

TPS22963C, TPS22964C

SLVSBS6A -JUNE 2013-REVISED JANUARY 2015

TPS2296xC 5.5-V, 3-A, 13-mΩ On-Resistance Load Switch With Reverse Current **Protection and Controlled Turn-On**

Features

- Integrated N-Channel Load Switch
- Input Voltage Range: 1 V to 5.5 V
- Internal Pass-FET $R_{DSON} = 8 \text{ m}\Omega$ (Typ)
- Ultra-Low ON-Resistance
 - R_{ON} = 13 m Ω (Typ) at V_{IN} = 5 V
 - R_{ON} = 14 m Ω (Typ) at V_{IN} = 3.3 V
 - R_{ON} = 18 mΩ (Typ) at V_{IN} = 1.8 V
- 3A Maximum Continuous Switch Current
- Reverse Current Protection (When Disabled)
- Low Shutdown Current (760 nA)
- Low Threshold 1.3-V GPIO Control Input
- Controlled Slew-Rate to Avoid Inrush Current
- Quick Output Discharge (TPS22964 only)
- Six Terminal Wafer-Chip-Scale Package (Nominal Dimensions Shown - See Addendum for Details)
 - 0.9 mm x 1.4 mm, 0.5 mm Pitch, 0.5 mm Height (YZP)
- ESD Performance Tested Per JESD 22
 - 2-kV Human-Body Model (A114-B, Class II)
 - 500-V Charged-Device Model (C101)

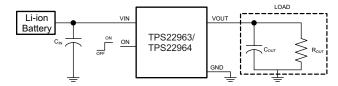
Applications

- **Smartphones**
- Notebook Computer and Ultrabook™
- Tablet PC Computer
- Solid State Drives (SSD)
- DTV/IP Set Top Box
- POS Terminals and Media Gateways

3 Description

The TPS22963/64 is a small, ultra-low R_{ON} load switch with controlled turn on. The device contains a low R_{DSON} N-Channel MOSFET that can operate over an input voltage range of 1 V to 5.5 V and switch currents of up to 3 A. An integrated charge pump biases the NMOS switch in order to achieve a low switch ON-Resistance. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low-voltage GPIO control signals. The rise time of the TPS22963/64 device is internally controlled in order to avoid inrush current.

TPS22963/64 provides reverse protection. When the power switch is disabled, the device will not allow the flow of current towards the input side of the switch. The reverse current protection feature is active only when the device is disabled so as to allow for intentional reverse current (when the switch is enabled) for some applications.


The TPS22963/64 is available in a small, spacesaving 6-pin WCSP package and is characterized for operation over the free air temperature range of –40°C to 85°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS2296xC	DSBGA (6)	1.40 mm x 0.90 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic

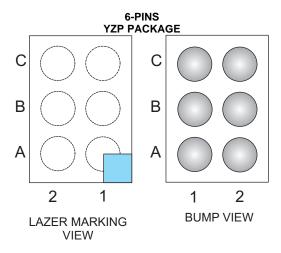
Table of Contents

1	Features 1	10	Detailed Description	14
2	Applications 1		10.1 Overview	14
3	Description 1		10.2 Functional Block Diagram	14
4	Simplified Schematic 1		10.3 Feature Description	15
5	Revision History2		10.4 Device Functional Modes	15
6	Device Comparison Table3	11	Application and Implementation	15
7	Pin Configuration and Functions		11.1 Application Information	15
	_		11.2 Typical Application	17
8	Specifications 4	12	Power Supply Recommendations	19
	8.1 Absolute Maximum Ratings		Layout	
	8.2 ESD Ratings		13.1 Layout Guidelines	
	8.3 Recommended Operating Conditions		13.2 Layout Example	
	8.4 Thermal Information	14	Device and Documentation Support	
			14.1 Related Links	
	8.6 Switching Characteristics		14.2 Trademarks	
	**		14.3 Electrostatic Discharge Caution	
	8.8 Typical Switching Characteristics		14.4 Glossary	
9	8.9 Typical AC Scope Captures at T _A = 25°C	15	Mechanical, Packaging, and Orderable Information	

5 Revision History

Changes from Original (June 2013) to Revision A

Page



6 Device Comparison Table

	R _{ON} (Typ) at 3.3 V	Rise Time (Typ) at 3.3 V ⁽¹⁾	Quick Output Discharge (QOD) ⁽²⁾	Maximum Output Current	Enable
TPS22963C	14 mΩ	715 µs	No	3 A	Active High
TPS22964C	14 mΩ	715 µs	Yes	3 A	Active High

- (1) Additional rise time options are possible. Contact factory for more information.
- (2) This feature discharges the output of the switch to ground through a 273 Ω resistor, preventing the output from floating (only in TPS22964C).

