Application Note
Accelerating Development with SysConfig using
MCU+SDK

i3 TEXAS INSTRUMENTS

Tushar Thakur, Anil Swargam, Soumya Tripathy
ABSTRACT

This application note explains the role of the SysConfig tool integration with MCU+SDK for AM243x, AM275x
and AM6x devices. SysConfig simplifies bring-up by auto-generating source files for pin multiplexing, clock
configuration, power domain configuration, driver configuration, board peripheral configuration, Region Address
Translation (RAT), Memory Management Unit (MMU) and Memory Protection Unit (MPU) configuration.

The Application note also provides step-by-step guidance & example use cases and troubleshooting tips to help
developers use SysConfig effectively with TI SOCs.

Table of Contents

I T4 e Yo [T T 4o TSR 2
IS 10 o 1o T @ o T T 7= o T o OSSPSR 2
2 Getting StAarted GUIE...............ooiiii ettt e sttt e ettt e e st e e e ete e e e nee e e amaeeeanteeeeaneeeeanaeeeeteeeenneeeenreeeeneeeennean 4
2.1 How to Launch SysConfig (GUI and Command-LiNE)...........ccuiueiiiiiiiiiiiiee ettt e e ee e e e s e e e nneeeenns 4
2.2 Integration with CCS and Makefile DUIIAS..........oueii i e e st e e et e e e e e sneeeesneeeenns 4
2.3 Location of SysConfig file iN MCU SDK........cooiiiiiiiie et s et e e sttt e e s e e e s eaeeeesnteeeeseeeaanseeeanseeeenneeeennnes 7
3 Example SySCONTFIg iN CCS....... ..ottt e ettt e sttt e ettt e e saeee e e teeeeanteeeamseeeeaseeeeanseeeaneeeeanteeeaseeeenteeeanneenn 9
3.1 EXAMPIE [2C REAM. ettt e e e e et e e e e e e et aaeeeeeeeabeaeeeeeeasstaeeeeeaaataeeeeeeaasbareeeeeaasnraeeaeeannnees 9
4 Common Application ConfigUIratioN..............coooiiiiiiii e e et e e st e e s st e e e nneeeeanseeeeneeeennees 12
g T YN @70 o il U T T) o S S 12
|V | W I @7o T q il U =TT o OSSR S 12
1Y 1 U o7 T8 = 1 oo T PR 13
Y] (Y0 T T = 11 1T) o SO 14
BOULPUL L. ...t e ettt e e e e e et e et e e e seateeeeeeeeasataeeeeeeaasbaeeeeeaaassaeaeeessbaeseeesaassseeeeesanssraneaaans 21
5.1 Files Generated by COAEGEN TOOL..........uii ittt et e et e e st e e s st e e s et e e ateeeaaneeeesnneeeesaeeeanseeeaneeeeanneeenn 21
oI A= =3 o o T AV 1 4 g F= Lo o RS SUPPRRPN 21
LR I 2 LY=o TU o3 @0 o1 o2 SRR 23
LR O LW T oo Ty (Yo [D4 Y=Y S UPUPOPPE 25
5.5 USE Of RESEIVE PEIHPNEIAL.........eiieiiiiiieeee et e e e e ettt e e e e et e e e e e e e etateeeeeesaabaeeeeeeesbeeeeeeeaansreeeaaasns 26
6 Disclaimers and INEeNAEd USe........o ettt ettt e e e e ettt e e e e st et e e e e e e anaeeeeaeaannneeaaeeanseeeeas 27
A=V 4 4T3 - T/ 28
S 30 =Y = =T 4T PP 29
Trademarks

All trademarks are the property of their respective owners.

SDAA194 — NOVEMBER 2025 Accelerating Development with SysConfig using MCU+SDK 1
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

Introduction www.ti.com

1 Introduction

SysConfig is an interactive configuration tool integrated with MCU+SDK that automates device initialization
and driver setup for Tl SoCs. This detects configuration conflicts, generates initialization files, and simplifies
integration into custom software projects or MCU+SDK projects. Developers can use SysConfig to configure
clocks, PinMux, MPU/MMU/RAT regions, and driver instances through an intuitive GUI or command-line
interface.

