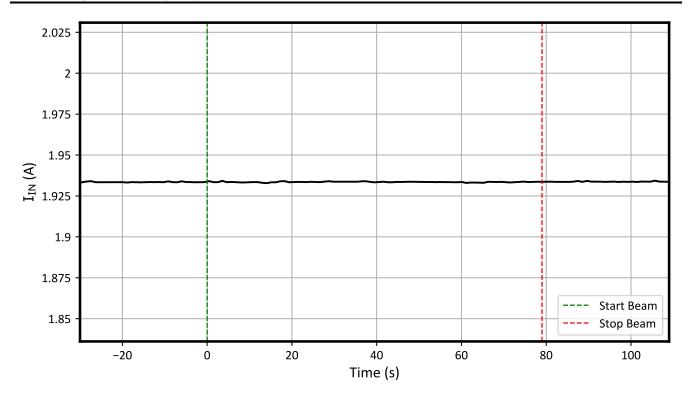


Figure 7-3. SEB On Current Versus Time for Run #10 of the TPS7H1121-SEP at T = 25°C (V_{OUT} = 13.3V)

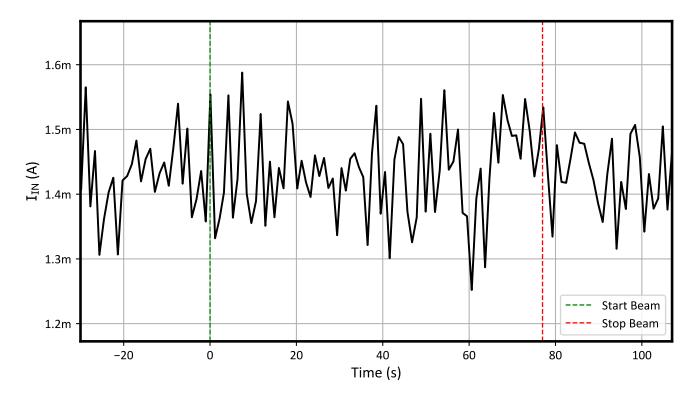


Figure 7-4. SEB Off Current Versus Time for Run #11 of the TPS7H1121-SEP at T = 25° C ($V_{OUT} = 0V$)

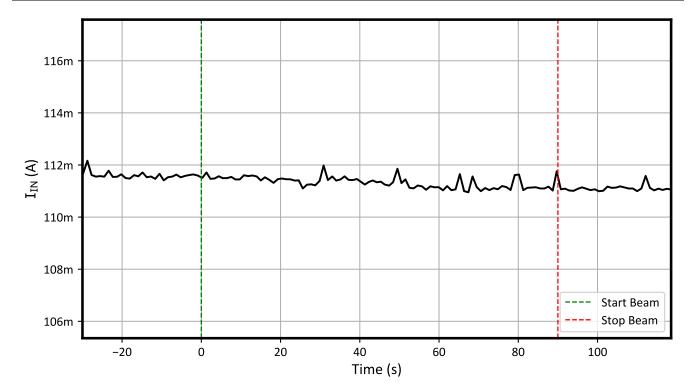


Figure 7-5. SEB On Current vs Time for Run #14 of the TPS7H1121-SEP at T = 25° C ($V_{OUT} = 0.6V$)

8 Single-Event Transients (SET)

SETs are defined as heavy-ion induced transients on V_{OUT}, PG, or SS of the TPS7H1121-SEP.

The species used for SEL testing were Silver (109 Ag at 15 MeV/nucleon and 19.5 MeV/nucleon at TAMU and KSEE, respectively). For both ions an incident angle of 0° was used to achieve an LET_{EFF} = 48MeV·cm²/mg (for more details refer to Table 5-1). The kinetic energy in the vacuum for 109 Ag is 1.633 GeV and 2.123 GeV for TAMU and KSEE, respectively. A flux of 1.02×10^5 to 1.31×10^4 ions/cm²/s and fluence of 10^7 ions/cm² per run were used for the SET characterization discussed in this chapter. Over the course of testing three devices, not a single transient or SEFI was recorded on any of the monitored signals indicating that the TPS7H1121-SEP is SET/SEFI free up to LET_{EFF} = 48 MeV·cm²/mg.