7 Pin Configuration and Functions

Pin Assignments (YZP Package)

· ···· (· = · · · ······g·)				
С	GND	ON		
В	VOUT	VIN		
Α	VOUT	VIN		
	1	2		

Pin Functions

	PIN		DESCRIPTION	
TPS22963/64	NAME	I/O	DESCRIPTION	
C1	GND	-	Ground	
C2	ON	I	Switch control input, active high. Do not leave floating	
A1, B1	VOUT	0	Switch output	
A2, B2	VIN	ı	Switch input. Use a bypass capacitor to ground (ceramic)	

Product Folder Links: TPS22963C TPS22964C

8 Specifications

8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{IN}	Input voltage range	-0.3	6	V
V_{OUT}	Output voltage range	-0.3	6	V
V_{ON}	ON pin voltage range	-0.3	6	V
I _{MAX}	Maximum continuous switch current		3	Α
I _{PLS}	Maximum pulsed switch current, 100 μ s pulse, 2% duty cycle, $T_A = -40$ °C to 85°C		4	Α
T _A	Operating free air temperature range	-40	85	°C
TJ	Maximum junction temperature		125	°C
T _{stg}	Storage temperature range	-65	150	°C

8.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

8.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	TYP MAX	UNIT
V_{IN}	Input voltage range		1	5.5	V
V_{OUT}	Output voltage range		0	5.5	V
.,	High lavel ON valence	V _{IN} = 2.5 V to 5.5 V	1.3	5.5	V
V _{IH, ON}	High-level ON voltage	V _{IN} = 1 V to 2.49 V	1.1	5.5	
.,	Law lawal ON waltana	V _{IN} = 2.5 V to 5.5 V	0	0.6	
V _{IL, ON}	Low-level ON voltage	V _{IN} = 1 V to 2.49 V	0	0.4	. V
C _{IN}	Input capacitor			1 ⁽¹⁾	μF

⁽¹⁾ Refer to the application section

8.4 Thermal Information

		TPS2296xC	
	THERMAL METRIC ⁽¹⁾	YZP	UNIT
		6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	132.0	
$R_{\theta JCtop}$	Junction-to-case (top) thermal resistance	1.4	
$R_{\theta JB}$	Junction-to-board thermal resistance	22.8	°C/W
ΨЈТ	Junction-to-top characterization parameter	5.7	
ΨЈВ	Junction-to-board characterization parameter	22.6	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

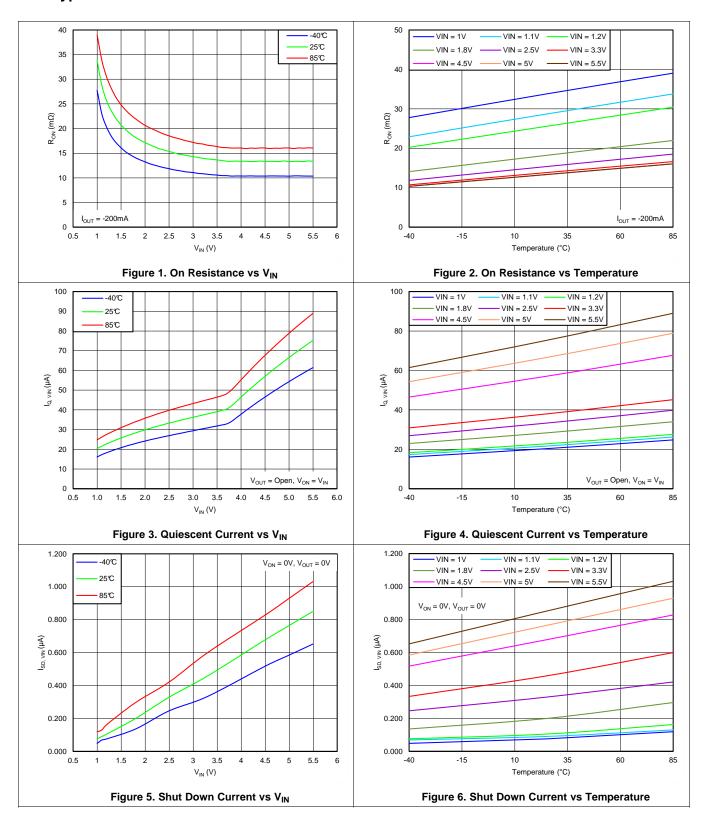
⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

8.5 Electrical Characteristics

 $V_{IN} = 1 \text{ V to } 5.5 \text{ V}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$ (unless otherwise noted)