The following are the features supported in the tool:

» System Initialization: SysConfig (CodeGen) tool generates initialization code for AM243x, AM275x and
AM6x devices, covering peripheral setup, clock configuration, interrupt handling, PinMux configuration, and
MPU, MMU and RAT settings. See System Initialization for details.

* PinMux Visualization: The tool provides a graphical view of the device and the pins, displaying all possible
PinMux options and highlighting the user-selected mode for each pin. See Example Sysconfig in CCS(5) for
details.

» Error Detection: SysConfig validates configurations and reports errors in case of incorrect setups. This
automatically detects conflicts between pin assignments. See Pin Confilict for details.

+ Dependency Identification: The tool identifies inter-module dependencies within the device and makes sure
that required peripherals are configured consistently.

* Resource Conflict Detection: When a module depends on another peripheral, SysConfig checks for
conflicts. If the dependent peripheral is already in use, the tool flags a resource conflict error. See Resource
Conflict for details.

Note: The device families supported are:

* AM243x, AM64x

* AMG62Lx

* AMG2Ax

* AM62Dx, AM275x
* AM62Px, AM62x

1.1 SysConfig CodeGen Tool

The SysConfig CodeGen tool generates source and header files which are used with MCU SDK examples

to achieve the above-mentioned functionalities. The CodeGen tool internally uses the Sciclient (TISCI) APIs
provided by MCU+SDK to manage clocks, resets, and power domains through communication with the DMSC
firmware.

See the parameters in Sysconfig CodeGen Tool which are required to open the SysConfig CodeGen tool.

Figure 1-1. SysConfig CodeGen Tool

View of SysConfig CodeGen Tool shown in CodeGen Tool Generated Files.

2 Accelerating Development with SysConfig using MCU+SDK SDAA194 — NOVEMBER 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Introduction
Figure 1-2. CodeGen Tool Generated Files
SDAA194 — NOVEMBER 2025 Accelerating Development with SysConfig using MCU+SDK 3

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

Getting Started Guide www.ti.com

2 Getting Started Guide
The SysConfig tool is available both for both online and offline development.
Please refer to the link below to access the tool.

1. To Download the offline version of Sysconfig tool, see https://www.ti.com/tool/download/SYSCONFIG.
2. The online version of the tool can be accessed through https://dev.ti.com/sysconfig/#/start

Note

The online version of the tool is the latest version of SysConfig. Check the release note of the MCU
SDK for compatibility issue while using the online SysConfig tool.

2.1 How to Launch SysConfig (GUl and Command-Line)

SysConfig tool can be launched either using the GUI (Graphical User Interface) or through CLI (Command Line
Interface).

» To open the tool with the GUI, navigate to the Sysconfig directory and double click on sysconfig_gui.bat file.
» To open the SysConfig CodeGen tool via CLI follow the steps below.

— Navigate to the example directory until the makefile is visible.

— Run the command below. Use make for Linux and gmake for Windows.

> {gmake|make} -s syscfg-gui

» To run the Sysconfig tool through CLlI, use the following command. The following command outputs all the
files generated by the SysConfig CodeGen Tool.

> cd ${sysConfig_root} > sysconfig_cli.bat -s ${MCU+SDK_root}\.metadata\product.json -d AM6442 -o
${Project_path}\debug ${Project_path}\example.syscfg

2.2 Integration with CCS and Makefile builds

The SysConfig tool begins with the product.json file which contains all the information for the CodeGen tool.
The information mentioned here is applicable to both SysConfig standalone tool and integrated with CCS.

To view the SysConfig project properties in your CCS project.

1. Right click on the project name and select Properties.
2. Under the Build option, select Sysconfig to view all Sysconfig options.

4 Accelerating Development with SysConfig using MCU+SDK SDAA194 — NOVEMBER 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/tool/download/SYSCONFIG
https://dev.ti.com/sysconfig/#/start
https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Getting Started Guide

Figure 2-1. CCS SysConfig Project Properties
3. Select Basic Options to change/view the device family and top level SysConfig product.json file.

