AM275x Audio System Design Guide

Erik Friedel

ABSTRACT

Texas Instruments Audio DSP SoCs for premium audio applications feature the multichannel audio serial port (McASP). The McASP is very flexible in its configuration options to enable a variety of multi-zone and multichannel audio systems. This document provides an overview of digital audio formats, McASP configuration options, and common system implementations.

How to Use this Document

This document is meant to provide a base level understanding of audio data transmission, TI audio peripherals, and how to use these peripherals for a multizone audio system. The document explains the fundamentals for audio system design, starting with detailing how digital audio is sent or received and applying that to the McASP and ASRC configuration to enable a variety of different system use cases.

Chapter Overview	Chapter link
Basic explanations of digital audio formats supported by the McASP	Section 1
Basic overview of the McASP peripheral and the various configuration options available	Section 2
Detailed explanations of the AM275x-specific implementation of McASP instances for different use cases	Section 3
Highlights the two biggest considerations for layout design of the McASP	Section 4
Basic overview of the ASRC module implenting the module for additional flexibility	Section 5
Examples of different configurations of the McASP and ASRC for practical use cases involving external components	Section 6
Key audio system design takeaways	Section 7

Table of Contents

How to use this document	
1 Digital Audio Formats	2
1.1 I ² S	
1.2 TDM	3
2 McASP Overview	4
3 McASP Connections for AM275x	6
3.1 McASP Common Configurations	6
3.1.1 McASP as a Clock Controller	8
3.1.2 McASP as Clock Peripheral	12
4 McASP Layout Considerations	
4.1 McASP Signals Shared with Bootmode Logic	14
4.2 McASP Topology for Multiple Devices in Single Clock Domain	15
5 ASRC Overview	
6 McASP Practical Examples	17
6.1 Audio Playback with Internal Audio PLL for Two Clock Domains	17
6.2 Audio Playback with External Clock Source and McASP SYNC mode	18
6.3 Audio Playback with ASRC Bridging Two Clock Domains	19
7 Key Audio System Design Takeaways	20
8 References	

Trademarks

All trademarks are the property of their respective owners.

Digital Audio Formats

Very Market Substraction of the Company of

1 Digital Audio Formats

Digital audio data is communicated through 3-wire formats. The three signals required for audio transmission are bit clock, frame sync, and serial audio data. Multiple audio slots are contained within a frame of data. Audio channels are assigned to unique slots to send multichannel audio over a single bus. A single audio data frame contains a single samples for each channel being transferred. The various digital audio formats will define how the frame of audio data is organized and transferred between devices. In general, all audio frame formats are defined by the following characteristics:

- · Falling or rising edge of frame sync indicates frame start
- Delay between frame sync edge and data transmission
- Frame sync width
- Number of unique audio channels per frame
- Slot size in bits per channel
- · Word depth in bits per slot
- · Bitstream order (MSB or LSB first)
- · Bit clock polarity for sampling audio data

Note

There are many generic names for the signals of digital audio. Frame sync (FS) may also be referred to as LRCLK, WCLK, or Word Select. Bit clock may also be referred to as serial clock or audio clock. In this document, the standard naming of frame sync and bit clock is used.

Slots of audio may have words that are less than the total slot bit width. When the word depth is smaller than the slot size, then the word can be aligned to the left of the slot or the right of the slot. Because of different alignment options, it is important to have a complete understanding of how the bits are being padded to interpret the audio data.

Figure 1-1 shows an example audio slot that has a most significant bit first serial bitstream, 24-bit word depth (left-aligned), and 32-bit slot size.

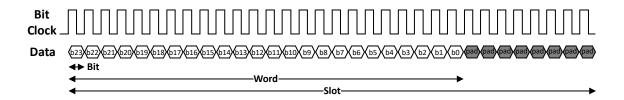


Figure 1-1. Bit, Word, and Slot in a Frame

www.ti.com Digital Audio Formats

1.1 I²S

Inter IC Sound (I²S) is a standard digital audio protocol specifically defined for stereo audio. Stereo audio means that each digital audio frame consists of two channels: left and right. An I²S frame is defined by the following characteristics:

- · Falling edge of frame sync indicates frame start
- 1-bit clock cycle delay between frame sync falling edge and data transmission
- · Single word frame sync width
- Two channels per frame
- · Most significant bit first serial bitstream order
- · Data shifted out on falling edge of bit clock
- · Data sampled in on rising edge of bit clock

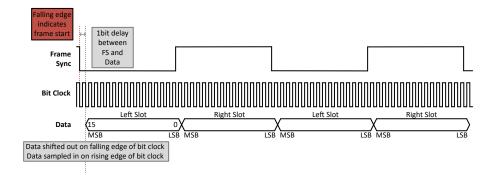


Figure 1-2. I2S Timing Diagram

1.2 TDM

Time Division Multiplexing (TDM) is a standard digital audio protocol for multichannel audio transmission. Typically, TDM is followed by a number that indicates the channel count per audio frame such as TDM4. TDM does not have a standardized format, but a typical TDM frame is defined by the following characteristics:

- Rising edge of frame sync indicates frame start
- 1-bit clock cycle delay between frame sync rising edge and data transmission
- · Single bit frame sync width
- · Most significant bit first serial bitstream order
- · Data shifted out on falling edge of bit clock
- Data sampled in on rising edge of bit clock

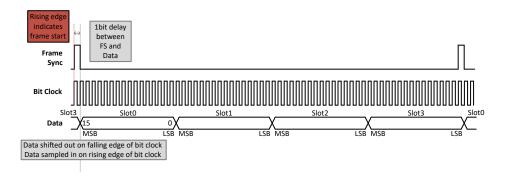


Figure 1-3. TDM4 Timing Diagram

McASP Overview www.ti.com

2 McASP Overview

The Multichannel Audio Serial Port (McASP) was designed to optimize multichannel and multi-zone audio communication. The McASP peripheral consists of signals for transmit and receive bit clocks (ACLK[X/R]), transmit and receive frame syncs (AFS[X/R]), and up to sixteen audio transmit/receive serializers (AXR). The McASP also has internal paths for sourcing a root clock and programmable dividers that can be used to generate the appropriate frequencies of bit clock and frame sync. The McASP has one AUXCLK that can be used to generate the internal transmit and receive high frequency clocks (AHCLK[X/R]). The high frequency clocks are used to internally generate the bit clock and frame sync. Alternatively, the McASP can be configured to receive a bit clock and/or frame sync from an external source.

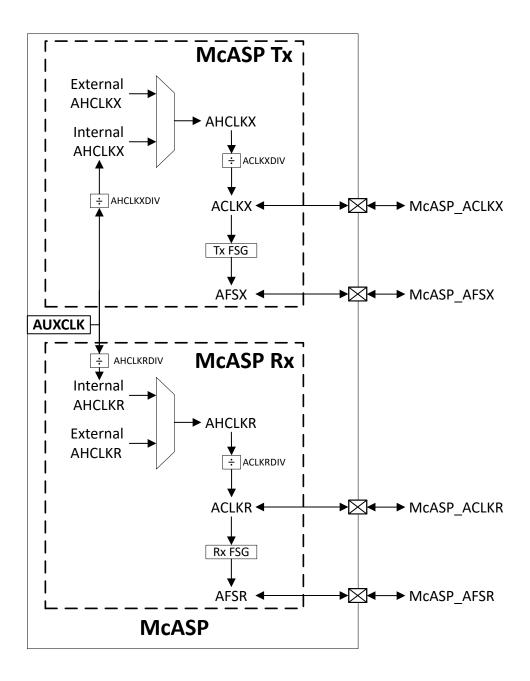


Figure 2-1. McASP General Overview

www.ti.com McASP Overview

Each McASP supports the following features:

- · Audio data transmit and reception with independent clock zones
- Up to 16 serializers for audio transmit and receive (AXR)
 - Serializer count per McASP instance varies depending on the SoC implementation.
 - For example, on AM275x, McASP0 has all 16 serializers available while McASP4 only has six serializers available.
- 32-bit buffer per serializer for transmit and receive operations
- · Clock loss detection
- Configuration options for audio frame format
 - Slot count
 - Slot size in bits
 - Bit masking for active word depth less than slot size
 - Active slot masking
 - Frame sync to data delay in terms of bit clock cycles
 - Frame sync polarity and width
 - Bit clock polarity
 - Serial data bitstream order

Each McASP also can operate in sync mode where the ACLKX and AFSX are internally routed to the ACLKR and AFSR. Sync mode enables use cases such as a codec that has one clock domain for data transmission and reception.

If the McASP is in asynchronous mode, then the serializer IO direction determines which bit clock and frame sync is used for interpreting the audio data frame.

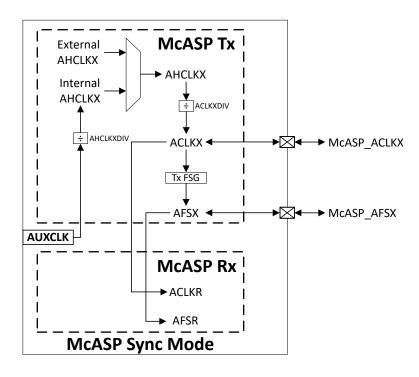


Figure 2-2. McASP Sync Mode

3 McASP Connections for AM275x

The AM275x is an Arm-based Processor that features five unique McASPs as well as various internal connections to enable different clocking scenarios. The entire mapping of internal connections is shown in Figure 3-1.

Note

Each McASP has an independent ACLK and AFS for the transmit and receive clock zone but only one AUXCLK.

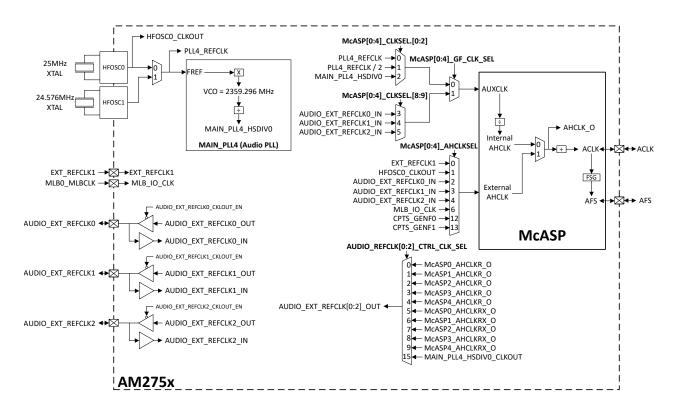


Figure 3-1. AM275x McASP Connections

3.1 McASP Common Configurations

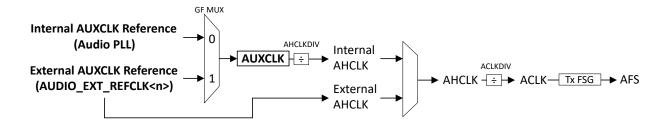


Figure 3-2. High-Level McASP Diagram

Note

Each McASP has a transmit (TX) and receive (RX) domain. Figure 3-2 shows a single clock domain that is meant to be representative of either the TX or RX domain.

The McASP bit clock (ACLK) and frame sync (AFS) are both bidirectional such that the McASP can either be the clock controller or clock peripheral. The following sections detail all the available options for each clocking configuration.

Table 3-1 lists the most common use cases for configuring McASP. The AM275x SoC has many options for generating, sourcing, and receiving clocks for the audio data frame formatting.

Note

For bit clock and frame sync, **internally generated** refers to internally referenced signals that are output at the SoC level for McASP clock controller applications while **externally generated** means that the signals are configured as inputs at the SoC level for McASP clock peripheral applications.

Table 3-	1. McASP	Use Cas	e Matrix
----------	----------	---------	----------

Description	GF MUX AUXCLK Source	AHCLK	Bit Clock	Frame Sync	McASP	Example
McASP clock controller with internal audio PLL reference	Internal Audio PLL	Internally Generated	Internally Generated	Internally Generated	Figure 3-5	Figure 6-1
McASP clock controller with external AUXCLK reference	AUDIO_EXT_REFCLK <n></n>	Internally Generated	Internally Generated	Internally Generated	Figure 3-6	
McASP clock controller with external AHCLK reference		Externally Generated	Internally Generated	Internally Generated	Figure 3-7	
McASP clock peripheral			Externally Generated	Externally Generated	Figure 3-8	
McASP clock peripheral with external AUXCLK reference	AUDIO_EXT_REFCLK <n></n>	Internally Generated	Externally Generated	Externally Generated	Figure 3-9	Figure 6-2

Figure 3-2 shows a high-level overview of the different configuration options for McASP clocking while Figure 3-3 shows a more detailed view of the available options.

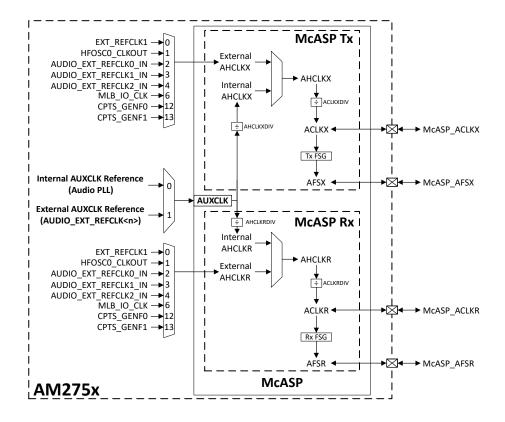


Figure 3-3. McASP Detailed Overview

3.1.1 McASP as a Clock Controller

If the McASP is configured as a clock controller, then the bit clock and frame sync signals are configured as outputs. The SDK driver defines bit clock and frame sync as outputs when the source is set to **Internally Generated**. This means that the bit clock is internally generated from the high clock and that the frame sync is generated based on the bit clock. The high clock of a TX or RX domain, as well as the McASP AUXCLK, feature many options to best fit audio system requirements.

The AUXCLK is a single clock reference that can be sourced to both the TX and RX domains. For the AM275x, each McASP AUXCLK input is tied to a glitch-free (GF) clock mux that selects between a local and external clock reference. The local reference for AUXCLK is either the audio PLL (PLL4) clock input or one of the PLL's high speed divider outputs. The external clock reference is any of the AUDIO EXT REFCLK inputs.

When the AHCLK is internally generated, then the AHCLK can be routed as an output on any of the AUDIO_EXT_REFCLK pins for a high-frequency reference.

Note

The SDK refers to the high clock source (AHCLK) as being **Internally Generated** when the AUXCLK is being used to generate the AHCLK. This can be confusing since the AUXCLK input has the option to be externally generated if the GF mux is configured for the AUDIO_EXT_REFCLK mux reference option.

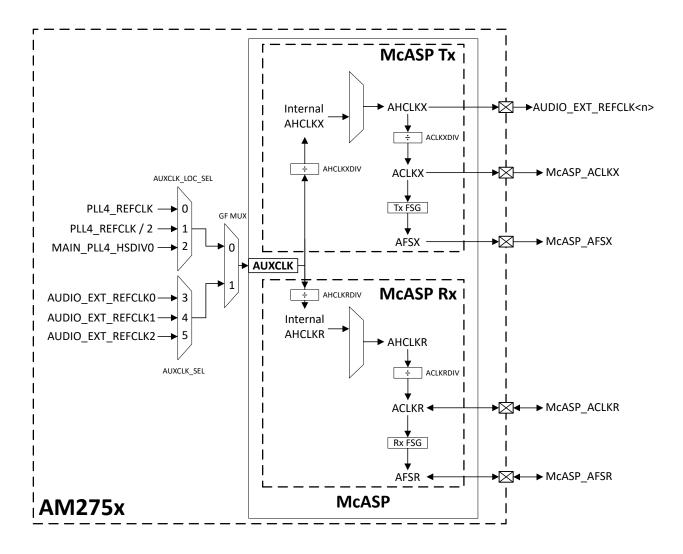


Figure 3-4. McASP Controller with AUXCLK Source

3.1.1.1 Clocks Generated using the Internal Audio PLL

The following section details an example setup for a McASP where the bit clock and frame sync are configured as outputs and generated using the internal audio PLL as a clock reference.

Description	GF MUX AUXCLK Source	AHCLK	Bit Clock	Frame Sync
McASP clock controller with internal audio PLL reference	Internal Audio PLL	Internally Generated	Internally Generated	Internally Generated

In this example, the McASP is being configured for a 48 kHz frame sync and TDM8 frame format with 32-bit words, resulting in a bit clock frequency of 12.288 MHz. The GF MUX is configured to point to the local reference mux, which is selecting MAIN_PLL4_HSDIV0. By default, MAIN_PLL4_HSDIV0 is set to 49.152 MHz. The SDK driver sets the AHCLK and ACLK dividers based upon the number of slots, frame sync frequency, and ratio between frame sync and AHCLK.

When the AHCLK is **internally generated**, then the AHCLK can be optionally output on any of the AUDIO_EXT_REFCLK pins to provide a system clock reference output.

Additionally, the clock loss detection feature of the McASP is enabled with an **internally generated** AHCLK. For additional information on the clock loss detection for the McASP, refer to the *Clock Failure Detection* chapter within the *MCASP Error Reporting* section of the AM275x Technical Reference Manual.

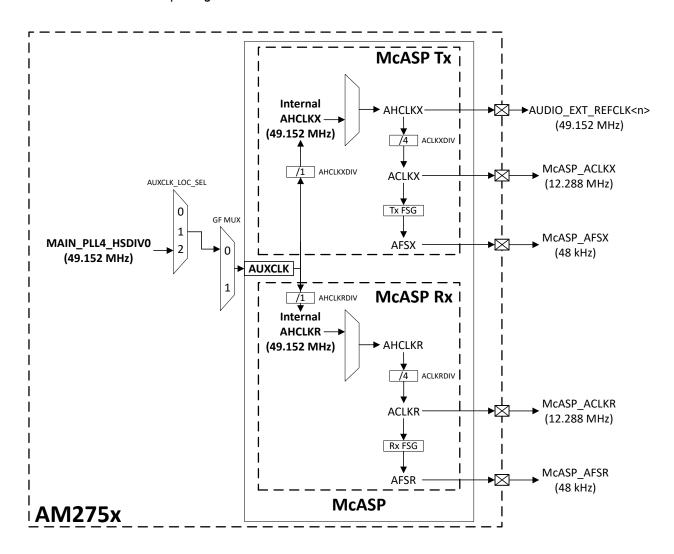


Figure 3-5. McASP Clock Controller with Audio PLL Reference

3.1.1.2 Clocks Generated using the AUDIO_EXT_REFCLK AUXCLK Source

The following section details an example setup for a McASP where the bit clock and frame sync are configured as outputs and generated using an external source via AUDIO EXT REFCLK as a clock reference.

Description	GF MUX AUXCLK Source	AHCLK	Bit Clock	Frame Sync
McASP clock controller with external input reference	AUDIO_EXT_REFCLK <n></n>	Internally Generated	Internally Generated	Internally Generated

In this example, the McASP is being configured for a 48 kHz frame sync and TDM8 frame format with 32-bit words, resulting in a bit clock frequency of 12.288 MHz. The GF MUX is configured to point to the external reference mux, which is selecting AUDIO_EXT_REFCLK0 source that is 24.576 MHz from an external driver. The SDK driver sets the AHCLK and ACLK dividers based upon the number of slots, frame sync frequency, and ratio between frame sync and AHCLK.

When the AHCLK is **internally generated**, then the AHCLK can optionally be output on any of the AUDIO EXT REFCLK pins to provide a system clock reference output.

Additionally, the clock loss detection feature of the McASP is enabled with an **internally generated** AHCLK. For additional information on the clock loss detection for the McASP, refer to the *Clock Failure Detection* chapter within the *MCASP Error Reporting* section of the AM275x Technical Reference Manual.

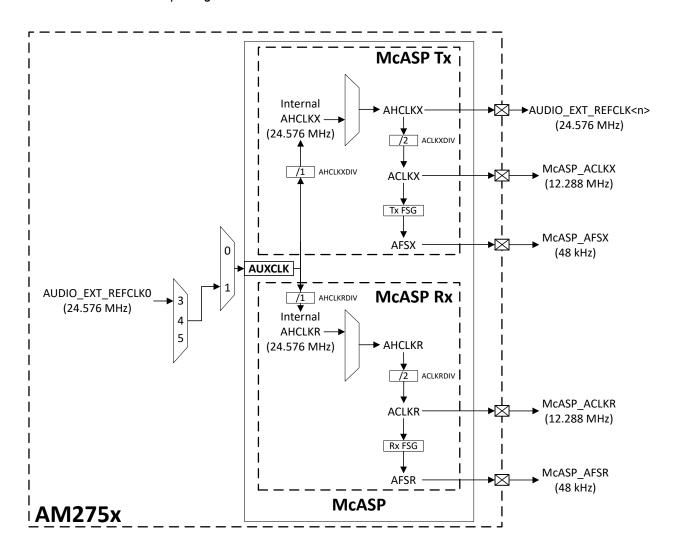


Figure 3-6. McASP Clock Controller with AUDIO_EXT_REFCLK0 AUXCLK Reference

3.1.1.3 Clocks Generated using the AUDIO_EXT_REFCLK AHCLK Source

The following section details an example setup for a McASP where the bit clock and frame sync are configured as outputs and generated using an external source via AUDIO_EXT_REFCLK as a clock reference directly to the AHCLK.

Description	GF MUX AUXCLK Source	AHCLK	Bit Clock	Frame Sync
McASP clock controller with external AHCLK input reference		Externally Generated	Internally Generated	Internally Generated

In this example, the McASP is being configured for a 48 kHz frame sync and TDM8 frame format with 32 bit words, resulting in a bit clock frequency of 12.288 MHz. The GF MUX and AUXCLK are not considered when AHCLK is configured to be externally generated. Each AHCLK has a unique mux to select different external sources. The AHCLK mux is configured to point to the AUDIO_EXT_REFCLK0 source that is 24.576 MHz from an external driver. The SDK driver sets the ACLK divider based upon the number of slots, frame sync frequency, and ratio between frame sync and AHCLK.

When the AHCLK is ${\it externally generated}$ then the AHCLK ${\it can't}$ be output on the AUDIO_EXT_REFCLK.

Clock loss detection is not available for the McASP if the AHCLK is externally generated.

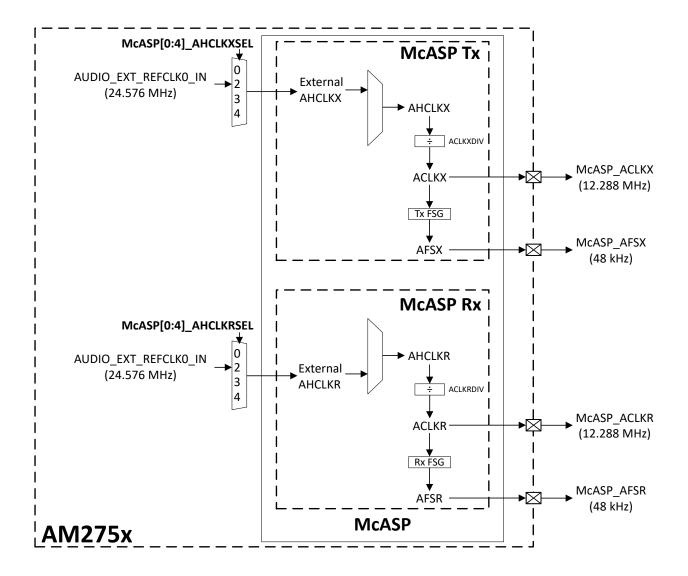


Figure 3-7. McASP Clock Controller with AUDIO_EXT_REFCLK0 AHCLK Reference

3.1.2 McASP as Clock Peripheral

The following section details an example setup for a McASP where the bit clock and frame sync are configured as inputs.

Description	GF MUX AUXCLK Source	AHCLK	Bit Clock	Frame Sync
McASP clock peripheral			Externally Generated	Externally Generated

In this example, the McASP is being configured for a 48 kHz frame sync and TDM8 frame format with 32-bit words, resulting in a bit clock frequency of 12.288 MHz. The GF MUX and AHCLK settings do not matter in this case. The SDK driver must be configured to represent the expected frequency for bit clock and frame sync for proper audio data transmission.

Clock loss detection is not available for the McASP unless the AUDIO_EXT_REFCLK is utilized as detailed in Section 3.1.2.1.

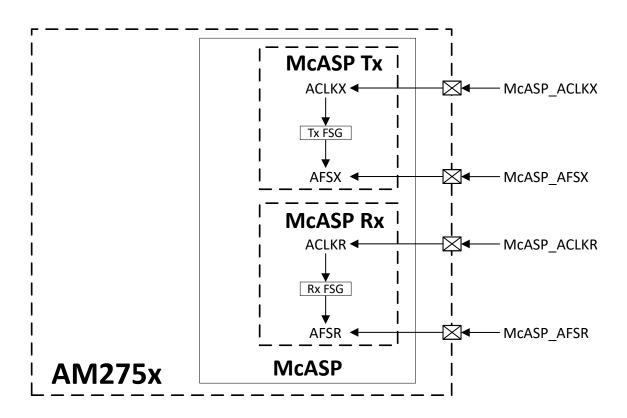


Figure 3-8. McASP Clock Peripheral

3.1.2.1 Clock Externally Generated with AUDIO_EXT_REFCLK Input

The following section details an example setup for a McASP where the bit clock and frame sync are configured as inputs.

	Description	GF MUX AUXCLK Source	AHCLK	Bit Clock	Frame Sync
Мс	ASP clock peripheral with an external AUXCLK reference	AUDIO_EXT_REFCLK <n></n>	Externally Generated	Externally Generated	Externally Generated

In this example, the McASP is being configured for a 48 kHz frame sync and TDM8 frame format with 32-bit words resulting, in a bit clock frequency of 12.288 MHz. The GF MUX is configured to point to the external reference mux which is selecting AUDIO_EXT_REFCLK0 source that is 24.576 MHz from an external driver. The SDK driver sets the AHCLK and ACLK dividers but they are not used as ACLK and AFS is externally driven.

When the AHCLK is **internally generated** then the AHCLK can optionally be output on any of the AUDIO_EXT_REFCLK pins to provide a system clock reference output.

Additionally, the clock loss detection feature of the McASP is enabled with an **internally generated** AHCLK. For additional information on the clock loss detection for the McASP, refer to the *Clock Failure Detection* chapter within the *MCASP Error Reporting* section of the AM275x Technical Reference Manual.

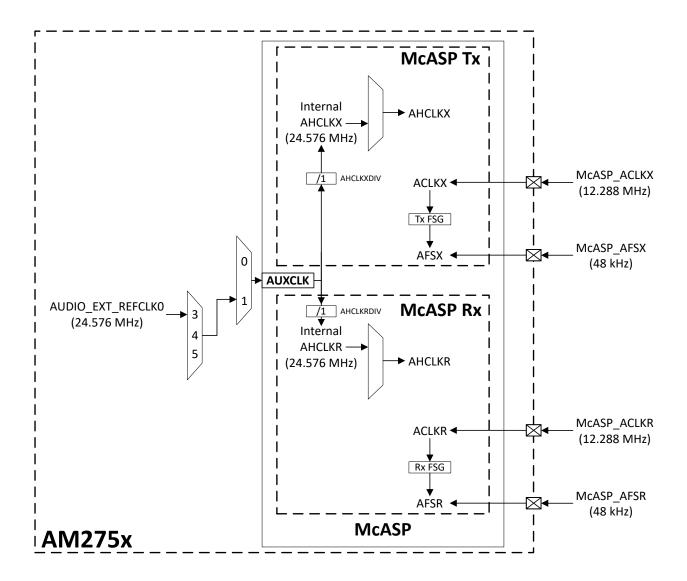


Figure 3-9. McASP Clock Peripheral with AUDIO EXT REFCLK AUXCLK Reference

4 McASP Layout Considerations

The McASP is designed to be able to interface with multiple audio devices simultaneously using a single clock domain. However, the signal integrity of the clock and data signals may be impacted depending on the layout implementation. This chapter highlights the two most important layout considerations for the McASP on the AM275x.

Note

Regardless of layout implementation parameters, the McASP signal layout should always be simulated to ensure the clock and data signals meet the datasheet timing requirements.

4.1 McASP Signals Shared with Bootmode Logic

The AM275x has 16 bootmode signals that are used by the ROM to determine which peripheral is being used for boot and other boot configuration parameters. The 16 bootmode signals are tied to a specific pad of the SoC, and the AM275x uses most of the McASP0 interface pads for the bootmode pads.

Each bootmode pad requires an external pull up or pull down resistor to define a digital logic high or low state for the associated bootmode signal during the power up sequence.

Because the McASP0 signals are shared with the bootmode logic, it is very important to review and ensure the following:

- The audio device connected to the McASP0 interface does not have the ability to drive on the bootmode signals during the initial power up or in the event of a reset. For example, if PORz is asserted for the AM275x, then the McASP0 audio device should be held in reset as well until the boot sequence is completed.
 - An external driver on the bootmode logic during power up or reset will lead to unpredictable bootmode states.
- The external pull resistors should be placed in line with the signal trace such that they do not introduce
 a stub. Figure 4-1 shows examples of pull resistors with and without trace stubs, where the green
 implementation should be replicated for designs.
 - Stubs on the signal traces, especially on the bit clock, will impact the reliability of the audio data as signal
 reflections caused by the stub can lead to timing errors and signal distortion.

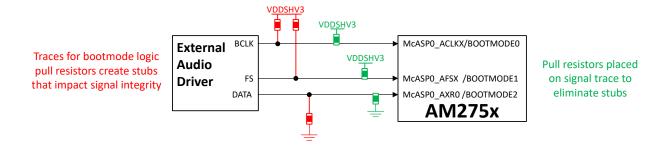


Figure 4-1. McASP Signal Trace Stubs

4.2 McASP Topology for Multiple Devices in Single Clock Domain

The McASP will often be designed into a system where many audio devices share a single clock domain. For example, the TAS6754 is a 4-channel amplifier that can support TDM16. This means that a single McASP's bit clock, frame sync, and data pin can be shared by up to 4 amplifiers. The layout design of these three signals will impact the performance and reliability of the interface.

Figure 4-2 shows three different signal topologies for connecting a bit clock signal to four different amplifiers.

- If the flyby topology is used, then the trace stubs created by each drop on the bus should be uniform in length
 and as short as possible to reduce reflections. This topology could lead to signal integrity issues depending
 on the clock frequency and trace length
- A clock fanout buffer, such as the LMK1C1104, is the recommended approach for sharing a clock signal
 across multiple devices. By redriving the clock, the fanout buffer results in a clock signal with signal integrity
 that is near the performance of a point-to-point trace.
- A balanced-T or star topology is where a single bus is split into branches that are equivalent in length for
 each of the devices. The branches that are created should be as short as possible with each stub created for
 a device being uniform in length.

Note

Regardless of topology, it is always recommended to include a series termination resistor on all McASP signals in close proximity the driver to surpress signal reflections and maintain signal integrity.

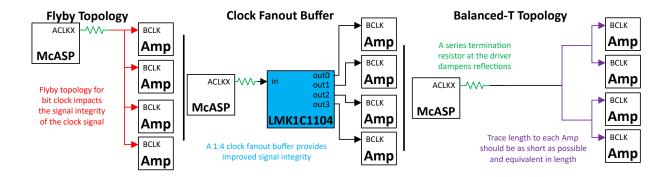


Figure 4-2. Clock Topologies for Multi-Device Audio Systems

ASRC Overview www.ti.com

5 ASRC Overview

Complex audio systems may require multiple audio zones with different audio clocks. The asynchronous audio sample rate converter (ASRC) module takes samples from one clock zone and translates the audio data to a different clock zone, while maintaining a high signal to noise ratio to ensure that the output audio quality is sufficient to meet the requirements for various high-end audio algorithms. Additionally, the ASRC may be used for converting between two clock domains using the same sampling rate with different root clocks to eliminate clock jitter. For more in-depth information on the ASRC module, refer to the Audio Sample Rate Converter chapter of the AM275x Technical Reference Manual.

The AM275x consists of two ASRC modules and therefore can perform asynchronous sample rate conversion on up to 32 independent audio channels, assuming that each SRC pair can be used for two channels. Figure 6-3 shows an example of how the ASRC can be used in an audio system.

The ASRC module has four input (RXSYNC) and four output (TXSYNC) clock zones that can select from any of the various sample rate options available within the ASRC SYNC muxes. Both RXSYNC and TXSYNC clock zones 0 and 1 have an optional divider that allows for dividing between 1 to 8192. However, if the divider is used for these zones, the input frequency must be less than 96 MHz. If clock zone dividers are not used, then the sample rate must be between 8 and 216 kHz. Additionally, the output clock zone sample rate for any sample rate converter pair must be between the ratio of 1/16 to 16 in relation to the input clock zone sample rate.

Each ASRC module consists of 8 sample rate converter stereo pairs. Each of these pairs can be uniquely configured to use any of the 4 input and output clock zones for sample rate conversion as well as program the input and output word length. Each SRC pair can be configured for mono, stereo, or group channel type. For audio data streams that are larger than two channels, the group channel type can be used to link multiple SRC pairs together with the same timing loop for input and output.

The TXSYNC/RXSYNC clock zone selections, as well as any group channel configurations, are independent across the two ASRC modules.

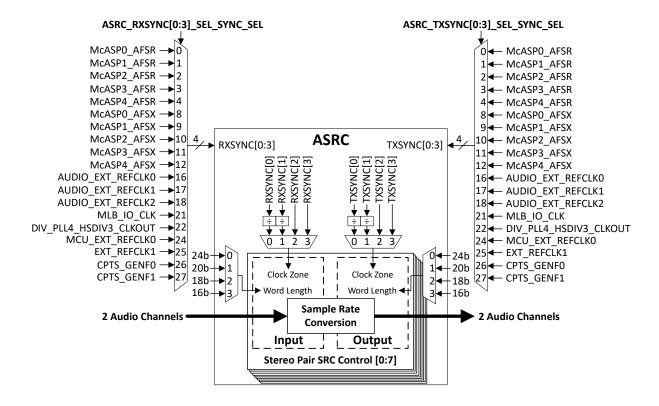


Figure 5-1. ASRC Block Diagram

6 McASP Practical Examples

6.1 Audio Playback with Internal Audio PLL for Two Clock Domains

Figure 6-1 shows a simple example of how the McASP can use a single internal reference to send and receive audio data across multiple domains. The McASP is operating in asynchronous mode, but because the root clock source is the same for the transmit and receive domain, there is no risk of buffer overrun or underrun (as long as the audio data frame formatting is the same on the input and output).

For this system, the Audio PLL uses HFOSC1 to generate a high frequency audio clock reference. The high speed divider (PLL4_HSDIV0) divides the high frequency reference to 49.152MHz for the AUXCLK input. In this case, the TX and RX domains have AHCLK, ACLK, and AFS all configured to be internally generated.

The audio data frame is four audio channels for a single TDM4 stream and, assuming that the word depth is 32 bits, then the bit clock can be calculated based on the product of 4 channels of 32 bit words that are sampled at 48kHz = 4*32*48,000 = 6.144 MHz.

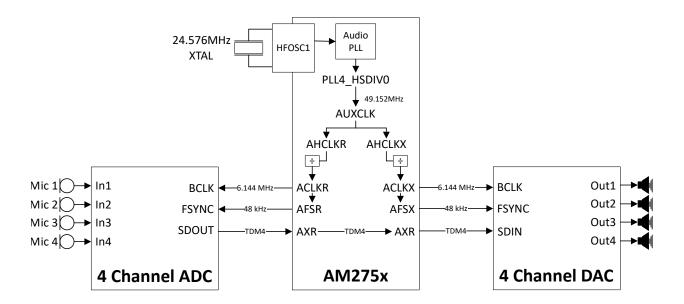


Figure 6-1. ADC DAC Audio Playback

6.2 Audio Playback with External Clock Source and McASP SYNC mode

Figure 6-2 shows a simple example of how a McASP can send and receive audio data with only a single clock reference. The McASP is operating in synchronous mode meaning that the transmit bit clock and frame sync are internally routed to the receive bit clock and frame sync, respectively. The internal routing of the RX domain allows for a single McASP instance to have serializers for input and output of audio data as long as all audio data streams have the same frame formatting.

For this system, a 4-channel codec is the clock controller for both the bit clock and frame sync. The codec also has a SYSCLK output that is a higher frequency clock reference that can be used by other McASP instances for bit clock and frame sync generation to maintain a single root clock source for the audio system. In this case, the TX and RX domains are in SYNC mode and have ACLK and AFS configured to be externally generated. If bit clock and frame sync are externally generated, the AHCLK is not required for operation and can be considered a "don't care" value.

