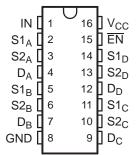
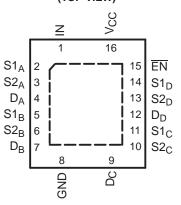
www.ti.com


SCDS164D-MAY 2004-REVISED JUNE 2009

QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH WITH LOW ON-STATE RESISTANCE


FEATURES

- Low Differential Gain and Phase (D_G = 0.64%, D_P = 0.1 Degrees Typ)
- Wide Bandwidth (BW = 300 MHz Min)
- Low Crosstalk (X_{TALK} = -63 dB Typ)
- Low Power Consumption (I_{CC} = 3 μA Max)
- Bidirectional Data Flow With Near-Zero Propagation Delay
- Low ON-State Resistance (r_{on} = 3 Ω Typ)
- V_{CC} Operating Range From 4.5 V to 5.5 V
- I_{off} Supports Partial-Power-Down Mode Operation
- Data and Control Inputs Provide Undershoot Clamp Diode
- Control Inputs Can Be Driven by TTL or 5-V/3.3-V CMOS Outputs
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 1000-V Charged-Device Model (C101)
- Suitable for Both RGB and Composite-Video Switching

D, DBQ, OR PW PACKAGE (TOP VIEW)

RGY PACKAGE (TOP VIEW)

DESCRIPTION/ORDERING INFORMATION

The TS5V330 video switch is a 4-bit 1-of-2 multiplexer/demultiplexer with a single switch-enable (\overline{EN}) input. When \overline{EN} is low, the switch is enabled and the D port is connected to the S port. When \overline{EN} is high, the switch is disabled and the high-impedance state exists between the D and S ports. The select (IN) input controls the data path of the multiplexer/demultiplexer.

Low differential gain and phase make this switch ideal for composite and RGB video applications. This device has wide bandwidth and low crosstalk, making it suitable for high-frequency applications as well.

This device is fully specified for partial-power-down applications using loff. The loff feature ensures that damaging current will not backflow through the device when it is powered down. This switch maintains isolation during power off.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	QFN – RGY	Tape and reel	TS5V330RGYR	TE330
–40°C to 85°C	SOIC – D	Tube	TS5V330D	TS5V330
	201C - D	Tape and reel	TS5V330DR	1307330
	SSOP (QSOP) – DBQ	Tape and reel	TS5V330DBQR	TE330
	TSSOP – PW	Tube	TS5V330PW	TF220
	1330F - FW	Tape and reel	TS5V330PWR	TE330

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

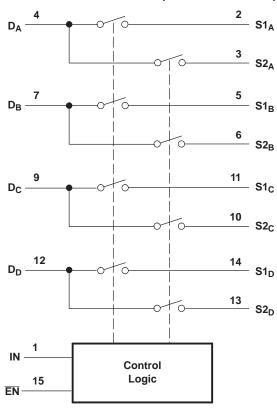
To ensure the high-impedance state during power up or power down, $\overline{\text{EN}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTION TABLE

INP	PUTS INPUT/OUTPUT		FUNCTION		
EN	IN	D	FUNCTION		
L	L	S1	D port = S1 port		
L	Н	S2	D port = S2 port		
Н	Χ	Z	Disconnect		

PIN DESCRIPTION

PIN	DESCRIPTION	
S1, S2	Analog video I/Os	
D	Analog video I/Os	
IN	Select input	
ĒN	Switch-enable input	


www.ti.com

PARAMETER DEFINITIONS

PARAMETER	DESCRIPTION
r _{on}	Resistance between the D and S ports, with the switch in the ON state
I _{OZ}	Output leakage current measured at the D and S ports, with the switch in the OFF state
Ios	Short-circuit current measured at the I/O pins
V _{IN}	Voltage at IN
V _{EN}	Voltage at EN
C _{IN}	Capacitance at the control (EN, IN) inputs
C_{OFF}	Capacitance at the analog I/O port when the switch is OFF
C _{ON}	Capacitance at the analog I/O port when the switch is ON
V _{IH}	Minimum input voltage for logic high for the control (EN, IN) inputs
V _{IL}	Minimum input voltage for logic low for the control (EN, IN) inputs
V _{hys}	Hysteresis voltage at the control (EN, IN) inputs
V _{IK}	I/O and control (EN, IN) inputs diode clamp voltage
VI	Voltage applied to the D or S pins when D or S is the switch input
Vo	Voltage applied to the D or S pins when D or S is the switch output
I _{IH}	Input high leakage current of the control (EN, IN) inputs
I _{IL}	Input low leakage current of the control (EN, IN) inputs
I _I	Current into the D or S pins when D or S is the switch input
Io	Current into the D or S pins when D or S is the switch output
I _{off}	Output leakage current measured at the D or S ports, with $V_{CC} = 0$
t _{ON}	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned ON
t _{OFF}	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned OFF
BW	Frequency response of the switch in the ON state measured at –3 dB
X _{TALK}	Unwanted signal coupled from channel to channel. Measured in $-dB$. $X_{TALK} = 20 \log V_O/V_I$. This is a nonadjacent crosstalk.
O_{IRR}	Off isolation is the resistance (measured in –dB) between the input and output with the switch OFF.
D_G	Magnitude variation between analog input and output pins when the switch is ON and the dc offset of composite-video signal varies at the analog input pin. In the NTSC standard, the frequency of the video signal is 3.58 MHz, and dc offset is from 0 to 0.714 V.
D _P	Phase variation between analog input and output pins when the switch is ON and the dc offset of composite-video signal varies at the analog input pin. In the NTSC standard, the frequency of the video signal is 3.58 MHz, and dc offset is from 0 to 0.714 V.
I _{CC}	Static power-supply current
I _{CCD}	Variation of I _{CC} for a change in frequency in the control (EN, IN) inputs
Δl _{CC}	This is the increase in supply current for each control input that is at the specified voltage level, rather than V _{CC} or GND.

FUNCTIONAL DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	7	V
V_{IN}	Control input voltage range (2)(3)			7	V
V _{I/O}	Switch I/O voltage range ⁽²⁾⁽³⁾⁽⁴⁾		-0.5	7	V
I _{IK}	Control input clamp current	V _{IN} < 0		- 50	mA
I _{I/OK}	I/O port clamp current	V _{I/O} < 0		-50	mA
I _{I/O}	ON-state switch current ⁽⁵⁾			±128	mA
	Continuous current through V _{CC} or GND			±100	mA
		D package ⁽⁶⁾		73	
0		DBQ package ⁽⁶⁾		90	
θ_{JA}	Package thermal impedance	PW package ⁽⁶⁾		108	°C/W
		RGY package ⁽⁷⁾		39	
T _{stg}	Storage temperature range		-65	150	°C

- Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- All voltages are with respect to ground, unless otherwise specified.
- The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- V_I and V_O are used to denote specific conditions for V_{I/O}.
- $I_{\rm I}$ and $I_{\rm O}$ are used to denote specific conditions for $I_{\rm I/O}$. The package thermal impedance is calculated in accordance with JESD 51-7.
- The package thermal impedance is calculated in accordance with JESD 51-5.

Submit Documentation Feedback

Copyright © 2004-2009, Texas Instruments Incorporated

www.ti.com

Recommended Operating Conditions⁽¹⁾

		MIN	MAX	UNIT
V _{CC}	Supply voltage range	4	5.5	V
V _{IH}	High-level control input voltage range (EN, IN)	2	5.5	V
V _{IL}	Low-level control input voltage range (EN, IN)	0	0.8	V
V _{ANALOG}	Analog I/O voltage range	0	Vcc	V
T _A	Operating free-air temperature range	-40	85	ç

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

Electrical Characteristics

over recommended operating free-air temperature range, $V_{CC} = 5 \text{ V} \pm 10\%$ (unless otherwise noted)

PARA	AMETER		TEST CONDITIONS ⁽¹⁾			MIN	TYP ⁽²⁾	MAX	UNIT
V_{IK}	EN, IN	$V_{CC} = 4.5 \text{ V},$	I _{IN} = -18 mA					-1.8	V
V_{hys}	EN, IN						150		mV
I _{IH}	EN, IN	$V_{CC} = 5.5 V,$	V_{IN} and $V_{EN} = V_{CC}$					±1	μΑ
I_{IL}	EN, IN	$V_{CC} = 5.5 V,$	V_{IN} and $V_{EN} = GND$					±1	μΑ
$I_{OZ}^{(3)}$		$V_{CC} = 5.5 V,$	$V_0 = 0 \text{ to } 5.5 \text{ V},$	$V_I = 0$,	Switch OFF			±1	μΑ
I _{OS} (4)		$V_{CC} = 5.5 V,$	$V_{O} = 0.5 V_{CC,}$	$V_{I} = 0,$	Switch ON	50			mA
$I_{\rm off}$		$V_{CC} = 0 V$,	$V_0 = 0 \text{ to } 5.5 \text{ V},$	$V_I = 0$				1	μΑ
Icc		$V_{CC} = 5.5 V,$	$I_{I/O} = 0$,	Switch ON or OFF				3	μΑ
ΔI_{CC}	EN, IN	$V_{CC} = 5.5 V,$	One input at 3.4 V,	Other inputs at V _{CC}	or GND			2.5	mA
I_{CCD}		V _{EN} = GND, V	$t_{CC} = 5.5 \text{ V}, D \text{ and S p}$	orts open, V _{IN} input	switching 50% duty cycle			0.25	mA/MHz
C _{IN}	ĒN, IN	V_{IN} of $V_{EN} = 0$ f = 1 MHz	,				3.5		pF
C	D port	V - 0	f = 1 MHz,	Outpute open	Switch OFF		6		pF
C _{OFF}	S port	$V_I = 0$,	i = i ivi⊓z,	Outputs open,	SWILCH OFF		4		рг
C_{ON}		$V_I = 0$,	f = 1 MHz,	Outputs open,	Switch ON		14		pF
r _{on} (5)		V _{CC} = 4.5 V	$V_I = 1 V$,	$I_{O} = 13 \text{ mA},$	$R_L = 75 \Omega$		3	7	Ω
on`′		v _{CC} = 4.5 v	V _I = 2 V,	$I_O = 26 \text{ mA},$	$R_L = 75 \Omega$		7	10	22