SDAA194 — NOVEMBER 2025 Accelerating Development with SysConfig using MCU+SDK 5
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS

INSTRUMENTS
Getting Started Guide www.ti.com
Figure 2-2. SysConfig Basic Options
4. Select Miscellaneous to change/view the device package/part.
6 Accelerating Development with SysConfig using MCU+SDK SDAA194 — NOVEMBER 2025

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Getting Started Guide

Figure 2-3. SysConfig Miscellaneous Options

2.3 Location of SysConfig file in MCU SDK
2.3.1 Using Existing SysConfig File

Every example provided in the MCU+SDK contains an example.syscfg file which contains details of which
peripherals are configured and initialized through the SysConfig CodeGen Tool. The tool takes this file as input
and generates the required output files for the configured peripherals.

The example.syscfg file is located at ${MCU+SDK}/examples/${name}/${device}/${core}/
example.sysconfig

2.3.2 Creating New SysConfig File

The example.syscfg file can be generated from scratch by opening the CodeGen Tool as specified in SysConfig
CodeGen Tool.

The tool automatically generates the untitled.syscfg file which can be saved and then later used with the MCU
SDK.

SDAA194 — NOVEMBER 2025 Accelerating Development with SysConfig using MCU+SDK
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

7

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS

INSTRUMENTS

Getting Started Guide www.ti.com
Figure 2-4. Generated syscfqg file

8 Accelerating Development with SysConfig using MCU+SDK SDAA194 — NOVEMBER 2025

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Example Sysconfig in CCS

3 Example Sysconfig in CCS
3.1 Example 12C Read

To get started with SysConfig CodeGen Tool, import an existing example provided in the MCU SDK with
SysConfig support.

1. Launch CCS and import the example: i2c_read_r5fss0-0_nortos

a. Select Project — Import CCS Project
b. Browse to ${MCU+SDK}\examples\drivers\i2c\i2c_read\am64x-evm\r5fss0-0_nortos
c. Select the project and import the project.

2. Inside the CCS project, the user can see the syscfg file along with the rest of the application files.

Figure 3-1. Example Project
3. Double click on example.syscfg file and the SysConfig GUI launches.

Note
Right-click on the syscfg file, then select Open With — SysConfig Editor.

SDAA194 — NOVEMBER 2025 Accelerating Development with SysConfig using MCU+SDK 9

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

Example Sysconfig in CCS www.ti.com

Figure 3-2. Sysconfig CCS GUI Editor
4. The SysConfig GUI must be launched inside CCS and looks similar to the one shown in Figure 3-3.

Figure 3-3. Sysconfig CCS GUI View
5. Click the Device View button at the top right corner of the SysConfig GUI to see the device and package
used for the project.

10 Accelerating Development with SysConfig using MCU+SDK SDAA194 — NOVEMBER 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Example Sysconfig in CCS

Figure 3-4. Sysconfig Device View

SysConfig support is added to the Project Properties. By default, this project was configured for AM64x family
of devices, and the selected device package is set to FCBGA (ALV) package. If the Project Properties for
AM64x SysConfig support is not set up by default in the CCS project, the syscfg file does not launch the GUI
successfully.

When using the standalone version of CodeGen tool (opened through CLI), the same steps are applicable for
module configuration.

SDAA194 — NOVEMBER 2025 Accelerating Development with SysConfig using MCU+SDK 1
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

Common Application Configuration www.ti.com

4 Common Application Configuration
4.1 RAT Configuration

The RAT stands for Region Based Address Translation. RAT module translates the 32-bit input address to 48-bit
output address. In the AM243x and AM6x family of devices, the R5F/M4F cores in the MPU Sub System can
only access 32-bit memory address. To overcome this limitation and access full memory view of SoC, RAT
region is configured to access memory region higher than 32-bit memory address.

Figure 4-1 shows the RAT configuration view.