Waveform size, sample rate, trigger type, value, and signal for all scopes used is presented on Table 8-1.

Table 8-1. Scope Settings	Table	8-1.	Scope	Settings
---------------------------	--------------	------	-------	----------

Scope Model	Trigger Signal	Trigger Type	Trigger Value	Record Length	Sample Rate
PXIe-5172 (1)	V_{OUT}	Window	±3%	100k	100MS/s
PXIe-5172 (2)	PG	Edge/Negative	50%	100k	100MS/s
PXIe-5172 (3)	SS	Edge/Negative	50%	100k	100MS/s

Table 8-2. Summary of TPS7H1121-SEP SET Test Condition and Results

Run Number	Unit Number	Facility	ION	LET _{EFF} (MeV·cm ² /mg)	V _{IN} (V)	FLUX (ions/cm²/s)	Fluence (ions/cm²)	VOUT SET ≥ 3% (#)	PG SET (#)	SS SET (#)		
28	10	TAMU	¹⁰⁹ Ag	47.7	5	1.31 × 10 ⁵	1.00 × 10 ⁷	0	0	0		
29	10	IAWO	Ag	47.7	12	1.25 × 10 ⁵	1.00 × 10 ⁷	0	0	0		
30	11	TAMU ¹⁰⁹ Ag	TAMU	47.7	5	1.08 × 10 ⁵	1.00 × 10 ⁷	0	0	0		
31	11	IAWO	A Ag	47.7	12	1.10 × 10 ⁵	1.00 × 10 ⁷	0	0	0		
32	12	1094	VOEE 1	KOEE	¹⁰⁹ Ag	40	5	1.04 × 10 ⁵	1.00 × 10 ⁷	0	0	0
33	12	KSEE	A Ag	48	12	1.02 × 10 ⁵	1.00 × 10 ⁷	0	0	0		

www.ti.com Event Rate Calculations

9 Event Rate Calculations

Event rates were calculated for LEO (ISS) and GEO environments by combining CREME96 orbital integral flux estimations and simplified SEE cross-sections according to methods described in *Heavy Ion Orbital Environment Single-Event Effects Estimations* application report. We assume a minimum shielding configuration of 100 mils (2.54 mm) of aluminum, and "worst-week" solar activity (this is similar to a 99% upper bound for the environment). Using the 95% upper-bounds for SEL, SEB/SEGR, and SET the event rate calculations for SEL, SEB/SEGR, and SET are shown on Table 9-1, Table 9-2, and Table 9-1, respectively. **Note that this number is for reference since no SEL, SEB/SEGR, or SET events were observed.**

Table 9-1. SEL Event Rate Calculations for Worst-Week LEO and GEO Orbits

Orbit Type	Onset LET _{EFF} (MeV-cm ² /mg)	CREME96 Integral FLUX (/day/cm²)	σSAT (cm²)	Event Rate (/day)	Event Rate (FIT)	MTBE (Years)
LEO (ISS)	48	4.50 × 10 ⁻⁴	4 10 × 10=8	1.85 × 10 ⁻¹¹	7.69 × 10 ⁻⁴	1.48 × 10 ⁸
GEO	40	1.48 × 10 ⁻³	4.10 × 10 ⁻⁸	6.05 × 10 ⁻¹¹	2.52 × 10 ⁻³	4.53 × 10 ⁷

Table 9-2. SEB/SEGR Event Rate Calculations for Worst-Week LEO and GEO Orbits

Orbit Type	Onset LET _{EFF} (MeV-cm ² /mg)	CREME96 Integral FLUX (/day/cm²)	σSAT (cm²)	Event Rate (/day)	Event Rate (FIT)	MTBE (Years)
LEO (ISS)	48	4.50 × 10 ⁻⁴	2.05 × 10 ⁻⁸	9.23 × 10 ⁻⁸	3.84 × 10 ⁻⁴	2.97 × 10 ⁸
GEO	40	1.48 × 10 ⁻³		3.03 × 10 ⁻¹¹	1.26 × 10 ⁻³	9.06 × 10 ⁷