The audio data frame is four audio channels for a single TDM4 stream and, assuming that the word depth is 32 bits, then the bit clock can be calculated based on the product of 4 channels of 32 bit words that are sampled at 48 kHz = 4*32*48,000 = 6.144 MHz.

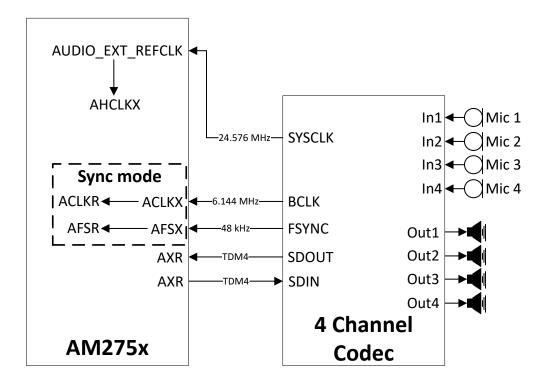


Figure 6-2. Codec Playback with McASP as Clock Peripheral in Sync Mode

6.3 Audio Playback with ASRC Bridging Two Clock Domains

In audio systems, there may be components that must be clock controllers and also have different sampling rates for the frame sync. Figure 6-3 shows a simple example of how the ASRC module can be used to translate audio data from one clock domain to another. The McASP is operating in asynchronous mode since the transmit and receive audio data have different clocks.

The ASRC, in this case, is used to convert the frame sync sample rate from 48 kHz to 96 kHz. If the frame sync sample rates in this example were the same, then the ASRC would still be required as the root clocks for frame sync generation do not match. The clock jitter between the two root clocks would eventually result in a buffer overrun or underrun for the McASP.

For this system, both the external ADC and DAC are clock controllers. The ASRC is configured to group two stereo pairs of SRC blocks to convert the 4 channels of audio from 48 kHz to 96 kHz sampling rate. The grouped channels within the ASRC module allow for all 4 channels of audio to share the same timing loop for input and output.

The audio data frame is four audio channels for a single TDM4 stream and assuming that the word depth is 32 bits, then the bit clock of the ADC can be calculated based on the product of 4 channels of 32 bit words that are sampled at 48 kHz = 4*32*48,000 = 6.144 MHz. The DAC's bit clock is 12.288 MHz because the sampling rate of 96 kHz is twice as fast as the ADC sampling rate of 48 kHz for the same number of channels and word depth.

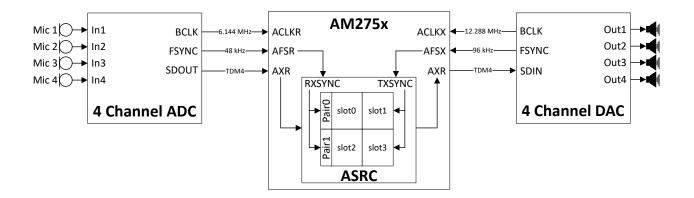


Figure 6-3. ASRC Audio Playback

7 Key Audio System Design Takeaways

- The McASP has two modes of operation for clock synchronization:
 - Sync mode: where the ACLKX and AFSX signals are internally routed to ACLKR and AFSR and all audio data is sent and received with a single clock domain.
 - Asynchronous mode: The TX and RX clock domains are independent of each other and the audio data clock domains are determined by the serializer IO direction.
- Multizone audio systems ideally have one clock reference for all generated bit clocks and frame syncs in order to avoid audio data buffering issues. The clock reference can either be provided by an internal audio reference or an external source.
 - If the AM275x is providing the internal reference for the audio system, then either the McASPs need to be configured to internally reference the Audio PLL or the Audio PLL must be provided to external devices for bit clock and frame sync generation.
 - If an external source is providing the audio clock reference for the audio system, then either the McASPs need to be configured to internally reference an AUDIO_EXT_REFCLK input or they need to have the bit clock and frame syncs configured to be externally generated.
 - If the external source does not have a device level high-frequency reference, then the bit clock must also be routed to an AUDIO_EXT_REFCLK input to enable other McASP instances with the same reference.
- If the multizone audio system requires multiple audio clock references for different domains, then the ASRC
 must be used, even if the bit clock and frame sync frequencies are same between two clock domains. If the
 ASRC is not used to bridge two clock domains with different reference sources, then the clock jitter between
 the domains will introduce audio data buffer overrun or underrun issues.
- Each ASRC module can convert the sample rate of up to 16 channels. The number of ASRC modules in the AM275x depends on the device performance grade. AM275x with the operating performance point A or B only have one ASRC while C/D/E/F all have two ASRC modules.
- Carefully review all bootmode signals that are shared with McASP signals to ensure that there aren't any unnecessary trace stubs introduced on the clock or data signal lines.
- For clock and data signals that are shared across multiple devices, ensure that the layout topology does not impact the performance of the signal.
 - Always simulate the signal with the proposed layout topology to ensure the reliability and integrity of the audio data transfers.

www.ti.com References

8 References

- AM275x Signal Processing Microcontrollers
- AM275x Signal Processing Microcontrollers Data Sheet
- AM275x Signal Processing Microcontrollers Technical Reference Manual

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025