
- Controlled Baseline
 - One Assembly/Test Site, One Fabrication Site
- Extended Temperature Performance of –40°C to 105°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product Change Notification
- Qualification Pedigree[†]
- Precision 1% Reference
- Over-Current Sense Threshold Accurate to 5%
- Programmable Duty-Ratio Over-Current Protection
- † Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

- 4.5 V to 36 V Operation
- 100 mA Output Drive, Source or Sink
- Under-Voltage Lockout
- Adjustable Current Limit to Current Sense Ratio
- Separate +V_{IN} terminal
- Programmable Driver Current Limit
- Access to VREF and E/A(+)
- Logic-Level Disable Input

NC = No Connect

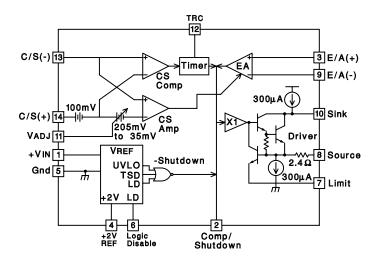
description

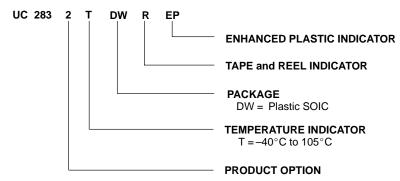
The UC2832 series of precision linear regulators include all the control functions required in the design of very low dropout linear regulators. Additionally, they feature an innovative duty-ratio current limiting technique which provides peak load capability while limiting the average power dissipation of the external pass transistor during fault conditions. When the load current reaches an accurately programmed threshold, a gated-astable timer is enabled, which switches the regulator's pass device off and on at an externally programmable duty-ratio. During the on-time of the pass element, the output current is limited to a value slightly higher than the trip threshold of the duty-ratio timer. The constant-current-limit is programmable on the UC2832 to allow higher peak current during the on-time of the pass device. With duty-ratio control, high initial load demands and short circuit protection may both be accommodated without extra heat sinking or foldback current limiting. Additionally, if the timer pin is grounded, the duty-ratio timer is disabled, and the IC operates in constant-voltage/constant-current regulating mode.

These IC's include a 2 Volt $(\pm 1\%)$ reference, error amplifier, UVLO, and a high current driver that has both source and sink outputs, allowing the use of either NPN or PNP external pass transistors. Safe operation is assured by the inclusion of under-voltage lockout (UVLO) and thermal shutdown.

ORDERING INFORMATION[‡]

TA	PACKAGE§		ORDERABLE PART NUMBER	TOP-SIDE MARKING		
-40°C to 105°C	SOP – DW	Tape and reel	UC2832TDWREP	UC2832TEP		
-40°C to 105°C	SOP - DW	Tube	UC2832TDWEP	UC2832TEP		


[‡] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

block diagram

Ordering Information

electrical characteristics, $T_A = -40^{\circ}C$ to $105^{\circ}C$ for the UC2832T-EP, $+V_{IN} = 15$ V, Driver sink = $+V_{IN}$, C/S(+) voltage = $+V_{IN}$, and $T_A = T_J$ (unless otherwise stated)

PARAMETER	TEST CONI	MIN	TYP	MAX	UNITS		
Input Supply							
	+V _{IN} = 6 V		6.5	10			
Supply current	+V _{IN} = 36 V				9.5	15	mA
	Logic Disable = 2 V				3.3	10	
Reference Section							
Outro de calles as	40 4		T _J = 25°C	1.98	2	2.02	V
Output voltage	IDRIVER = 10 MA	IDRIVER = 10 mA		1.96	2	2.04	V
Load regulation voltage	I _{OUT} = 0 to 10 mA			-10	-5	10	mV
Line regulation	+V _{IN} = 4.5 V to 36 V,	IDF	RIVER = 10 mA		0.033	0.5	mV/V
Under-voltage lockout threshold					3.6	4.5	V
Logic Disable Input							
Threshold voltage				1.3	1.4	1.5	V
Input bias current	Logic Disable = 0 V	Logic Disable = 0 V				0.1	μΑ
Current Sense Section							
Compositor offset	$T_J = 25^{\circ}C$	$T_J = 25^{\circ}C$					mV
Comparator offset	T _J = Full range	93	100	107	mv		
	V _{ADJ} = Open	110	135	170			
Amplifier offset	$V_{ADJ} = 1 V$	V _{ADJ} = 1 V					mV
	V _{ADJ} = 0 V	V _{ADJ} = 0 V					
Input bias current	$V_{CM} = +V_{IN}$			65	100	135	μА
Input offset current	V _{CM} = +V _{IN}			-10		10	μΑ
Amplifier CMRR	$V_{CM} = 4.1 \text{ V to } + V_{IN} + 0.3 \text{ V}$	V _{CM} = 4.1 V to +V _{IN} + 0.3 V					dB
Transconductance	ransconductance $I_{COMP} = \pm 100 \mu A$				65		ms
V _{ADJ} input current			-10	-1		μА	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[‡] Unless otherwise indicated, voltages are reference to ground and currents are positive into and negative out of the specified terminals.

electrical characteristics, $T_A = -40^{\circ} C$ to $105^{\circ} C$ for the UC2832T-EP, $+V_{IN} = 15$ V, Driver sink = $+V_{IN}$, C/S(+) voltage = $+V_{IN}$, and $T_A = T_J$ (unless otherwise stated)

PARAMETER	TEST C	TEST CONDITIONS				UNITS
Timer						
Inactive leakage current	$C/S(+) = C/S(-) = +V_{IN},$	TRC pin = 2 V		0.25	1	μΑ
Active pull-up current	$C/S(+) = +V_{IN},$ C/S TRC pin = 0 V	$(-) = +V_{IN} - 0.4 V,$	-345	-270	-175	μА
Duty ratio (See Note 1)	ontime/period, RT =	$= 200 \text{ k}\Omega$, $C_T = 0.27 \mu\text{F}$		4.8		%
Period (See Notes 1 and 2)	ontime + offtime, R _T :	$= 200 \text{ k}\Omega$, $C_T = 0.27 \mu\text{F}$		36		ms
Upper trip threshold (V _u)				1.8		V
Lower trip threshold (V _I)				0.9		V
Trip threshold ratio	V_u / V_l			2.0		V/V
Error Amplifier Section						
Input offset voltage	V _{CM} = V _{COMP} = 2 V	V _{CM} = V _{COMP} = 2 V				mV
Input bias current	V _{CM} = V _{COMP} = 2 V	V _{CM} = V _{COMP} = 2 V				μΑ
Input offset current	V _{CM} = V _{COMP} = 2 V	V _{CM} = V _{COMP} = 2 V			1.5	μΑ
Open loop voltage gain (A _{VOL)}	V _{COMP} = 1 V to 13 V	V _{COMP} = 1 V to 13 V				dB
Common mode rejection ratio (CMRR)	$V_{CM} = 0 V \text{ to } +V_{IN} - 3 V$	I	60	80		dB
PSRR	$V_{CM} = 2 \text{ V}, +V_{IN} = 4.5 \text{ V}$	/ to 36 V		90		dB
Transconductance	$I_{COMP} = \pm 10 \mu A$			4.3		ms
High-level output voltage (VOH)	I _{COMP} = 0, Volta	ICOMP = 0, Volts below +VIN			1.3	V
Low-level output voltage (VOL)	ICOMP = 0				0.7	V
Output high current (I _{OH})	V _{COMP} = 2 V	V _{COMP} = 2 V				μΑ
Output low ourrest (I)	V 2.V	$C/S(-) = +V_{IN}$	100	500	700	μΑ
Output low current (I _{OL})	V _{COMP} = 2 V	$C/S(-) = +V_{IN} - 0.4 V$	2	6		mA

NOTES: 1. These parameters are first-order supply-independent, however, both may vary with supply for +V_{IN} less than about 4 V. This supply variation will cause a slight change in the timer period and duty cycle, although a high off-time/on-time ratio will be maintained.