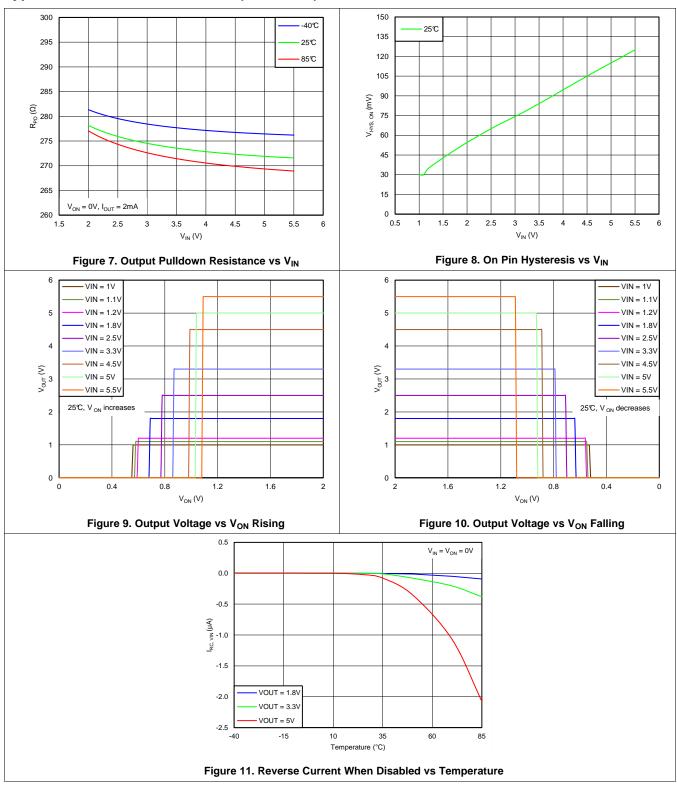
	PARAMETER	TEST CONDITIONS	T _A	MIN TYP	MAX	UNIT
		$I_{OUT} = 0$, $V_{ON} = V_{IN} = 5$ V	Full	66.5	96	
		$I_{OUT} = 0$, $V_{ON} = V_{IN} = 4.5 \text{ V}$	Full	57	82	
		$I_{OUT} = 0$, $V_{ON} = V_{IN} = 3.3 \text{ V}$	Full	38	60	
	Octobra and assume of	$I_{OUT} = 0$, $V_{ON} = V_{IN} = 2.5 \text{ V}$	Full	33.3	55	
I _{Q, VIN}	Quiescent current	I _{OUT} = 0, V _{ON} = V _{IN} = 1.8 V	Full	28.3	45	μA
		I _{OUT} = 0, V _{ON} = V _{IN} = 1.2 V	Full	22.8	36	
		I _{OUT} = 0, V _{ON} = V _{IN} = 1.1 V	Full	21.6	34	
		I _{OUT} = 0, V _{ON} = V _{IN} = 1 V	Full	20.3	33	
	SI I	V _{ON} = 0, V _{IN} = 5 V, V _{OUT} = 0 V	Full	0.76	2	
I _{SD, VIN}	Shut down current	V _{ON} = 0, V _{IN} = 1 V, V _{OUT} = 0 V	Full	0.07	0.8	μA
			25°C	13.3	21	•
		$V_{IN} = 5 \text{ V}, I_{OUT} = -200 \text{ mA}$	Full		26	mΩ
		V 45V L 200 A	25°C	13.3	21	•
	On-resistance	$V_{IN} = 4.5 \text{ V}, I_{OUT} = -200 \text{ mA}$	Full		26	mΩ
		.,	25°C	13.8	22	mΩ
		$V_{IN} = 3.3 \text{ V}, I_{OUT} = -200 \text{ mA}$	Full		27	
		V _{IN} = 2.5 V, I _{OUT} = -200 mA	25°C	15.4	24	mΩ
_			Full		29	
R _{ON}		V _{IN} = 1.8 V, I _{OUT} = -200 mA	25°C	18.2	28	mΩ
			Full		33	
			25°C	25.6	37	mΩ
		$V_{IN} = 1.2 \text{ V}, I_{OUT} = -200 \text{ mA}$	Full		44	
		V 44V L 200 A	25°C	28.7	41	mΩ
		$V_{IN} = 1.1 \text{ V}, I_{OUT} = -200 \text{ mA}$	Full		50	
		V 4V 1 200 4	25°C	33.8	48	
		$V_{IN} = 1 \text{ V, } I_{OUT} = -200 \text{ mA}$	Full		60	mΩ
		V _{IN} = 5 V	Full	115		
		V _{IN} = 4.5 V	Full	105		
		V _{IN} = 3.3 V	Full	80		
.,	ON	V _{IN} = 2.5 V	Full	65		.,
V _{HYS} , ON	ON pin hysteresis	V _{IN} = 1.8 V	Full	50		mV
		V _{IN} = 1.2 V	Full	35		
		V _{IN} = 1.1 V	Full	30		
		V _{IN} = 1 V	Full	30		
I _{ON}	ON pin leakage current	V _{ON} = 1.1 V to 5.5 V	Full		150	nA
			25°C	-0.02		
I _{RC, VIN}	Reverse current when disabled	$V_{IN} = V_{ON} = 0 \text{ V}, V_{OUT} = 5 \text{ V}$	85°C	-2.1		μΑ
R _{PD} ⁽¹⁾	Output pulldown resistance	V _{ON} = 0 V, I _{OUT} = 2 mA	Full	273	325	Ω