Figure 4-1. RAT Configuration
4.2 MPU Configuration

The MPU stands for the Memory Protection Unit. The MPU configuration allows user to configure the memory
access permission(read/write/execute) with different privileges level. This also allows users to specify what
attributes (cacheable/sharable/bufferable, and so on) a configured memory region can have.

Figure 4-2 shows the MPU Configuration view.

12 Accelerating Development with SysConfig using MCU+SDK SDAA194 — NOVEMBER 2025

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Common Application Configuration

Figure 4-2. MPU Configuration
4.3 MMU Configuration

The MMU stands for the Memory Management Unit. The MMU Configuration allows virtual memory translation,
memory protection, and cache management for the configured region.

The MPU is applicable for R5F or M4F cores and MMU is applicable for A53 cores and supports virtual address
translation and cache management.

SysConfig provides separate views and configurations for MPU and MMU depending on the selected core
context.

Figure 4-3 shows the MPU Configuration view.

SDAA194 — NOVEMBER 2025 Accelerating Development with SysConfig using MCU+SDK 13
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS

INSTRUMENTS
Common Application Configuration www.ti.com

Figure 4-3. MMU Configuration

4.4 System Initialization

The SysConfig CodeGen tool generates the code to enable clocks, do pinmux settings and driver initialization for
configured peripheral.

Figure 4-4 shows the initialization code.

14 Accelerating Development with SysConfig using MCU+SDK SDAA194 — NOVEMBER 2025

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Common Application Configuration

Figure 4-4. System Initialization

The following sections discuss each of them in detail.
4.4.1 DPL Initialization

The CodeGen code generates the code for DPL initialization. DPL stands for Driver Porting Layer. The DPL
initialization enables the Interrupts, initializes the system clock and does the timer initialization.

SDAA194 — NOVEMBER 2025 Accelerating Development with SysConfig using MCU+SDK 15
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS

INSTRUMENTS

Common Application Configuration www.ti.com
Figure 4-5. DPL Initialization

16 Accelerating Development with SysConfig using MCU+SDK SDAA194 — NOVEMBER 2025

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Common Application Configuration

4.4.2 Clock Initialization

Before using a peripheral in the application, the peripheral must be properly initialized by enabling and
configuring the respective clock settings. The clock is initialized by making call to TISCI APIs. This code required
for clock configuration is auto generated by the tool when a peripheral is added.

When the user adds any module/peripherals in the CodeGen tool, the configured clock configuration

automatically is populated to structure (for example, gSocModulesClockFrequency) used by TISCI APlIs to set
the frequency. The Module_clockEnable() API performs the power configuration for the module by enabling the

LPSC gates for clocks.

Figure 4-6 shows the code generated by tool to enable and configure the clock for peripherals.

typedef struct {

uint32_t moduleld;
uint32 t clkid;
uint32_t clkRate;
uint32_t clkParentId;

} 30C_ModuleClockFrequency;

uint32 t gSocModules[] = {
TISCI_DEV_MCU_UARTS,

50C_MODULES_END,
¥

50C_ModuleClockFrequency gSocModulesClockFreguency[] = {
{ TISCI_DEV_MCU_UART®, TISCI_DEV_MCU_UART@_FCLK_CLK, 48680008, SOC_MODULES_END},

{ SOC_MODULES_END, SOC_MODULES_END, SOC_MODULES_END, SOC_MODULES_END },
b

void Module_clockEnable(void)
{

int32_t status;

uint3z t i = @;

while{gSocModules[1]!=50C_MODULES_END)

i
status = 50C_moduleClockEnable(gSocModules[i], 1);
DebugP assertMolog(status == SystemP_SUCCESS);
i+4;

woid Module_clockSetFrequency(void)

{

int32 t status;
wint32 t i = @;

while{gSocModulesClackFrequency[i].moduleId!=S0C_MODULES_END)

{
if (gSocModulesClockFrequency[i].clkParentId != SOC_MODULES_END)

{

/* Set module clock to specified frequency and with a specific par

status = SOC_moduleSetClockFrequencyWithParent(
gsocModulesClockFrequency[i] .moduleld,
gSocModulesClockFrequency[i].clkId,
gSocModulesClockFrequency[i] .clkParentId,
gSocModulesClockFrequency[i] .clkRate
)5

else

/* set module clock to specified frequency */

status = SOC_moduleSetClockFrequency(
gSocModulesClockFrequency[i] .moduleld,
gSocModulesClockFrequency[i].clkId,
gSocModulesClockFrequency[i] . clkRate

)3
¥
DebugP_assertNolog(status == SystemP_SUCCESS);
it4;

void PowerClock_init(veid)

{

}

Module_clockEnable();
Module_clockSetFrequency();

Figure 4-6. Clock Configuration

4.4.3 PinMux Configuration

The AM243x and AM6x family of devices share limited pins across multiple peripherals (UART, SPI, I12C, GPIO,

etc.). Pin multiplexing (PinMux) selects which peripheral is connected to which physical ball and pin. Without
correct PinMux setup, a peripheral cannot communicate with external devices. Conflicting assignments (for

example, UART and I2C sharing the same pin) cause boot or runtime failures. All these conflicts can easily be

avoided by using the CodeGen tool.

When a module and peripheral is added in the CodeGen tool, the pins required for the modules are exposed by

the Sysconfig tool and corresponding code is generated. The user can also select the pin settings to be input
enabled/disabled or can configure the pin to have pull up or down using the tool.

There are separate structures or sets of pins configured for MCU and MAIN domain peripherals.

Figure 4-7 shows the Pinmux Initialization generated code.

SDAA194 — NOVEMBER 2025
Submit Document Feedback

Accelerating Development with SysConfig using MCU+SDK

Copyright © 2025 Texas Instruments Incorporated

17

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

Common Application Configuration www.ti.com

Figure 4-7. PinMux Initialization

4.4.4 Driver Initialization

To use any peripheral in an application, the driver initialization is required for proper functioning. Sysconfig
CodeGen tool generates code for driver configuration for configured peripheral.

The tool uses Drivers_Init/Deinit(), Drivers_Open/Close() APl as wrapper function to the actual driver
initialization code. The drivers initialization code is coming from the drivers of SDK and is not auto generated by
the CodeGen tool.

18 Accelerating Development with SysConfig using MCU+SDK SDAA194 — NOVEMBER 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Common Application Configuration

The CodeGen tool populate the required structure with configured values. The populated structure is used by the
driver APlIs of the SDK.

Figure 4-8. Driver Configuration

SDAA194 — NOVEMBER 2025 Accelerating Development with SysConfig using MCU+SDK 19
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

Common Application Configuration www.ti.com

4.4.5 Board Peripheral Initialization

The CodeGen tool also generates source files for Board Peripheral Initialization. This file contains the definition
of API which is used to perform configured board driver initialization, and the file also provides the APIs to open
and close the drivers.

The definitions of the generated APIs can be found at ti_board_open_close.c file.

Figure 4-9. Board Peripheral Drivers

20

Accelerating Development with SysConfig using MCU+SDK SDAA194 — NOVEMBER 2025

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Output File

5 Output File
5.1 Files Generated by CodeGen Tool

The CodeGen tool of SysConfig generates C source and header files which are used during the application
development to avoid errors and boost productivity. This generated file can be directly imported to application for
driver initialization & configuration.

The files generated are listed below.

1. ti_dpl_config.h — contains the declaration for the DPL (Driver Porting Layer) initialization API.

2. ti_dpl_config.c — contains the code for DPL initialization. The DPL initialization includes initializing the
Interrupt Controller, MMU & RAT configurations, Debug Logs & System tick initialization. The DPL
initialization is done using the Kernel Level API call by generated code.

3. ti_drivers_config.h — contains the declaration for driver initialization APIs for all the configured drivers.

4. ti_drivers_config.c - contains code for the initialization of the configured peripheral drivers, clock initialization,
PinMux settings and driver initialization. This file also contains global handles for configured peripherals.

5. ti_drivers_open_close.h — contains the declaration for drivers open/close API for configured peripheral along
with required handler.

6. ti_drivers_open_close.c - contains code to Open/Close the driver for configured peripheral. This file also
contains the handler with configured parameters required by the added peripheral.

7. ti_pinmux_config.c - contains the pinmux configuration required by the configured peripheral to achieve
required functionality configured via GUI.

8. ti_power_clock_config.c — contains the code to enable the clock and modify the clock frequency for
configured peripheral. The generated code uses the TISCI calls to configure the clock frequency.

9. ti_board _config.h — contains declaration for board specific driver configuration.

10. ti_board _config.c — contains definition for board specific driver configuration.

11. ti_board _open_close.h — contains declaration for board specific driver open/close APlIs.

12. ti_board_open_close.c — contains definition for board specific driver open/close APIs.

13. ti_enet_config.h — contains the definition of all macros used by enet module.

14. ti_enet_config.c — contains definition for global structure and APIs required to provide enet functionality.

15. ti_enet_open_close.h - contains the declaration for enet open/close API along with the required utility API.

16. ti_enet_open_close.c — contains the definition for enet open/close API along with required structure
definition.

17. ti_enet_soc.c — contains the definition for required structure and APlIs for enet interrupt setup, clock
frequency configuration and to set/get other necessary configurations.

18. ti_enet_Iwipif.h — contains declaration of enet Lwip interface layer for driver callback.

19. ti_enet_Iwipif.c - contains enet Lwip interface layer implementation for driver callback.

5.1.1 Debugging and Troubleshooting

When using SysConfig application if incorrect cliArgs arguments are passed, Sysconfig tool reports an error
message. By looking at error messages we can identify the cause of the error. Apart from cliArgs error, there are
other issues which may happen while using the tool.

The following sections discuss a few common issues which can show while using Sysconfig and see steps to fix
them.

5.2 Version Mismatch

In Figure 5-1, the error message Update Required shows because of the version mismatch between the MCU
SDK version and Sysconfig tool. The cliArgs used in the syscfg file is not correct and hence the tool reports
errors while opening GUI view.

SDAA194 — NOVEMBER 2025 Accelerating Development with SysConfig using MCU+SDK 21
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS
Output File www.ti.com

Update Required

Error: MCU+ SDK version 07.03.01 requires at least version 1.24.0 of SysConfig.
For more information see.

Figure 5-1. Version Mismatch

To resolve the above issue, make sure the correct version of SysConfig is being used as mentioned in the MCU
SDK documentation. Check the product.json file provided in the MCU SDK for version details.

In the previous example, SysConfig v1.23.0 and MCU+SDK v11.00 are used. The cliArgs used in the
example.syscfg file are as follows which has incorrect MCU SDK version.

/** * These arguments were used when this file was generated. They will be automatically applied on

subsequent Toads * via the GUI or CLI. Run CLI with '--help' for additional information on how to
override these arguments. *
@cliArgs --device "AM64x" --part "Default" --package "ALV" --context "r5fss0-0" --

product "MCU_PLUS_SDK@07.03.01" * @v2CliArgs --device "AM6442" --package "FCBGA (ALV)" --variant
"AM6442-D" --context "r5fss0-0" --product
"MCU_PLUS_SDK@07.03.01" * @versions {"tool":"1.21.2+3837"} */

After modifying the above cliArgs to have correct MCU SDK version in the example.syscfg file, the tool works as
expected.

/** * These arguments were used when this file was generated. They will be automatically applied on
subsequent Toads * via the GUI or CLI. Run CLI with '--help' for additional information on how to
override these arguments. *

@cTiArgs --device "AM64x" --part "Default" --package "ALV" --context "r5fss0-0"
--product "MCU_PLUS_SDK_AM64x@11.00.00" * @v2CliArgs --device "AM6442" --package "FCBGA (ALV)" --
variant "AM6442-D" --context "r5fss0-0" --product

"MCU_PLUS_SDK_AM64x@11.00.00" * @versions {"tool1":"1.21.2+3837"} */

Other issues can show device variant not found, package/part number not found, and so on. See Figure 5-2,
Figure 5-3, and Figure 5-4, for details.

@ Device not found: AM644x. This device may be available in a newer version of SysConfig

GO BACK

Figure 5-2. Device Not Found

0
Package not found: FCBGA (ALT). This package may be available in a newer version of SysConfig

GO BACK

Figure 5-3. Package Not Found

22 Accelerating Development with SysConfig using MCU+SDK SDAA194 — NOVEMBER 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Output File

© Unknown context specified: r5fss0

GO BACK

Figure 5-4. Unknown Context Specified

All the previous parameters must be correctly passed in the cliArgs of example.syscfg file. Passing incorrect
argument will lead to one of the issues specified above.

If the user is still confused about what parameters to use in cliArgs, open the CodeGen tool with MCU SDK
selected as software product and copy the cliArgs from the generated untitled.syscfg file.

(1) start a new Design @

Software Product: MCU+ SDK for AM&4x (11.00.00) - 3
Device: AMB442 -
Package: FCBGA (ALV) v
Variant: AMB442 Dual Core A53, 2 x Dual Core RSF, D Features -
Context: r5fss0-0 -

START

untitled.syscfg
1 -

1+/**
2+ * These arguments were used when this file was generated. They will be automatically applied on subsequent loads
34+ * via the GUI or CLI. Run CLI with '--help®' for additional information on how to override these arguments.

4+ * @cliArgs --device "AME4Ax" --part "Default" --package "ALV" --context "r5fss@8-8" --product "MCU_PLUS 5SDK_AMe4x@11.00.08"

5+ * @v2CliArgs --device "AM6442" --package "FCBGA (ALV)" --variant "AM6442-D" --context "r5fsse@-e" --product "MCU_PLUS_SDK_AM64x@11.0@.a8"
6+ * @versions {"tool":"1.23.8+4000"}

TH

Figure 5-5. SysConfig CodeGen cliArgs

5.3 Resource Conflict

While using the CodeGen tool for development, it is simple to identify conflict and resolve them. The CodeGen
tool detects different kinds of conflict which the user can have while doing manual configuration and the tools
also pops up the error message for the same. The following sections discuss the types of conflict which can be
identified and resolved using the tool.

5.3.1 Pin Conflict
The SysConfig tool reports an error when any of the pin is configured for more than one functionality.

For example, if user have configured GPIO pin (ball T20) and same pin (ball T20) to GPMC. The SysConfig tool
reports a resource conflict issue as T20 pin is configured for multiple functionalities.

Figure 5-6. Pin Conflict

SDAA194 — NOVEMBER 2025 Accelerating Development with SysConfig using MCU+SDK 23
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS
Output File www.ti.com

The issue can be resolved easily by removing the T20 pin either from GPIO or from GPMC peripheral.
5.3.2 Module Instance Conflict

The SysConfig tool reports an error when one of the instances under a specific module is configured more than
once.

For example, if user have configured UART module and added two instances of UART. If two or more instances
under UART module try to configure the same UART (say UARTO) peripheral, the tool reports the instance
conflict error.

Figure 5-7. Instance Conflict

The issue can be resolved easily by configuring different UART for different instances.

5.3.3 Multicore Resource Conflict

When working with multicore projects, users can configure the same resource in two different cores. In such a
scenario the tool automatically detects the cause of conflict between the cores and the pop-up error message.

For example, if a GPIO pin is configured for R5F0-0 core and the same pin is again configured for the R5F0-1
core in multicore project, resource conflict error is given by the tool.

24 Accelerating Development with SysConfig using MCU+SDK SDAA194 — NOVEMBER 2025

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Output File

Figure 5-8. Multicore Resource Conflict

The issue can be resolved simply by configuring different GPIO pins for different cores.

5.4 Unsupported Drivers

In the following example, users must use the OSPI driver in the application, but the OSPI module is not present
in the TI Drivers list of the tool. See Figure 5-9 for details.

Figure 5-9. Tl Drivers

SDAA194 — NOVEMBER 2025

Accelerating Development with SysConfig using MCU+SDK 25
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS
Output File www.ti.com

The drivers which are not listed under the T/ Drivers section of the tool are not supported by the MCU SDK. The
drivers list in the tool can change with the different core combinations.

See the MCU SDK release notes for details on the supported driver list.
5.5 Use of Reserve Peripheral

The Reserved Peripherals tab is used to reserve any hardware resource that custom code can use, and the
tab tells the SysConfig tool not to use that peripheral. The SysConfig tool does not generate any code for the
peripherals configured under Reserved Peripheral. This tab must not be used for any peripherals that must be
configured by the tool.

Figure 5-10. SysConfig Reserve Peripheral Tab

26 Accelerating Development with SysConfig using MCU+SDK SDAA194 — NOVEMBER 2025

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Disclaimers and Intended Use

6 Disclaimers and Intended Use

SysConfig core tool follows Tl baseline quality development process. This means that there are no automotive or
functional safety claims that can be made on code that is generated using SysConfig. The expectation is that it is
the responsibility of the customer to perform standard qualification on generated code according to requirements
of a particular standard.

SDAA194 — NOVEMBER 2025 Accelerating Development with SysConfig using MCU+SDK 27

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

Summary www.ti.com

7 Summary

SysConfig significantly accelerates software bring-up by auto-generating initialization and configuration code for
TI SoCs.

The GUI and CLI interfaces minimize manual effort, verify configuration consistency, and improve productivity
across multi-core projects.

By integrating SysConfig into the MCU+SDK workflow, developers can rapidly prototype and scale embedded
systems with the reduced risk of configuration errors.

28 Accelerating Development with SysConfig using MCU+SDK SDAA194 — NOVEMBER 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

References

8 References

e TI Cloud Tools
— SysConfig
— Resource Explorer

SDAA194 — NOVEMBER 2025
Submit Document Feedback

Accelerating Development with SysConfig using MCU+SDK

Copyright © 2025 Texas Instruments Incorporated

29

http://dev.ti.com/
https://www.ti.com/tool/SYSCONFIG
https://dev.ti.com/tirex/explore/node?node=ADx41477cdE9lNEe..luQg
https://www.ti.com
https://www.ti.com/lit/pdf/SDAA194
https://www.ti.com/feedbackform/techdocfeedback?litnum=SDAA194&partnum=

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you fully
indemnify Tl and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on
ti.com or provided in conjunction with such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable
warranties or warranty disclaimers for Tl products. Unless Tl explicitly designates a product as custom or customer-specified, TI products
are standard, catalog, general purpose devices.

Tl objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated
Last updated 10/2025

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com/lit/pdf/SZZQ076
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 SysConfig CodeGen Tool

	2 Getting Started Guide
	2.1 How to Launch SysConfig (GUI and Command-Line)
	2.2 Integration with CCS and Makefile builds
	2.3 Location of SysConfig file in MCU SDK
	2.3.1 Using Existing SysConfig File
	2.3.2 Creating New SysConfig File

	3 Example Sysconfig in CCS
	3.1 Example I2C Read

	4 Common Application Configuration
	4.1 RAT Configuration
	4.2 MPU Configuration
	4.3 MMU Configuration
	4.4 System Initialization
	4.4.1 DPL Initialization
	4.4.2 Clock Initialization
	4.4.3 PinMux Configuration
	4.4.4 Driver Initialization
	4.4.5 Board Peripheral Initialization

	5 Output File
	5.1 Files Generated by CodeGen Tool
	5.1.1 Debugging and Troubleshooting

	5.2 Version Mismatch
	5.3 Resource Conflict
	5.3.1 Pin Conflict
	5.3.2 Module Instance Conflict
	5.3.3 Multicore Resource Conflict

	5.4 Unsupported Drivers
	5.5 Use of Reserve Peripheral

	6 Disclaimers and Intended Use
	7 Summary
	8 References