2. With recommended RT value of 200 k Ω , TOFF \approx RT CT * In(Vu/VI) \pm 10%.

electrical characteristics, $T_A = -40^{\circ} C$ to $105^{\circ} C$ for the UC2832T-EP, $+V_{IN} = 15$ V, Driver sink = $+V_{IN}$, C/S(+) voltage = $+V_{IN}$, and $T_A = T_J$ (unless otherwise stated)

PARAMETER	TEST CONDITI	MIN	TYP	MAX	UNITS				
Driver Section									
Mariana	Duissan limit and account wine account	T _J = 25°C	200	300	400	^			
Maximum current	Driver limit and source pins common	T _J = Full range	100	300	450	mA			
Limiting voltage	Driver limit to source voltage at currer ISOURCE = -10 mA, T _J = 25 °C,	Driver limit to source voltage at current limit, ISOURCE = -10 mA, T _J = 25°C, See Note 3				V			
Internal current sense resistance	$T_J = 25^{\circ}C$, See Note 3	T _J = 25°C, See Note 3				Ω			
		Driver sink = $+V_{IN} - 1 V$	-800	-300	-100				
Pull-up current at driver sink	Compensation/Shutdown = 0.4 V	+V _{IN} = 36 V, Driver sink = 35 V	-1000	-300	- 75	μΑ			
Pull-down current at driver source	Compensation/Shutdown = 0.4 V, Driver source = 1 V	· · · · · · · · · · · · · · · · · · ·				μΑ			
Saturation voltage sink to source	Driver source = 0 V, Driver current	Driver source = 0 V, Driver current = 100 mA				V			
Maximum source voltage	Driver sink = +V _{IN} , Driver current = 7 Volts below +V _{IN}		3		V				
UVLO sink leakage	$+V_{IN} = C/S(+) = C/S(-) = 2.5 \text{ V}, \text{ Driver source} = 0 \text{ V}, T_A = 2$		25		μΑ				
Maximum reverse source voltage	Compensation/Shutdown = 0 V, I _{SOL} (+)V _{IN} = 3 V		1.6		V				
Thermal shutdown			160		°C				

NOTES: 3. The internal current limiting voltage has a temperature dependence of approximately –2.0 mV/°C, or –2800 ppm/°C. The internal 2.4 Ω sense resistor has a temperature dependance of approximately +1500 ppm/°C.

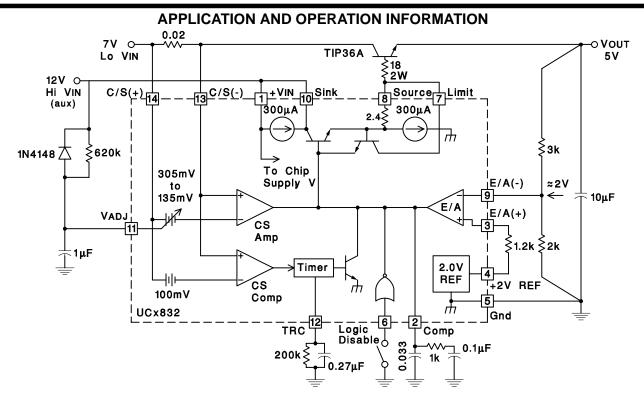


Figure 1. NPN Pass (Medium Power, Low Drop-Out Regulator)

APPLICATION AND OPERATION INFORMATION

Estimating Maximum Load Capacitance

For any power supply, the rate at which the total output capacitance can be charged depends on the maximum output current available and on the nature of the load. For a constant-current current-limited power supply, the output will come up if the load asks for less than the maximum available short-circuit limit current.

To ensure recovery of a duty-ratio current-limited power supply from a short-circuited load condition, there is a maximum total output capacitance which can be charged for a given unit ON time. The design value of ON time can be adjusted by changing the timing capacitor. Nominally, $T_{ON} = 0.693 \times 10 \text{ k}\Omega \times C_T$.

Typically, the IC regulates output current to a maximum of $I_{MAX} = K \times I_{TH}$, where I_{TH} is the timer trip-point current, and

$$K = \frac{Current \ Sense \ Amplifier \ Offset \ Voltage}{100 \ mA}$$

and is variable from 1.35 to 3.05 with V_{ADJ}.

For a worst-case constant-current load of value just less than I_{TH}, C_{MAX} can be estimated from:

$$C_{MAX} = \left(\frac{K-1}{TH}\right) \times \left(\frac{T_{ON}}{V_{OUT}}\right)$$

where V_{OUT} is the nominal regulator output voltage.

For a resistive load of value R_L, the value of C_{MAX} can be estimated from:

$$C_{MAX} = \frac{T_{ON}}{R_{L}} \times \frac{1}{In \left[\left(1 - \frac{V_{OUT}}{K \times I_{TH} \times R_{L}} \right)^{-1} \right]}$$

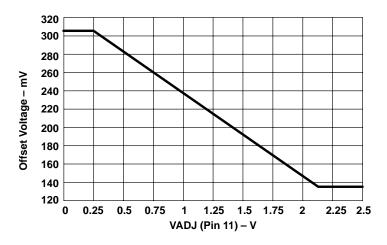


Figure 2. Current Sense Amplifier Offset Voltage vs V_{ADJ}

APPLICATION AND OPERATION INFORMATION

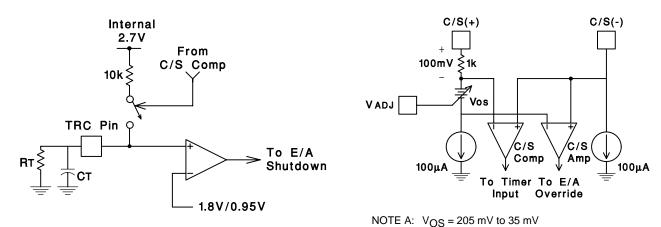


Figure 3. Timer Function

Figure 4. Current Sense Input Configuration

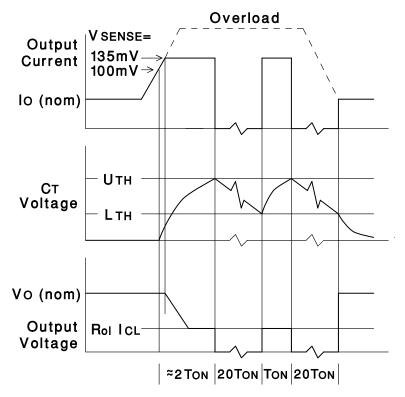


Figure 5. Load Current, Timing Capacitor Voltage, and Output Voltage of the Regulator Under Fault Conditions

APPLICATION AND OPERATION INFORMATION

UCx832 Error Amplifier

AVOL vs Frequency and CC 120 100 1500pF 80 AVOL - (dB) 60 40 20 0 -20 1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 Frequency - (Hz)

Figure 6. UCx832 Error Amplifier

UCx832 Error Amplifier

Transconductance and Phase vs Frequency

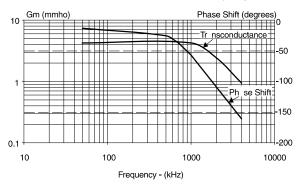


Figure 8. UCx832 Error Amplifier

UCx832 Current Sense Amplifier

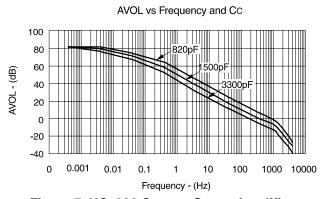


Figure 7. UCx832 Current Sense Amplifier

UCx832 Current Sense Amplifier

Transconductance and Phase vs Frequency

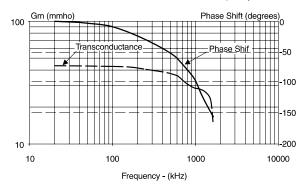


Figure 9. UCx832 Current Sense Amplifier

11-Nov-2025

www.ti.com

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
UC2832TDWEP	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	UC2832TEP
UC2832TDWEP.A	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	UC2832TEP

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF UC2832-EP:

Catalog: UC2832

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

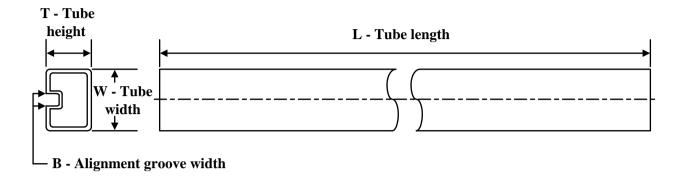
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

Military : UC2832M


NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
UC2832TDWEP	DW	SOIC	16	40	507	12.83	5080	6.6
UC2832TDWEP.A	DW	SOIC	16	40	507	12.83	5080	6.6

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025