⁽¹⁾ Available in TPS22964 only.


8.6 Switching Characteristics

			TPS22963/64	
	PARAMETER	TEST CONDITION	TYP	UNIT
V _{IN} =	5.0 V, T _A = 25°C (unless oth	erwise noted)		
t _{ON}	Turn-ON time	$R_{OUT} = 10\Omega$, $C_{IN} = 1\mu F$, $C_{OUT} = 0.1\mu F$	928	
t _{OFF}	Turn-OFF time	$R_{OUT} = 10\Omega$, $C_{IN} = 1\mu F$, $C_{OUT} = 0.1\mu F$	2.5	
t _R	VOUT rise time	$R_{OUT} = 10\Omega$, $C_{IN} = 1\mu F$, $C_{OUT} = 0.1\mu F$	890	μs
t _F	VOUT fall time	$R_{OUT} = 10\Omega$, $C_{IN} = 1\mu F$, $C_{OUT} = 0.1\mu F$	2.1	
t _D	Delay time	$R_{OUT} = 10\Omega$, $C_{IN} = 1\mu F$, $C_{OUT} = 0.1\mu F$	561	
V _{IN} =	4.5 V, T _A = 25°C (unless oth	erwise noted)		
t _{ON}	Turn-ON time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	905	
t _{OFF}	Turn-OFF time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	2.6	
t_R	VOUT rise time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	859	μs
t _F	VOUT fall time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	2.1	
t _D	Delay time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	560	
V _{IN} =	3.3 V, T _A = 25°C (unless oth	erwise noted)		
t _{ON}	Turn-ON time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	836	
t _{OFF}	Turn-OFF time	$R_{OUT} = 10 \ \Omega, C_{IN} = 1 \ \mu F, C_{OUT} = 0.1 \ \mu F$	2.8	
t _R	VOUT rise time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	715	μs
t _F	VOUT fall time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	2	
t _D	Delay time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	553	
V _{IN} =	1.8 V, $T_A = 25^{\circ}C$ (unless oth	erwise noted)		
t _{ON}	Turn-ON time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	822	
t _{OFF}	Turn-OFF time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	2.8	
t_R	VOUT rise time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	651	μs
t _F	VOUT fall time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	2	
t _D	Delay time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	558	
V _{IN} =	1.2 V, T _A = 25°C (unless oth	erwise noted)		
t _{ON}	Turn-ON time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	852	
t _{OFF}	Turn-OFF time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	3.2	
t _R	VOUT rise time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	535	μs
t _F	VOUT fall time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	1.8	
t_D	Delay time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	594	
V _{IN} =	1.1 V, T _A = 25°C (unless oth	erwise noted)		
t _{ON}	Turn-ON time	R_{OUT} = 10 Ω , C_{IN} = 1 μ F, C_{OUT} = 0.1 μ F	861	
t _{OFF}	Turn-OFF time	$R_{OUT} = 10 \ \Omega, \ C_{IN} = 1 \ \mu F, \ C_{OUT} = 0.1 \ \mu F$	3.5	
t _R	VOUT rise time	R_{OUT} = 10 Ω , C_{IN} = 1 μ F, C_{OUT} = 0.1 μ F	518	μs
t _F	VOUT fall time	R_{OUT} = 10 Ω , C_{IN} = 1 μ F, C_{OUT} = 0.1 μ F	1.9	
t _D	Delay time	$R_{OUT} = 10 \Omega$, $C_{IN} = 1 \mu F$, $C_{OUT} = 0.1 \mu F$	604	

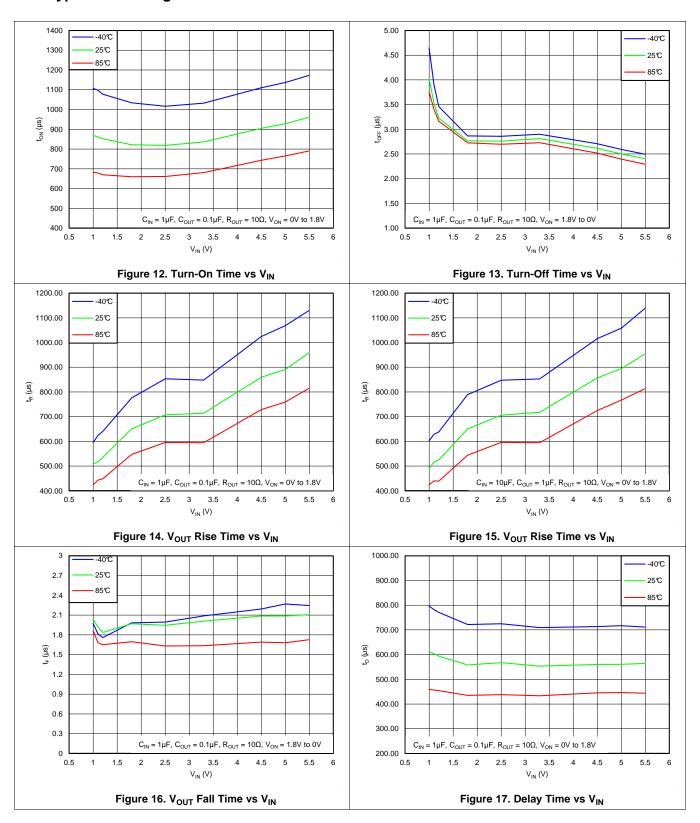
Product Folder Links: TPS22963C TPS22964C



8.7 Typical Electrical Characteristics

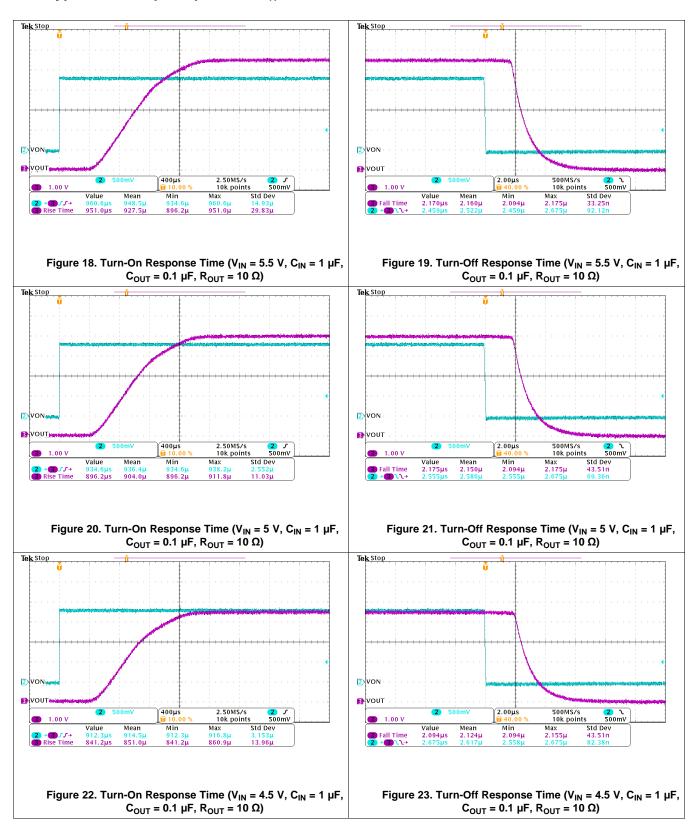
TEXAS INSTRUMENTS

Typical Electrical Characteristics (continued)

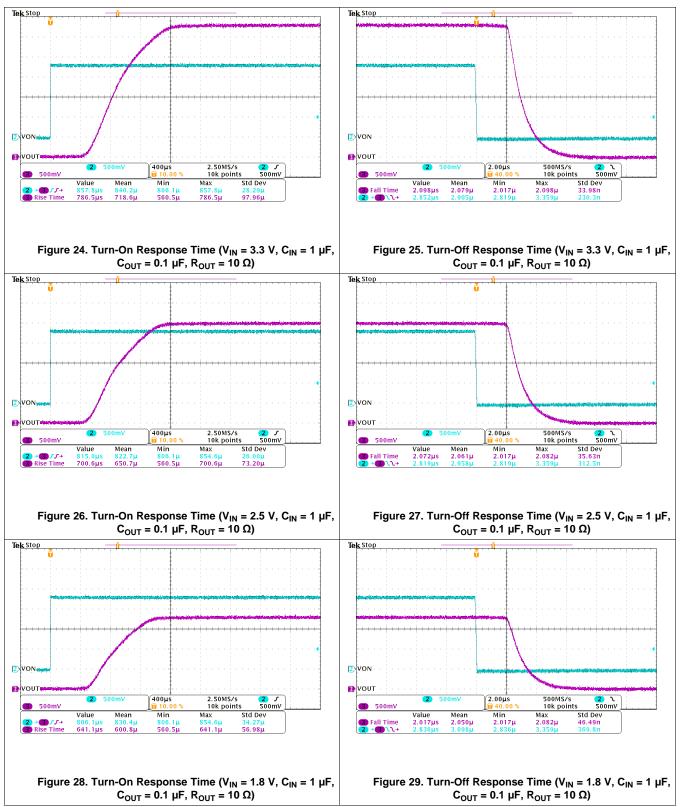


Submit Documentation Feedback

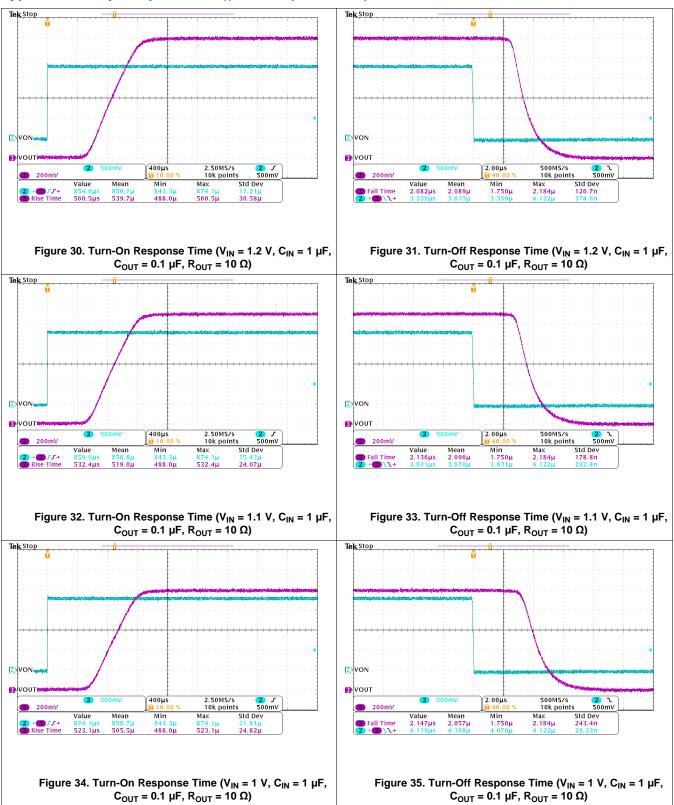
Copyright © 2013–2015, Texas Instruments Incorporated



8.8 Typical Switching Characteristics


TEXAS INSTRUMENTS

8.9 Typical AC Scope Captures at $T_A = 25^{\circ}C$



Typical AC Scope Captures at $T_A = 25^{\circ}C$ (continued)

Typical AC Scope Captures at $T_A = 25^{\circ}C$ (continued)

Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated

9 Parametric Measurement Information

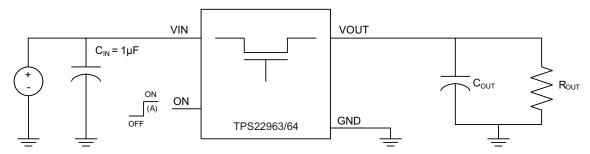
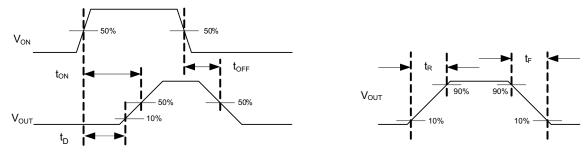
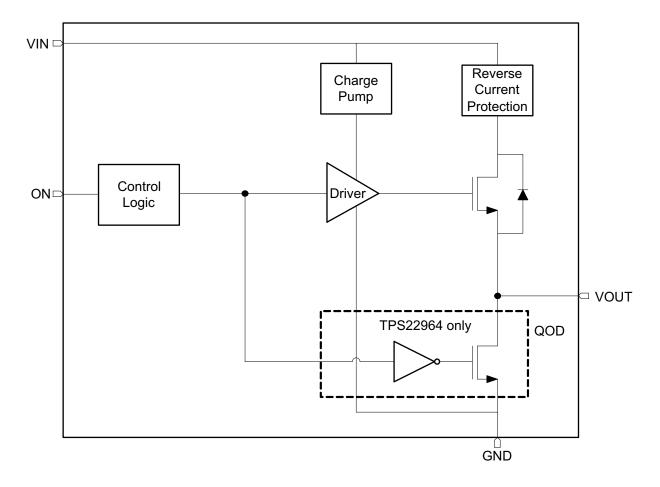



Figure 36. Test Circuit

A. Rise and fall times of the control signal are 100 ns.

Figure 37. Timing Waveforms



10 Detailed Description

10.1 Overview

The TPS22963/64 is a single channel, 3-A load switch in a small, space saving CSP-6 package. These devices implement an N-channel MOSFET to provide an ultra-low On-resistance for a low voltage drop across the device. A controlled rise time is used in applications to limit the inrush current.

10.2 Functional Block Diagram

10.3 Feature Description

10.3.1 On/Off Control

The ON pin controls the state of the switch. It is an active "High" pin and has a low threshold making it capable of interfacing with low voltage GPIO control signals. It can be used with any microcontroller with 1.2 V, 1.8 V, 2.5 V, 3.3 V or 5.5 V GPIOs. Applying V_{IH} on the ON pin will put the switch in the ON-state and V_{IL} will put the switch in the OFF-state.

10.3.2 Quick Output Discharge

The TPS22964 includes the Quick Output Discharge (QOD) feature. When the switch is disabled, a discharge resistance with a typical value of 273Ω is connected between the output and ground. This resistance pulls down the output and prevents it from floating when the device is disabled.

10.4 Device Functional Modes

Table 1. Function Table

ON	VIN to VOUT	OUTPUT DISCHARGE ⁽¹⁾ (2)
L	OFF	ACTIVE
Н	ON DISABLED	

- (1) This feature discharges the output of the switch to ground through a 273 Ω resistor, preventing the output from floating.
- (2) This feature is in the TPS22964 device only (not in the TPS22963).

11 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

11.1 Application Information

11.1.1 Input Capacitor

It is recommended to place a capacitor (C_{IN}) between VIN and GND pins of TPS22963/64. This capacitor helps to limit the voltage drop on the input voltage supply when the switch turns ON into a discharged load capacitor. A 1- μ F ceramic capacitor that is placed close to the IC pins is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop in high current applications.

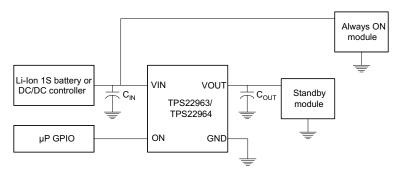
11.1.2 Output Capacitor

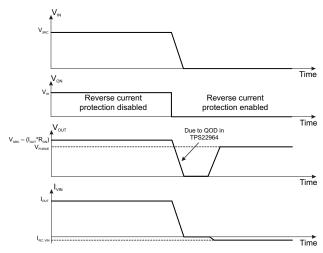
It is recommended to place a capacitor (C_{OUT}) between VOUT and GND pins of TPS22963/64. This capacitor acts as a low pass filter along with the switch ON-resistance to remove any voltage glitches coming from the input voltage source. It is generally recommended to have C_{IN} greater than C_{OUT} so that once the switch is turned ON, C_{OUT} can charge up to V_{IN} without V_{IN} dropping significantly. A 0.1- μ F ceramic capacitor that is placed close to the IC pins is usually sufficient.

Product Folder Links: TPS22963C TPS22964C

Application Information (continued)

11.1.3 Standby Power Reduction




Figure 38. Standby Power Reduction

Any end equipment that is being powered from the battery has a need to reduce current consumption in order to keep the battery charged for a longer time. TPS22963/64 helps to accomplish this by turning off the supply to the modules that are in standby state and hence significantly reduces the leakage current overhead of the standby modules.

11.1.4 Reverse Current Protection

The reverse current protection feature prevents the current to flow from VOUT to VIN when TPS22963/64 is disabled. This feature is particularly useful when the output of TPS22963/64 needs to be driven by another voltage source after TPS22963/64 is disabled (for example in a power multiplexer application). In order for this feature to work, TPS22963/64 has to be disabled and either of the following conditions shall be met: $V_{IN} > 1$ V or $V_{OUT} > 1$ V.

Figure 39 demonstrates the ideal behavior of reverse current protection circuit in TPS22963/64. After the device is disabled via the ON pin and VOUT is forced to an external voltage V_{FORCE} , a very small amount of current given by $I_{RC,VIN}$ will flow from VOUT to VIN. This will prevent any extra current loading on the voltage source supplying the V_{FORCE} voltage.

 I_{VIN} = Current through VIN pin.

V_{SRC} = Input voltage applied to the device.

 V_{FORCE} = External voltage source forced at VOUT pin of the device.

I_{OUT} = Output load current.