Table 9-3. SET Event Rate Calculations for Worst-Week LEO and GEO Orbits

Orbit Type	Onset LET _{EFF} (MeV-cm ² /mg)	CREME96 Integral FLUX (/day/cm²)	σSAT (cm²)	Event Rate (/day)	Event Rate (FIT)	MTBE (Years)
LEO (ISS)	48	4.50 × 10 ⁻⁴	6.15 × 10 ⁻⁸	2.77 × 10 ⁻¹¹	1.15 × 10 ^{−3}	9.90 × 10 ⁷
GEO	40	1.48 × 10 ⁻³	0.13 ~ 10	9.08 × 10 ⁻¹¹	3.78 × 10 ^{−3}	3.02 × 10 ⁷

Summary Summary Www.ti.com

10 Summary

The purpose of this study was to characterize the effect of heavy-ion irradiation on the single-event effect (SEE) performance of the TPS7H1121-SEP low-dropout (LDO) linear regulator. Heavy-ions with LET_{EFF} = 48 MeV·cm²/mg were used for the SEE characterization campaign. Flux of 8.78 x 10^4 to 1.60 x 10^5 ions/cm²/s and fluences of $\approx 10^7$ ions/cm² per run were used for the characterization. The SEE results demonstrated that the TPS7H1121-SEP is free of destructive SEL and SEB/SEGR and SET/SEFI up to LET_{EFF} = 48 MeV·cm²/mg across the full electrical specifications. CREME96-based worstweek event-rate calculations for LEO (ISS) and GEO orbits for the DSEE and SET are presented for reference.

A References

- 1. M. Shoga and D. Binder, "Theory of Single Event Latchup in Complementary Metal-Oxide Semiconductor Integrated Circuits", *IEEE Trans. Nucl. Sci.*, *Vol.* 33(6), Dec. 1986, pp. 1714-1717.
- 2. G. Bruguier and J. M. Palau, "Single particle-induced latchup", *IEEE Trans. Nucl. Sci., Vol. 43(2)*, Mar. 1996, pp. 522-532.
- 3. G. H. Johnson, J. H. Hohl, R. D. Schrimpf and K. F. Galloway, "Simulating single-event burnout of n-channel power MOSFET's," in IEEE Transactions on Electron Devices, vol. 40, no. 5, pp. 1001-1008, May 1993.
- 4. J. R. Brews, M. Allenspach, R. D. Schrimpf, K. F. Galloway, J. L. Titus and C. F. Wheatley, "A conceptual model of a single-event gate-rupture in power MOSFETs," in IEEE Transactions on Nuclear Science, vol. 40, no. 6, pp. 1959-1966, Dec. 1993.
- 5. G. H. Johnson, R. D. Schrimpf, K. F. Galloway, and R. Koga, "Temperature dependence of single event burnout in n-channel power MOSFETs [for space application]," IEEE Trans. Nucl. Sci., 39(6), Dec. 1992, pp.1605-1612.
- 6. TAMU Radiation Effects Facility website. http://cyclotron.tamu.edu/ref/
- 7. "The Stopping and Range of Ions in Matter" (SRIM) software simulation tools website. www.srim.org/index.htm#SRIMMENU
- 8. D. Kececioglu, "Reliability and Life Testing Handbook", Vol. 1, PTR Prentice Hall, New Jersey,1993, pp. 186-193.
- 9. ISDE CRÈME-MC website.https://creme.isde.vanderbilt.edu/CREME-MC
- 10. A. J. Tylka, J. H. Adams, P. R. Boberg, et al., "CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics Code", *IEEE Trans. on Nucl. Sci., Vol. 44*(6), Dec. 1997, pp. 2150-2160.
- 11. A. J. Tylka, W. F. Dietrich, and P. R. Boberg, "Probability distributions of high-energy solar-heavy-ion fluxes from IMP-8: 1973-1996", *IEEE Trans. on Nucl. Sci.*, Vol. 44(6), Dec. 1997, pp. 2140-2149.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated