

TPS7B4254-Q1 Automotive, 150mA, 40V, Voltage-Tracking LDO With 4mV Tracking **Tolerance**

1 Features

- AEC-Q100 qualified for automotive applications:
 - Temperature grade 1: –40°C to +125°C, T_△
 - Device HBM ESD classification level 3A
 - Device CDM ESD classification level C6
- Wide input voltage range: -40V to 45V (max)
- Output voltage adjust range: 2V to 40V
- Output current capability: 150mA
- Very low output-tracking tolerance: ±4mV
- Low-dropout voltage: 160mV for I_{OUT} = 100mA
- Low quiescent current $(I_{(O)})$:
 - < 4µA when ADJ = low
 - 60µA typical at light load
- Extremely wide ESR range:
 - 10μF to 500μF ceramic output capacitor
 - ESR range from $1m\Omega$ to 20Ω
- Reverse polarity protection
- Current-limit and thermal-shutdown protection
- Output short-circuit-proof to ground and supply
- Inductive clamp at OUT pin
- 8-pin HSOIC PowerPAD™ package with exposed thermal pad
- For a newer drop-in alternative in the HSOIC package, see the TPS7B4258-Q1 device.

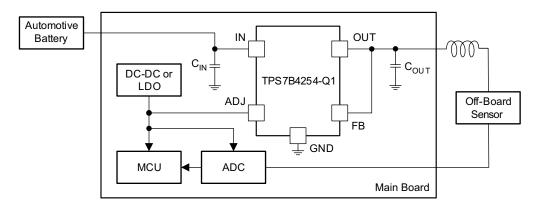
2 Applications

- Powertrain pressure sensors
- Powertrain temperature sensors
- Powertrain exhaust sensors
- Powertrain fluid concentration sensors
- Body control modules (BCM)
- Zone control module
- **HVAC** control module

3 Description

For automotive off-board sensors and low-current off-board modules, the power supply is through a long cable from the main board. In such cases, protection is required in the power devices for the off-board loads to prevent the onboard components from damage during a short to GND or short to battery caused by a broken cable. Off-board sensors require a power supply as consistent as that for onboard components to secure high accuracy of data acquisition.

The TPS7B4254-Q1 is designed for automotive applications with a 45V load dump. The device can either be used as one tracking low-dropout (LDO) regulator or as a voltage tracker to build one closed power loop for off-board sensors with an onboard main supply. The output of the device is accurately regulated by a reference voltage at the ADJ pin.


To provide an accurate power supply to the offboard modules, the device offers a 4mV ultralow tracking tolerance between the ADJ and FB pins across temperature. The back-to-back PMOS topology eliminates the need for an external diode under a reverse-polarity condition. The TPS7B4254-Q1 also includes thermal shutdown, inductive clamp, overload, and short-to-battery protection to prevent damage to onboard components during extreme conditions.

Package Information

PART NUMBER	PACKAGE (1)	PACKAGE SIZE ⁽²⁾
TPS7B4254-Q1	DDA (HSOIC PowerPAD, 8)	4.9mm × 6mm

- For more information, see the Mechanical, Packaging, and Orderable Information.
- The package size (length × width) is a nominal value and includes pins, where applicable.

Typical Application Schematic

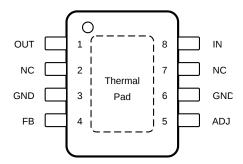


Table of Contents

1 Features1	7.1 Application Information1
2 Applications 1	7.2 Typical Applications1
3 Description	7.3 Power Supply Recommendations1
4 Pin Configuration and Functions4	7.4 Layout1
5 Specifications5	8 Device and Documentation Support18
5.1 Absolute Maximum Ratings5	8.1 Device Support18
5.2 ESD Ratings5	8.2 Documentation Support18
5.3 Recommended Operating Conditions5	8.3 Receiving Notification of Documentation Updates18
5.4 Thermal Information6	8.4 Support Resources18
5.5 Electrical Characteristics6	8.5 Trademarks18
5.6 Typical Characteristics7	8.6 Electrostatic Discharge Caution18
6 Detailed Description11	8.7 Glossary18
6.1 Overview	9 Revision History18
6.2 Functional Block Diagram11	10 Mechanical, Packaging, and Orderable
6.3 Feature Description11	Information19
6.4 Device Functional Modes14	10.1 Mechanical Data20
7 Application and Implementation15	

4 Pin Configuration and Functions

NC - No internal connection

Figure 4-1. DDA Package 8-Pin HSOP With Exposed Thermal Pad Top View

Table 4-1. Pin Functions

PIN		TYPF(1)	DESCRIPTION
NAME	NO.	ITPE\''	DESCRIPTION
ADJ	5	I	Connect the reference to this pin. A low signal disables the device and a high signal enables the device. The reference voltage can be connected directly or by a voltage divider for lower output voltages. To compensate for line influences, connect a capacitor close to the device pin.
FB	4	I	This pin is the feedback pin, which can connect to the external resistor divider to select the output voltage.
GND	3, 6	G	Ground reference
IN	8	I	This pin is the device supply. To compensate for line influences, connect a capacitor close to the device pin.
NC	2, 7	NC	Not internally connected.
ОИТ	1	0	Block to GND with a capacitor close to the device pins with respect to the capacitance and ESR requirements listed in the <i>Output Capacitor</i> section.
Exposed therm	nal pad	_	Connect the thermal pad to the GND pin or leave the pad floating.

(1) I = input, O = output, G = ground, NC = no internal connection

5 Specifications

5.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Unregulated input voltage	IN ⁽²⁾	-40	45	V
Regulated output voltage	OUT ^{(2) (3)}	– 1	45	V
Voltage difference between the input and output	IN – OUT	-40	45	V
Reference voltage	ADJ ⁽²⁾	-0.3	45	V
Feedback input voltage for the tracker	FB ⁽²⁾	– 1	45	V
Reference voltage minus the input voltage	ADJ – IN ⁽⁴⁾		18	V
Operating junction temperature, T _J		-40	150	°C
Storage temperature, T _{stg}		-65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

- (2) All voltage values are with respect to the GND pin.
- (3) An internal diode is connected between the OUT and GND pins with 600mA dc current capability for inductive clamp protection.
- (4) When the (ADJ IN) voltage is higher than 18V, the (ADJ OUT) voltage must be maintained lower than 18V, otherwise the device can be damaged.

5.2 ESD Ratings

				VALUE	UNIT
V _(ESD) Electrostatic discharge	Human-body model (HBM), per AEC	All pins except NC	±4000		
	Q100-002 ⁽¹⁾	NC pins	±2000	V	
		Charged-device model (CDM), per AEC Q1	±1000		

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

5.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{IN}	Unregulated input voltage ⁽²⁾	4	40	V
V _{ADJ}	Reference input voltage	2	18	V
V _{FB}	Feedback input voltage for the tracker	2	18	V
V _{OUT}	Regulated output voltage	2	40	V
C _{OUT}	Output capacitor requirements ⁽³⁾	10	500	μF
	Output ESR requirements ⁽⁴⁾	0.001	20	Ω
TJ	Operating junction temperature	-40	150	°C

⁽¹⁾ Within the functional range the device operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related *Electrical Characteristics* table.

Copyright © 2025 Texas Instruments Incorporated

⁽²⁾ $V_{IN} > V_{ADJ} + V_{DROPOUT}$

⁽³⁾ The minimum output capacitance requirement is applicable for a worst-case capacitance tolerance of 30%. When a resistor divider is connected between the OUT and FB pins (the output voltage is higher than reference voltage), a 47nF feedforward capacitor is required to be connected between the OUT and FB pins for loop stability, and the ESR range of the output capacitor is required to be from 0.001 to 10Ω.

⁽⁴⁾ Relevant ESR value at f = 10kHz

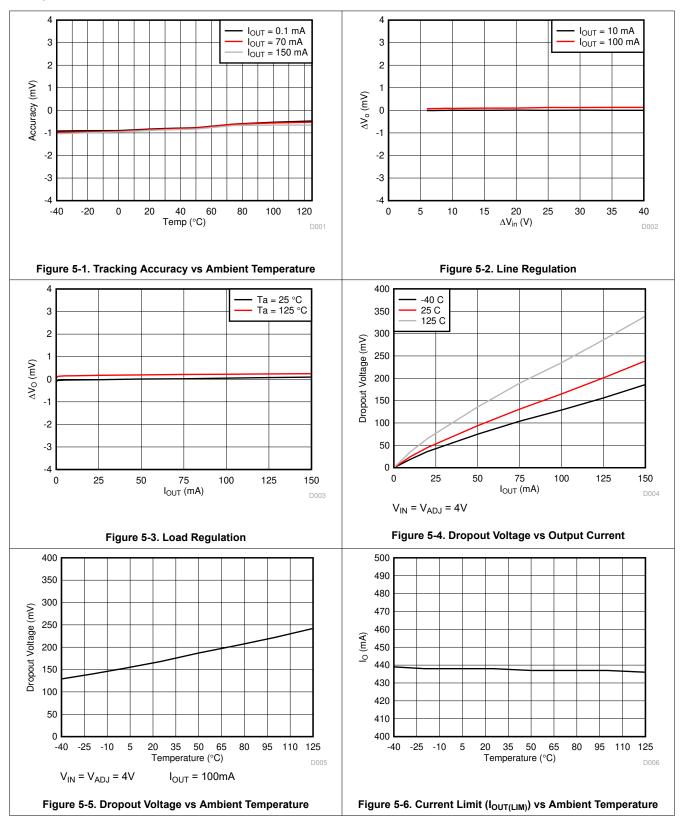
5.4 Thermal Information

		TPS7B	TPS7B4254-Q1			
	THERMAL METRIC(1)	DDA (DDA (HSOIC)			
	I TERMAL METRIC	8 F	8 PINS			
		ASO: ASE ⁽²⁾	ASO: FMX ⁽²⁾			
R _{0JA}	Junction-to-ambient thermal resistance	45.4	42.6	°C/W		
R _{0JC(top)}	Junction-to-case (top) thermal resistance	51.1	57.5	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	27	17.8	°C/W		
Ψ_{JT}	Junction-to-top characterization parameter	8.2	5.6	°C/W		
ΨЈВ	Junction-to-board characterization parameter	26.9	17.9	°C/W		
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	6.4	7.5	°C/W		

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note

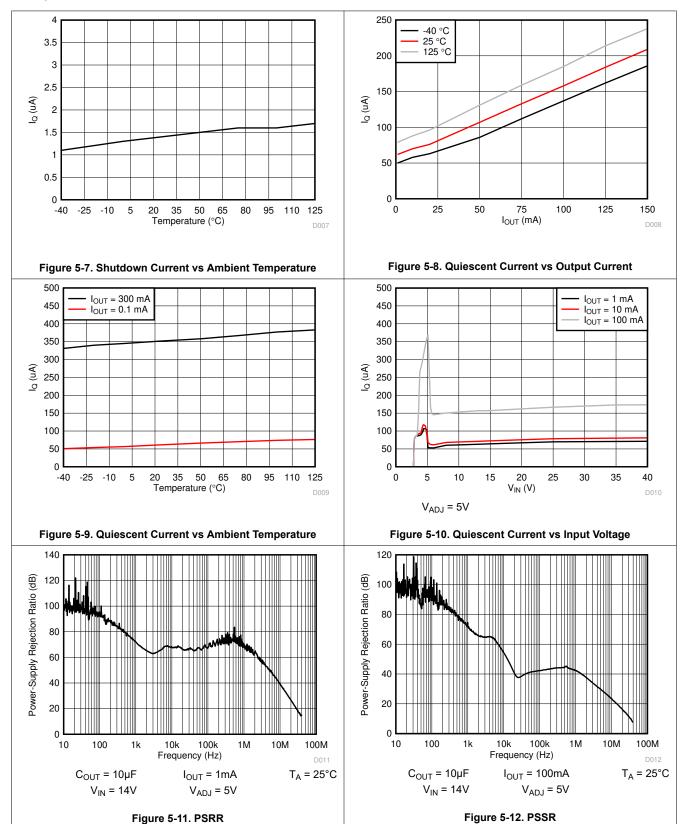
5.5 Electrical Characteristics

V_{IN} = 13.5V, V_{ADJ} ≥ 2V, T_J = -40°C to 150°C, over operating ambient temperature range (unless otherwise noted)

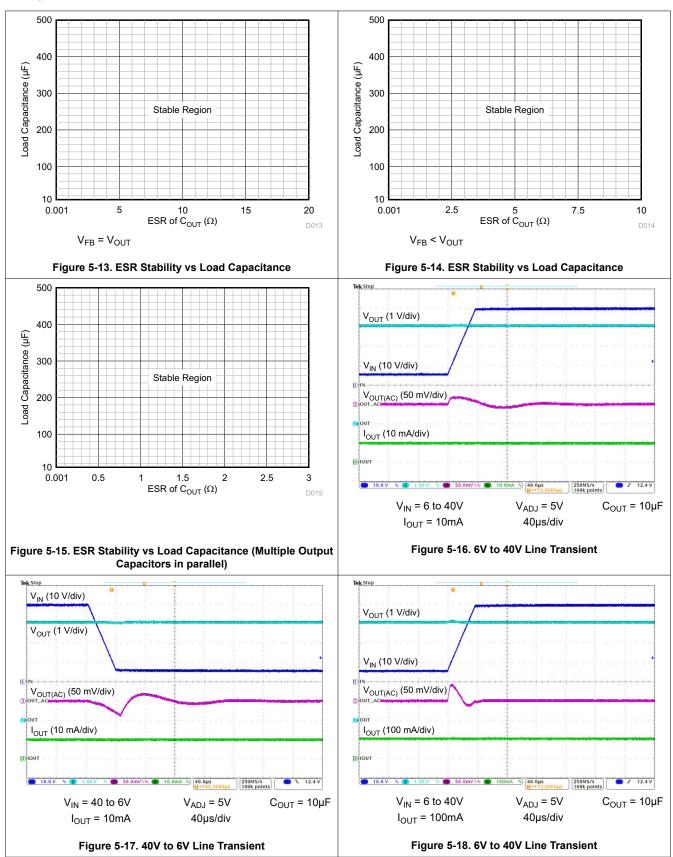

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V	IN undervoltage detection	V _{IN} rising			3.65	V
$V_{IN(UVLO)}$	in undervoltage detection	V _{IN} falling			2.8	V
ΔV_{OUT}	Output voltage tracking accuracy ⁽¹⁾	I _{OUT} = 100μA to 150mA, V _{IN} = 4 to 40V V _{ADJ} < V _{IN} – 1V 2V < V _{ADJ} < 18V	-4		4	mV
$\Delta V_{OUT(\Delta IO)}$	Load regulation, steady-state	I _{OUT} = 0.1 to 150mA, V _{ADJ} = 5V			4	mV
$\Delta V_{OUT(\Delta VI)}$	Line regulation, steady-state	I _{OUT} = 10mA, V _{IN} = 6 to 40V, V _{ADJ} = 5V			4	mV
PSRR	Power-supply ripple rejection	f_{rip} = 100Hz, V_{rip} = 0.5 VPP, C_{OUT} = 10 μ F, I_{OUT} = 100mA		70		dB
V _{DROPOUT}	Dropout voltage ($V_{DROPOUT} = V_{IN} - V_{OUT}$)	$I_{OUT} = 100 \text{mA}, V_{IN} = V_{ADJ} \ge 4V^{(2)}$		160	260	mV
I _{OUT(LIM)}	Output current limitation	V _{ADJ} = 5V, OUT short to GND	151	450	520	mA
I _{R(IN)}	Reverse current at IN	V _{IN} = 0V, V _{OUT} = 40V, V _{ADJ} = 5V	-2		0	μΑ
I _{R(-IN)}	Reverse current at negative IN	V _{IN} = -40V, V _{OUT} = 0V, V _{ADJ} = 5V	-10			μΑ
T _{SD}	Thermal shutdown temperature			175		°C
T _{SD_hys}	Thermal shutdown hysteresis			15		°C
		4V ≤ V _{IN} ≤ 40V, V _{ADJ} = 0V		2	4	μΑ
IQ	Current consumption	4V ≤ V _{IN} ≤ 40V, V _{ADJ} = 5V, I _{OUT} < 100μA		60	100	μΑ
		4V ≤ V _{IN} ≤ 40V, V _{ADJ} = 5V, I _{OUT} < 150mA		210	260	μΑ
I _{Q(DROPOUT)}	Current consumption in dropout region	V _{IN} = V _{ADJ} = 5V, I _{OUT} = 100μA		70	140	μΑ
I _{ADJ}	Reference input current	V _{ADJ} = V _{FB} = 5V			5.5	μA
$V_{ADJ(LOW)}$	Reference low signal valid	V _{OUT} = 0V	0		0.7	V
V _{ADJ(HIGH)}	Reference high signal valid	$ V_{OUT} - V_{ADJ} < 4mV$	2		18	V
I _{FB}	FB bias current	$V_{ADJ} = V_{FB} = 5V$			0.5	μΑ

⁽¹⁾ The tracking accuracy is specified when the FB pin is directly connected to the OUT pin which means V_{ADJ} = V_{OUT}, external resistor divider variance is not included.

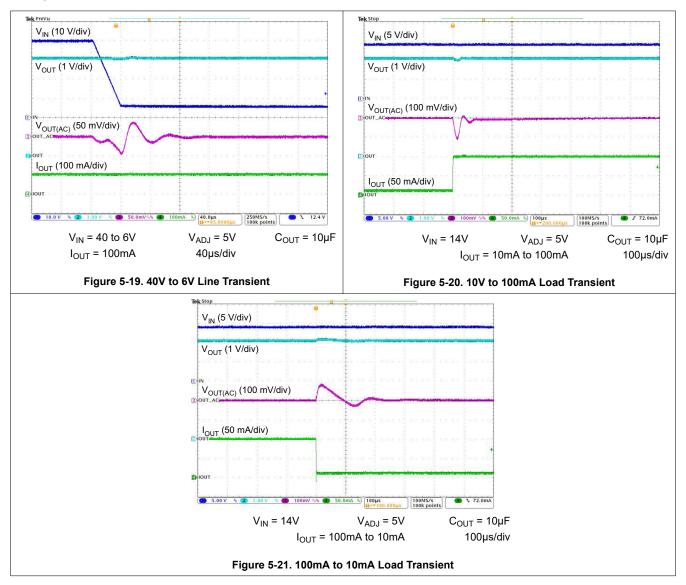
⁽²⁾ See nomenclature table for more information regarding ASO.


⁽²⁾ Measured when the output voltage, V_{OUT} , has dropped 10mV from the nominal value.

5.6 Typical Characteristics

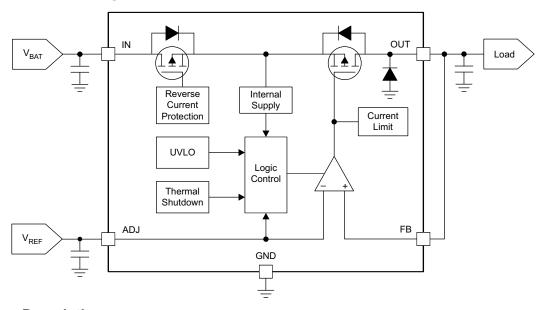

5.6 Typical Characteristics (continued)

Submit Document Feedback


Copyright © 2025 Texas Instruments Incorporated

5.6 Typical Characteristics (continued)

5.6 Typical Characteristics (continued)


Submit Document Feedback

6 Detailed Description

6.1 Overview

The TPS7B4254-Q1 device is a monolithic integrated low-dropout voltage tracker with an ultralow tracking tolerance. Key protection circuits are integrated in the device, including output current limitation, reverse polarity protection, inductive load clamp, output short-to-battery protection, and thermal shutdown in case of an overtemperature event.

6.2 Functional Block Diagram

6.3 Feature Description

6.3.1 Short-Circuit and Overcurrent Protection

The TPS7B4254-Q1 device features integrated fault protection, which makes the device a convinient choice for automotive applications. To keep the device in a safe area of operation during certain fault conditions, internal current-limit protection is used to limit the maximum output current. This protection protects the device from excessive power dissipation. For example, during a short-circuit condition on the output, the current through the pass element is limited to $I_{OUT(LIM)}$ to protect the device from excessive power dissipation.

6.3.2 Integrated Inductive Clamp Protection

During output turnoff, the cable inductance continues to source the current from the output of the device. The device integrates an inductive clamp at the OUT pin to help to dissipate the inductive energy stored in the cable. An internal diode is connected between the OUT and GND pins with a dc-current capability of 600mA for inductive clamp protection.

6.3.3 OUT Short-to-Battery and Reverse-Polarity Protection

The TPS7B4254-Q1 device can withstand a short to battery on the output, as shown in Figure 6-1. Therefore, no damage to the device occurs.

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

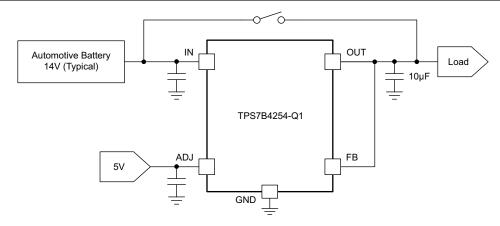


Figure 6-1. OUT Short to Battery, $V_{IN} = V_{BAT}$

A short to the battery can also occur when the device is powered by an isolated supply at lower voltage, as shown in Figure 6-2. In this case, the TPS7B4254-Q1 supply-input voltage is set to 7V when a short to battery (14V typical) occurs on the OUT pin, which operates at 5V. The internal back-to-back PMOS remains on for 1ms, during which the input voltage of the TPS7B4254-Q1 device charges up to the battery voltage. A diode connected between the output of the dc-dc converter and the input of the TPS7B4254-Q1 device is required in case the other loads connected behind the dc-dc converter cannot withstand the voltage of an automotive battery. To achieve a lower dropout voltage, TI recommends using a Schottky diode. This diode can be eliminated if the output of the dc-dc converter and the loads the converter powers, are able to withstand the automotive battery voltage.

The internal back-to-back PMOS is switched to OFF when reverse polarity or a short to battery occurs for 1ms. After that, the reverse current that flows out through the IN pin is less than $10\mu A$. Meanwhile, a special ESD structure implemented at the input helps the device withstand -40V.

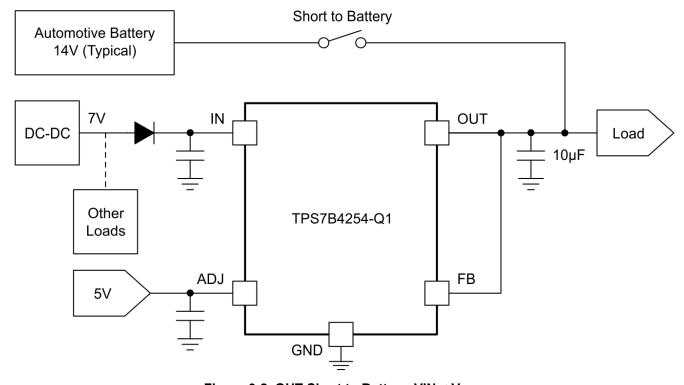


Figure 6-2. OUT Short to Battery, VIN < VBAT

In most cases, the output of the TPS7B4254-Q1 device is shorted to the battery through an automotive cable. The parasitic inductance on the cable results in LC oscillation at the output of the TPS7B4254-Q1 device when the short to battery occurs. The peak voltage at the output of the TPS7B4254-Q1 device must be lower than the absolute-maximum voltage rating (45V) during LC oscillation.

6.3.4 Undervoltage Shutdown

The device has an internally fixed undervoltage-shutdown threshold. Undervoltage shutdown activates when the input voltage on IN drops below UVLO. This activation prevents the regulator from getting latched into an unknown state during a low input-supply voltage. If the input voltage has a negative transient that drops below the UVLO threshold and then recovers, the regulator shuts down and then powers up with a standard power-up sequence when the input voltage is above the required level.

6.3.5 Thermal Protection

The device incorporates a thermal shutdown (TSD) circuit as a protection from overheating. During continuous normal operation, the junction temperature must not exceed the TSD trip point. If the junction temperature exceeds the TSD trip point, the output turns off. When the junction temperature decreases to 15°C (typical) lower than the TSD trip point, the output turns on.

Note

The purpose of the internal protection circuitry of the TPS7B4254-Q1 device is to protect against overload conditions and is not intended as a replacement for proper heat-sinking. Continuously running the device into thermal shutdown degrades device reliability.

6.3.6 Regulated Output (OUT)

The OUT pin is the regulated output based on the required voltage. The output has current limitation. During initial power up, the regulator has an incorporated soft-start feature to control the initial current through the pass element.

6.3.7 Adjustable Output Voltage (FB and ADJ)

6.3.7.1 OUT Voltage Equal to the Reference Voltage

With the reference voltage applied directly at the ADJ pin and the FB pin connected to the OUT pin, the voltage at the OUT pin equals to the reference voltage at the ADJ pin, as shown in Figure 6-3.

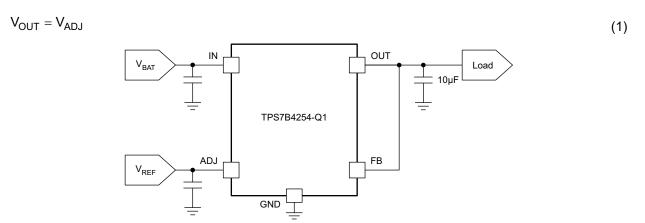


Figure 6-3. OUT Voltage Equal to the Reference Voltage

6.3.7.2 OUT Voltage Higher Than Reference Voltage

By using an external resistor divider connected between the OUT and FB pins, an output voltage higher than reference voltage can be generated as shown in Figure 6-4. Use Equation 2 to calculate the value of the output voltage. The recommended range for R1 and R2 is from $10k\Omega$ to $100k\Omega$.

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

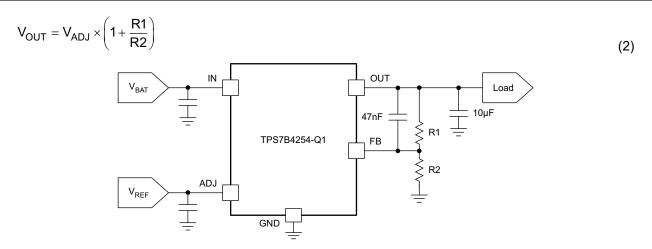


Figure 6-4. OUT Voltage Higher Than the Reference Voltage

6.3.7.3 Output Voltage Lower Than Reference Voltage

By using an external resistor divider connected at the ADJ pin, an output voltage lower than reference voltage can be generated as shown in Figure 6-5. Use Equation 3 to calculate the output voltage. The recommended value for both R1 and R2 is less than $100k\Omega$.

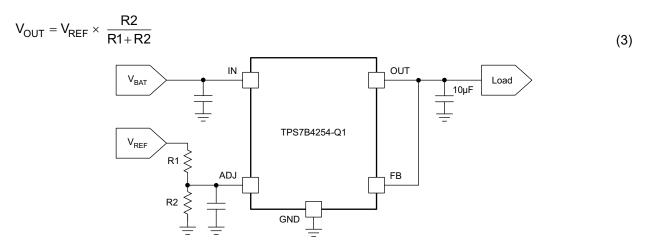


Figure 6-5. OUT Voltage Lower Than the Reference Voltage

6.4 Device Functional Modes

6.4.1 Operation With $V_{IN} < 4V$

The maximum UVLO voltage is 3.65V, and the device generally operates at an input voltage above 4V. The device can also operate at a lower input voltage; no minimum UVLO voltage is specified. At an input voltage below the actual UVLO voltage, the device does not operate.

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

The TPS7B4254-Q1 device is a 150mA low-dropout tracking regulator with ultralow tracking tolerance. The PSpice transient model is available for download on the product folder and can be used to evaluate the basic function of the device.

7.2 Typical Applications

7.2.1 Application With Output Voltage Equal to the Reference Voltage

Figure 7-1 shows a typical application circuit for the TPS7B4254-Q1 device. Different values of external components can be used, depending on the end application. Some applications require a larger output capacitor during fast load steps to prevent a large drop on the output voltage. TI recommends using a low-ESR ceramic capacitor with a dielectric of type X5R or X7R.

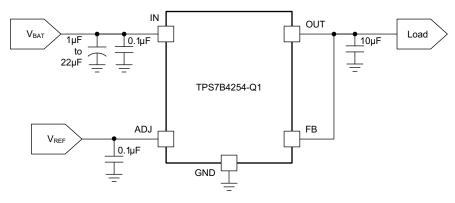


Figure 7-1. Output Voltage Equals the Reference Voltage

7.2.1.1 Design Requirements

For this design example, use the parameters listed in Table 7-1 as the design parameters.

Table 7-1. Design Farameters					
DESIGN PARAMETER	EXAMPLE VALUE				
Input voltage	4V to 40V				
Output voltage	2V to 40V				
ADJ voltage	2V to 18V				
Output capacitor	10 μF to 500 μF				
Output capacitor ESR range	0.001Ω to 20Ω				

Product Folder Links: TPS7B4254-Q1

Table 7-1. Design Parameters

7.2.1.2 Detailed Design Procedure

To begin the design process, determine the following:

- Input voltage range
- · Output voltage
- · Reference voltage
- Output current

· Current limit

7.2.1.2.1 Input Capacitor

The device requires an input decoupling capacitor, the value of which depends on the application. The typical recommended value for the decoupling capacitor is $10\mu\text{F}$ with a $0.1\mu\text{F}$ ceramic bypass capacitor in parallel. The voltage rating must be greater than the maximum input voltage.

7.2.1.2.2 Output Capacitor

For stable operation, the TPS7B4254-Q1 device requires an output capacitor with a value in the range from $10\mu\text{F}$ to $500\mu\text{F}$ and with an ESR range from 0.001Ω to 20Ω when the FB pin is directly connected to the OUT pin. TI recommends selecting a ceramic capacitor with low ESR to improve the load transient response.

To achieve an output voltage higher than the reference voltage, a resistor divider is connected between the OUT pin and the FB pin. In this case, a 47nF feedforward capacitor must be connected between the OUT and FB pins for loop stability. The ESR of the output capacitor must be from 0.001Ω to 10Ω .

When multiple capacitors (two or more) are connected in parallel at the OUT pin, the ESR range of each output capacitor must be from 0.001Ω to 3Ω for loop stability.

In case the FB pin is shorted to ground, the TPS7B4254-Q1 device functions as a power switch with no need for the output capacitor.

7.2.1.3 Application Curve

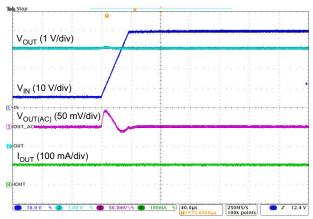


Figure 7-2. 6V to 40V Line Transient

7.2.2 High-Accuracy LDO

With an accurate voltage rail, the TPS7B4254-Q1 device can be used as an LDO with ultrahigh-accuracy output voltage by configuring the device as shown in Figure 7-3.

Figure 7-3. High-Accuracy LDO Application

For example, assume the reference voltage is a 5V rail with 0.1% accuracy. Because the tracking accuracy between the ADJ and OUT pins is specified below 4mV across temperature, the output accuracy of the TPS7B4254-Q1 device can be calculated with Equation 4.

Accuracy of
$$V_{OUT} = \frac{V_{ADJ} \times 0.1\% + 4 \text{ mV}}{V_{OUT}} \times 100 \% = \frac{5 \times 0.1\% + 0.004}{5} \times 100 \% = 0.18 \%$$
 (4)

7.3 Power Supply Recommendations

The device is designed to operate with an input voltage supply from 4V to 40V. This input supply must be well regulated. If the input supply is more than a few inches away from the TPS7B4254-Q1, TI recommends adding an electrolytic capacitor with a value of 10µF and a ceramic bypass capacitor at the input.

7.4 Layout

7.4.1 Layout Guidelines

For the layout of the TPS7B4254-Q1 device, place the input and output capacitors close to the devices as shown in the *Functional Block Diagram*. To enhance the thermal performance, TI recommends surrounding the device with some vias. Minimize equivalent series inductance (ESL) and ESR to maximize performance and ensure stability. Place every capacitor as close as possible to the device and on the same side of the PCB as the regulator.

Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. TI strongly discourages the use of vias and long traces for the path between the output capacitor and the OUT pins because vias can negatively impact system performance and even cause instability.

7.4.2 Layout Example

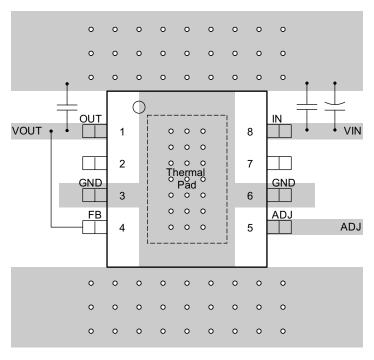


Figure 7-4. TPS7B4254-Q1 Layout Example

8 Device and Documentation Support

8.1 Device Support

8.1.1 Device Nomenclature

Table 8-1. Device Nomenclature

PRODUCT	V _{OUT}
TPS7B4254QyyyRQ1	Q indicates that this device is a grade-1 device in accordance with the AEC-Q100 standard.
	yyy is the package designator (DDA = HSOIC).
	Q1 indicates that this device is an automotive grade (AEC-Q100) device.
	This device potentially ships with multiple leadframes. The reel packaging label provides ASO information to distinguish which leadframe is used. ASO: FMX label denotes material from the new manufacturing site and ASO: ASE label denotes material from the legacy manufacturing site.

8.1.2 Development Support

For the TPS7B4254-Q1 PSpice Transient Model, go to .

8.2 Documentation Support

8.2.1 Related Documentation

Texas Instruments, TPS7B4254-Q1 Functional Safety FIT Rate, FMD and Pin FMA, datasheet

8.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.4 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.5 Trademarks

PowerPAD™ and TI E2E™ are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

8.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.7 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