Copyright © 2004-2009, Texas Instruments Incorporated

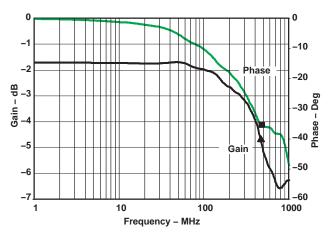
⁽¹⁾ V_I, V_O, I_I, and I_O refer to I/O pins.
(2) All typical values are at V_{CC} = 5 V (unless otherwise noted), T_A = 25°C.
(3) For I/O ports, I_{OZ} includes the input leakage current.
(4) The I_{OS} test is applicable to only one ON channel at a time. The duration of this test is less than 1 s.
(5) Measurement by the voltage drop between the D and S terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (D or S) terminals.

Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 5 V ± 10%, R_L = 75 Ω , C_L = 20 pF (unless otherwise noted) (see Figure 5)

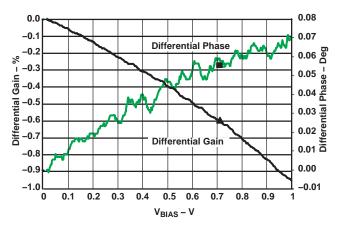
PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	TYP	MAX	UNIT
t _{ON}	S	D		2.5	6	ns
t _{OFF}	S	D		1.1	6	ns

Dynamic Characteristics


over recommended operating free-air temperature range, V_{CC} = 5 V \pm 10% (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP ⁽¹⁾	MAX	UNIT
D _G ⁽²⁾	$R_L = 150 \Omega$,	f = 3.58 MHz,	See Figure 6			0.64		%
D _P ⁽²⁾	$R_L = 150 \Omega$,	f = 3.58 MHz,	See Figure 6			0.1		Deg
BW	$R_L = 150 \Omega$,	See Figure 7			300			MHz
X _{TALK}	$R_L = 150 \Omega$,	f = 10 MHz,	RIN = 10 Ω,	See Figure 8		-63		dB
O _{IRR}	$R_L = 150 \Omega$,	f = 10 MHz,	See Figure 9			-60		dB

⁽¹⁾ All typical values are at V_{CC} = 5 V (unless otherwise noted), T_A = 25°C. (2) D_G and D_P are expressed in absolute magnitude.



OPERATING CHARACTERISTICS

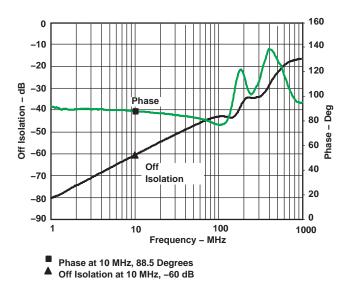
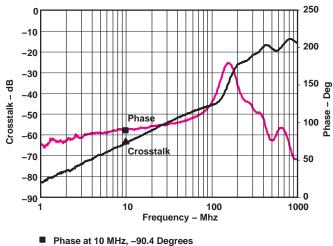
- Phase at -3-dB Frequency, 35 Degrees
- ▲ Gain –3 dB at 460 MHz

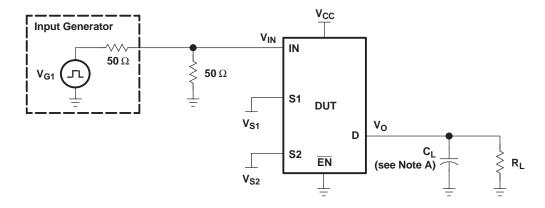
Figure 1. Gain/Phase vs Frequency

- Differential Phase at 0.714, 0.056 Degrees
- ▲ Differential Gain at 0.714, -0.63%

Figure 2. Differential Gain/Phase vs V_{BIAS}

OPERATING CHARACTERISTICS


Figure 3. Off Isolation vs Frequency

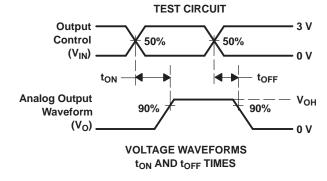
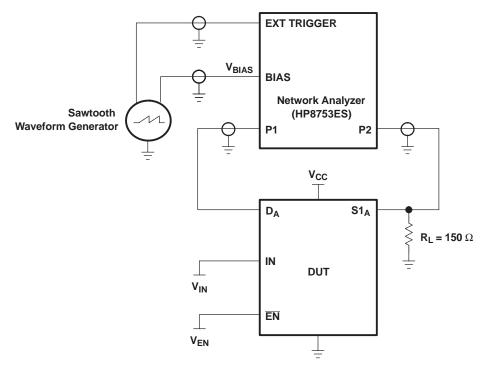

Phase at 10 MHz, -90.4 Degrees Crosstalk at 10 MHz, -63.9 dB

Figure 4. Crosstalk vs Frequency

TEST	V _{CC}	R _L	CL	V _{S1}	V _{S2}
t _{ON}	$\begin{array}{c} \textbf{5 V} \pm \textbf{0.5 V} \\ \textbf{5 V} \pm \textbf{0.5 V} \end{array}$	75 75	20 20	GND 3 V	3 V GND
t _{OFF}	$\begin{array}{c} \textbf{5 V} \pm \textbf{0.5 V} \\ \textbf{5 V} \pm \textbf{0.5 V} \end{array}$	75 75	20 20	GND 3 V	3 V GND



NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_r \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- C. The outputs are measured one at a time, with one transition per measurement.

Figure 5. Test Circuit and Voltage Waveforms

NOTE A: For additional information on measurement method, refer to the TI application report, *Measuring Differential Gain and Phase*, literature number SLOA040.

Figure 6. Test Circuit for Differential Gain/Phase Measurement

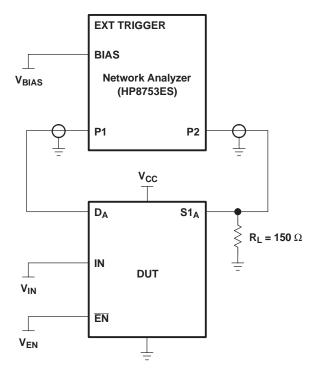
Differential gain and phase are measured at the output of the ON channel. For example, when $V_{IN} = 0$, $V_{EN} = 0$, and DA is the input, the output is measured at S1_A.

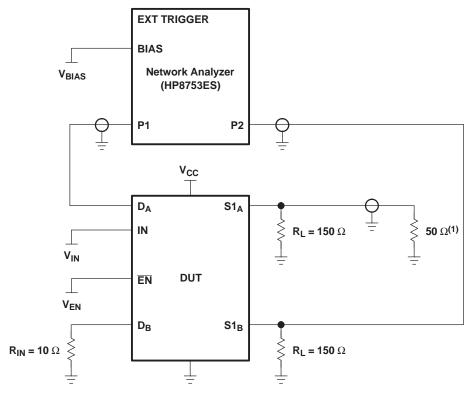
HP8753ES Setup

Average = 20
RBW = 300 Hz
ST = 1.381 s
P1 = -7 dBM
CW frequency = 3.58 MHz

Sawtooth Waveform Generator Setup

 $V_{BIAS} = 0$ to 1 V Frequency = 0.905 Hz



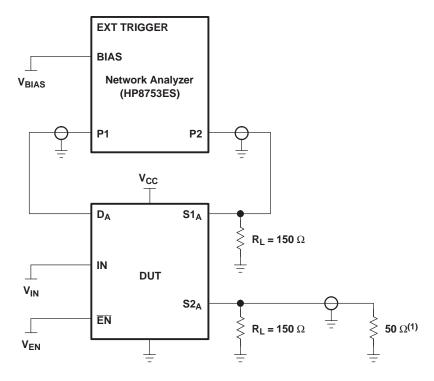

Figure 7. Test Circuit for Frequency Response (BW)

Frequency response is measured at the output of the ON channel. For example, when $V_{IN}=0$, $V_{EN}=0$, and D_A is the input, the output is measured at S1_A. All unused analog I/O ports are left open.

HP8753ES Setup

Average = 4 RBW = 3 Hz V _{BIAS} = 0.35 V	
ST = 2 s	
P1 = 0 dBM	

(1) A 50- Ω termination resistor is needed for the network analyzer.


Figure 8. Test Circuit for Crosstalk (X_{TALK})

Crosstalk is measured at the output of the nonadjacent ON channel. For example, when $V_{IN} = 0$, $V_{EN} = 0$, and D_A is the input, the output is measured at S1_B. All unused analog input (D) ports and output (S) ports are connected to GND through 10- Ω and 50- Ω pulldown resistors, respectively.

HP8753ES Setup

Average = 4 RBW = 3 kHz	
$V_{BIAS} = 0.35 \text{ V}$	
ST = 2 s	
P1 = 0 dBM	

(1) A 50- Ω termination resistor is needed for the network analyzer.

Figure 9. Test Circuit for Off Isolation (OIRR)

Off isolation is measured at the output of the OFF channel. For example, when $V_{IN} = V_{CC}$, $V_{EN} = 0$, and D_A is the input, the output is measured at S1_A. All unused analog input (D) ports are left open, and output (S) ports are connected to GND through $50-\Omega$ pulldown resistors.

HP8753ES Setup

Average = 4
RBW = 3 kHz
V_{BIAS} = 0.35 V
ST = 2 s
P1 = 0 dBM

Copyright © 2004–2009, Texas Instruments Incorporated

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TS5V330D	NRND	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TS5V330
TS5V330D.A	NRND	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TS5V330
TS5V330DBQR	Obsolete	Production	SSOP (DBQ) 16	-	-	Call TI	Call TI	-40 to 85	TE330
TS5V330DR	NRND	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TS5V330
TS5V330DR.A	NRND	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TS5V330
TS5V330PW	NRND	Production	TSSOP (PW) 16	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TE330
TS5V330PW.A	NRND	Production	TSSOP (PW) 16	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TE330
TS5V330PWR	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TE330
TS5V330PWR.A	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TE330
TS5V330RGYR	NRND	Production	VQFN (RGY) 16	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TE330
TS5V330RGYR.A	NRND	Production	VQFN (RGY) 16	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TE330

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

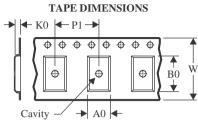
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

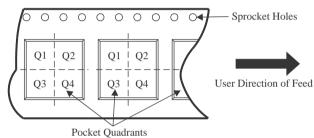
www.ti.com 11-Nov-2025

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

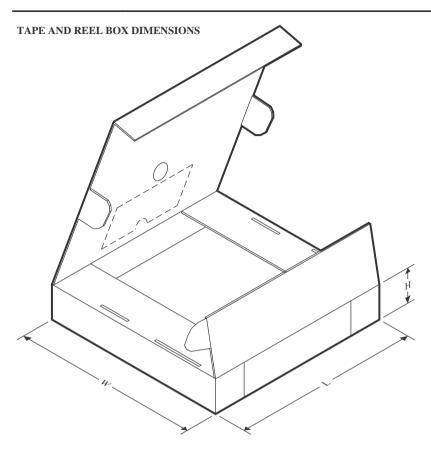

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Jul-2025


TAPE AND REEL INFORMATION

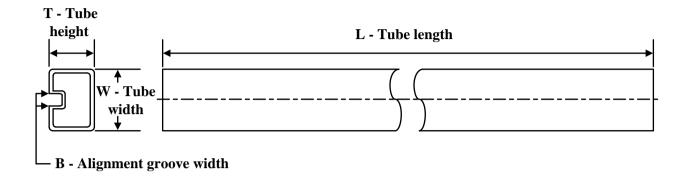
	-
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5V330DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
TS5V330PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TS5V330RGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1

www.ti.com 25-Jul-2025

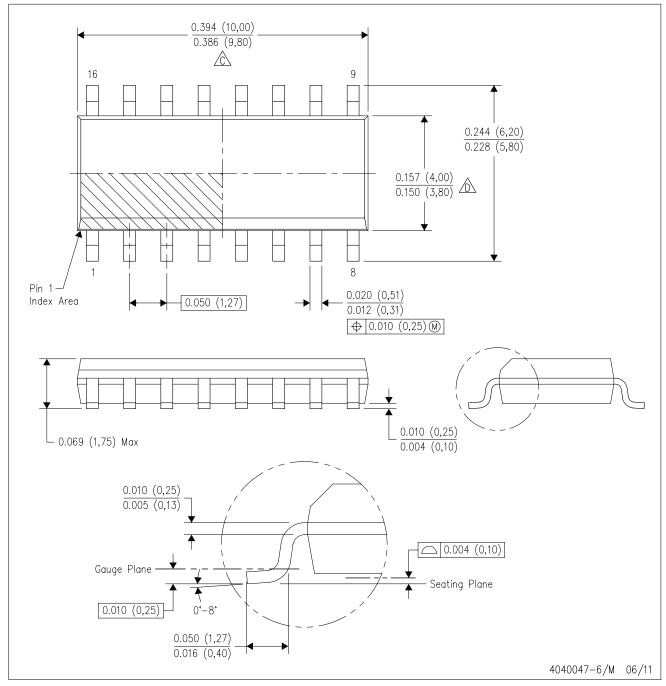

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TS5V330DR	SOIC	D	16	2500	340.5	336.1	32.0	
TS5V330PWR	TSSOP	PW	16	2000	353.0	353.0	32.0	
TS5V330RGYR	VQFN	RGY	16	3000	353.0	353.0	32.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Jul-2025

TUBE

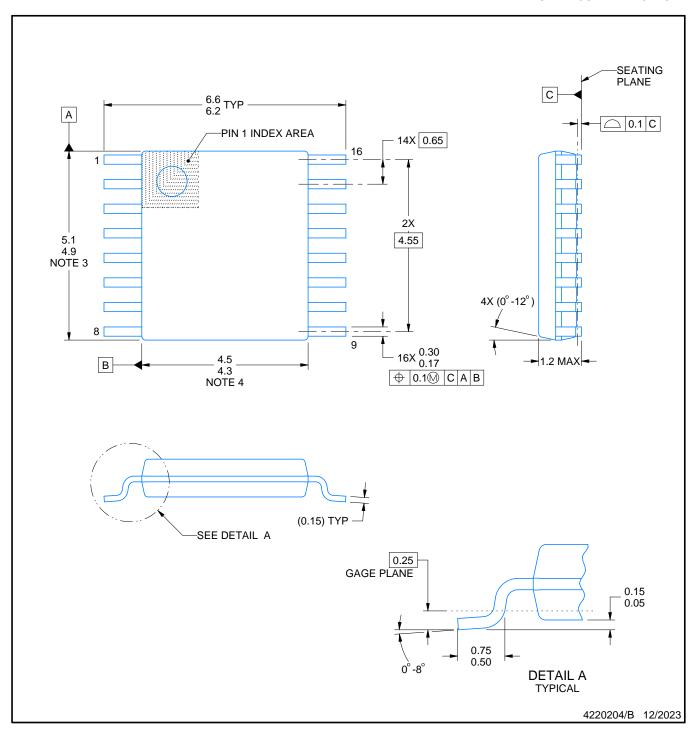


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
TS5V330D	D	SOIC	16	40	507	8	3940	4.32
TS5V330D.A	D	SOIC	16	40	507	8	3940	4.32
TS5V330PW	PW	TSSOP	16	90	530	10.2	3600	3.5
TS5V330PW.A	PW	TSSOP	16	90	530	10.2	3600	3.5

D (R-PDS0-G16)

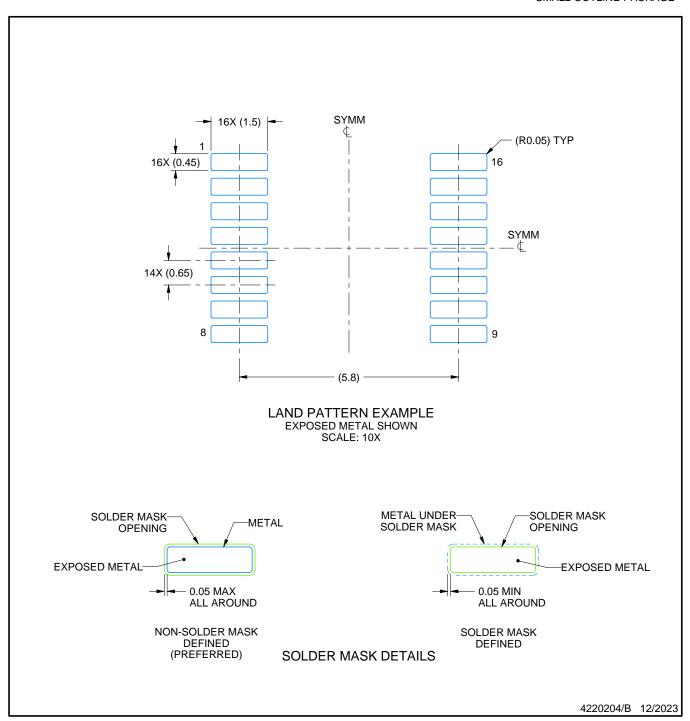
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

SMALL OUTLINE PACKAGE

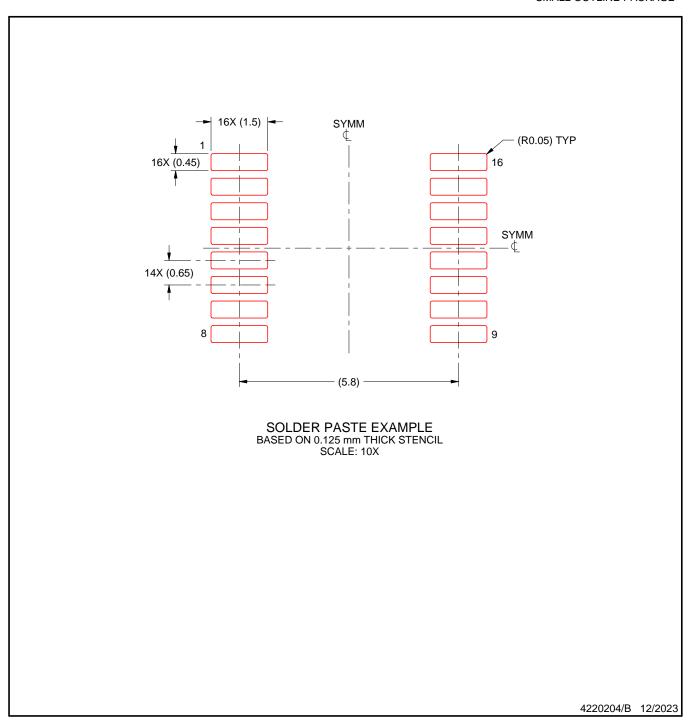
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

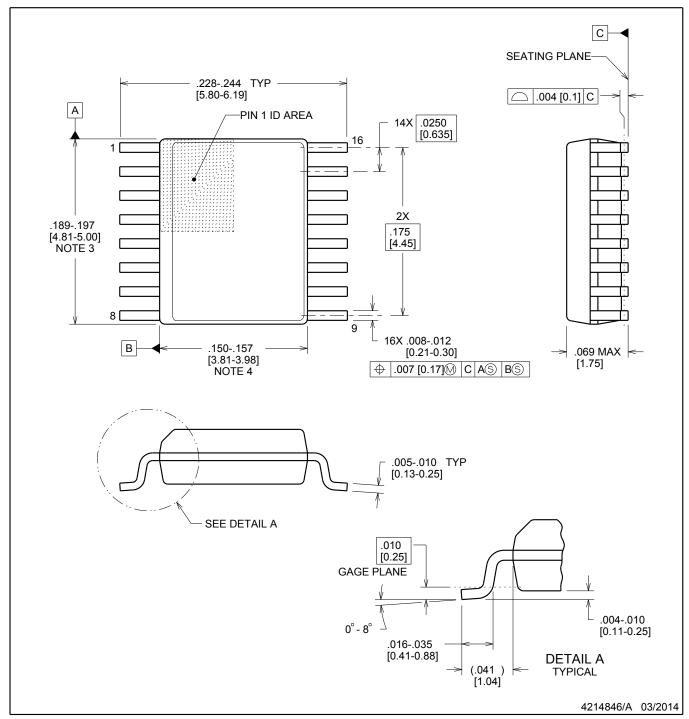
SMALL OUTLINE PACKAGE



NOTES: (continued)

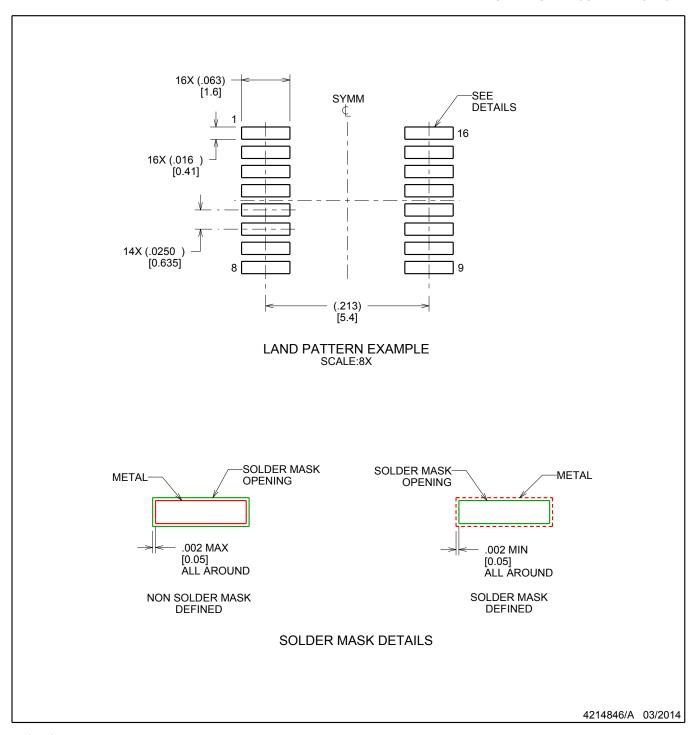
- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

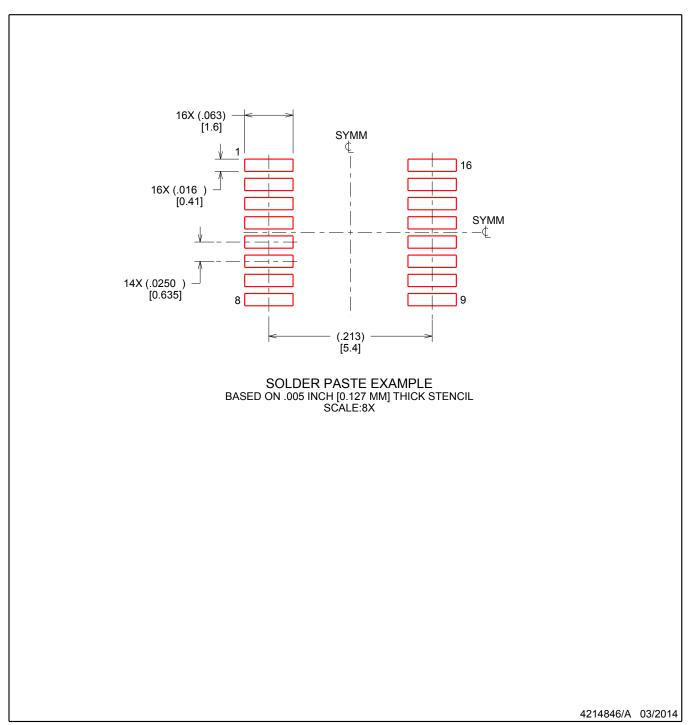
SHRINK SMALL-OUTLINE PACKAGE



NOTES:

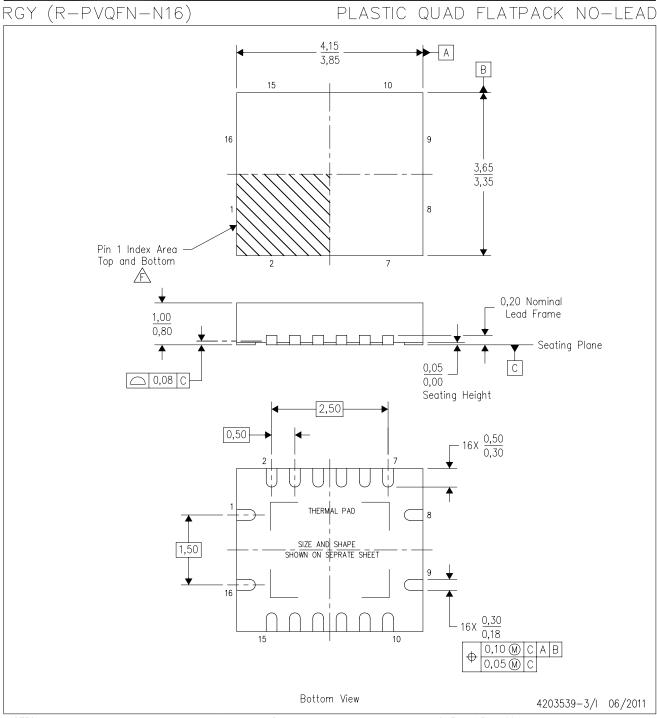
- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side.
- 4. This dimension does not include interlead flash.5. Reference JEDEC registration MO-137, variation AB.

SHRINK SMALL-OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


SHRINK SMALL-OUTLINE PACKAGE

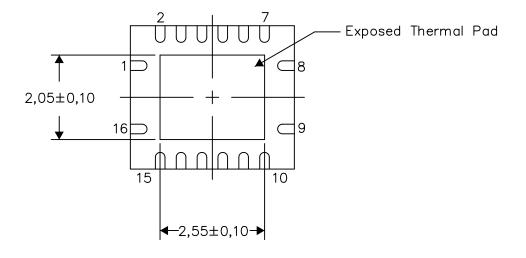
NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (R-PVQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

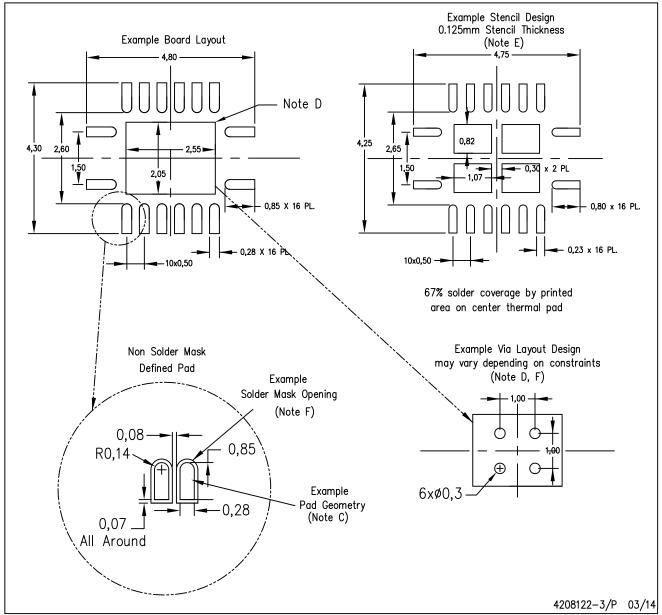
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions


4206353-3/P 03/14

NOTE: All linear dimensions are in millimeters

RGY (R-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025