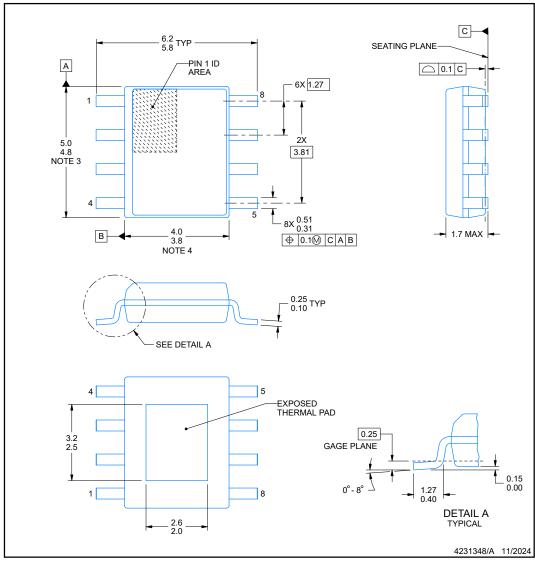
www.ti.com

Changes from Revision B (June 2016) to Revision C (November 2025)	age
Updated the numbering format for tables, figures, and cross-references throughout the document	
Changed SO to HSOIC throughout document	
 Changed automotive-specific bullets in <i>Features</i> section Updated the <i>Thermal Information</i> table to include the thermal information for the DDA package from the 	1
multiple manufacturing sites (ASE, FMX)	6
 Updated the Device Nomenclature section to include a note that describes the method to distinguish the D material from different assembly sites. 	
Updated the mechanical drawings from DDA0008J to DDA0008J-C02	20
Changes from Revision A (May 2016) to Revision B (June 2016)	age
• Changed MIN values for V _{ADJ} , V _{FB} , and V _{OUT} in the <i>Recommended Operating Conditions</i> table	5

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the mostcurrent data available for the designated device. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.

10.1 Mechanical Data



PACKAGE OUTLINE

DDA0008J-C02

PowerPAD™ SOIC - 1.7 mm max height

PLASTIC SMALL OUTLINE

PowerPAD is a trademark of Texas Instruments.

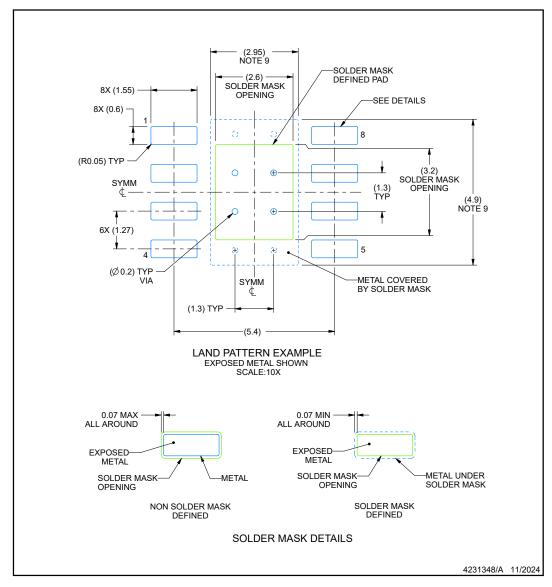
NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.

 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MS-012, variation BA.



EXAMPLE BOARD LAYOUT

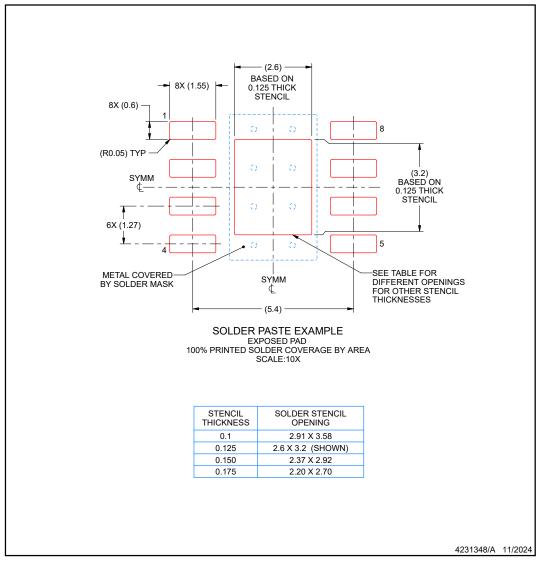
DDA0008J-C02

PowerPAD [™] SOIC - 1.7 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.



EXAMPLE STENCIL DESIGN

DDA0008J-C02

PowerPAD [™] SOIC - 1.7 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

^{10.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

11. Board assembly site may have different recommendations for stencil design.

www.ti.com 21-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
TPS7B4254QDDARQ1	Active	Production	SO PowerPAD (DDA) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	4254
TPS7B4254QDDARQ1.A	Active	Production	null (null)	2500 LARGE T&R	-	NIPDAUAG	Level-2-260C-1 YEAR	See TPS7B4254QDDARQ1	4254

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

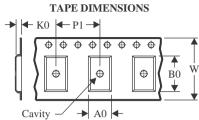
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

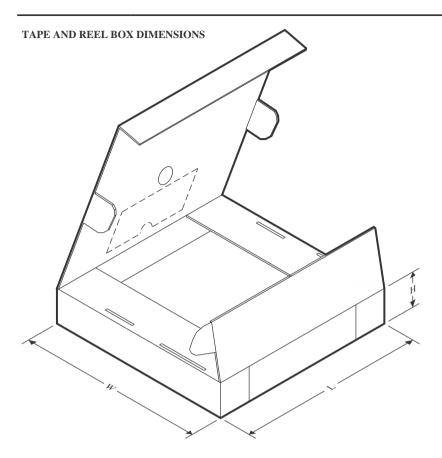

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 31-May-2024

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS7B4254QDDARQ1	SO PowerPAD	DDA	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 31-May-2024

*All dimensions are nominal

Ì	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ı	TPS7B4254QDDARQ1	SO PowerPAD	DDA	8	2500	366.0	364.0	50.0

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025