Figure 39. Reverse Current Protection

Application Information (continued)

11.1.5 Power Supply Sequencing Without a GPIO Input

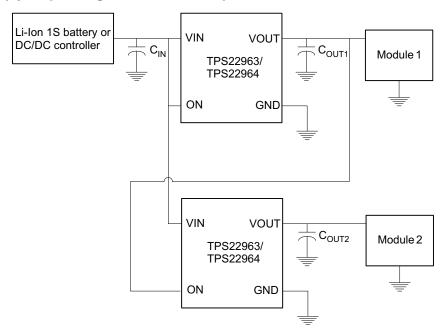


Figure 40. Power Supply Sequencing Without a GPIO Input

In many end equipments, there is a need to power up various modules in a pre-determined manner. TPS22963/64 can solve the problem of power sequencing without adding any complexity to the overall system. Figure 40 shows the configuration required for powering up two modules in a fixed sequence. The output of the first load switch is tied to the enable of the second load switch, so when Module 1 is powered the second load switch is enabled and Module 2 is powered.

11.2 Typical Application

TPS22963/64 is an ultra-low ON-resistance, 3-A integrated load switch that is capable of interfacing directly with 1S battery in portable consumer devices such as smartphones, tablets etc. Its wide input voltage range (1 V to 5.5 V) makes it suitable to be used for lower voltage rails as well inside different end equipments to accomplish power sequencing, inrush current control and reducing leakage current in sub-systems that are in standby mode. Figure 41 shows the typical application circuit of TPS22963/64.

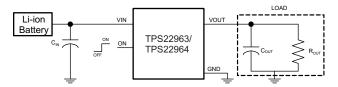


Figure 41. Typical Application Circuit

11.2.1 Design Requirements

DESIGN PARAMETER	EXAMPLE VALUE
V _{IN}	3.3 V
C_L	4.7 μF
Maximum Acceptable Inrush Current	30 mA

11.2.2 Detailed Design Procedure

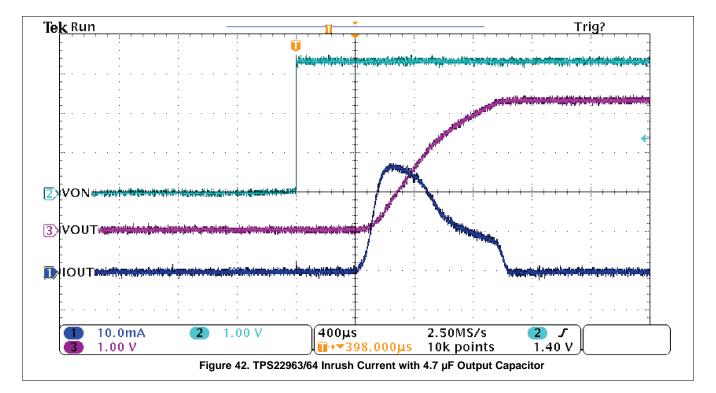
11.2.2.1 Managing Inrush Current

When the switch is enabled, the output capacitors must be charged up from 0 V to the set value (3.3 V in this example). This charge arrives in the form of inrush current. Inrush current can be calculated using the following equation:

$$I_{INRUSH} = C_L \times \frac{dV_{OUT}}{dt}$$

where

- C = output capacitance
- dV = output voltage


The TPS22963/64 offers a controlled rise time for minimizing inrush current. This device can be selected based upon the minimum acceptable rise time which can be calculated using the design requirements and the inrush current equation. An output capacitance of 4.7 μ F will be used since the amound of inrush current increases with output capacitance:

$$30 \text{ mA} = 4.7 \,\mu\text{F} \, x \, 3.3 \, \text{V} \, / \, \text{dt}$$
 (2)

$$dt = 517 \,\mu s \tag{3}$$

To ensure an inrush current of less than 30 mA, a device with a rise time greater than 517 µs must be used. The TPS22963/64 has a typical rise time of 715 µs at 3.3 V which meets the above design requirements.

11.2.3 Application Curves

Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated

12 Power Supply Recommendations

The device is designed to operate with a VIN range of 1 V to 5.5 V. This supply must be well regulated and placed as close to the device terminal as possible with the recommended 1 μ F bypass capacitor. If the supply is located more than a few inches from the device terminals, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or ceramic capacitor of 10 μ F may be sufficient

13 Layout

13.1 Layout Guidelines

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal operation. Using wide traces for VIN, VOUT and GND will help minimize the parasitic electrical effects.

For higher reliability, the maximum IC junction temperature, $T_{J(max)}$, should be restricted to 125°C under normal operating conditions. Junction temperature is directly proportional to power dissipation in the device and the two are related by Equation 4.

$$\mathsf{T}_J = \mathsf{T}_A + \Theta_{JA} \times \mathsf{P}_D$$

where

- T_J = Junction temperature of the device
- T_A = Ambient temperature
- P_D = Power dissipation inside the device
- Θ_{JA} = Junction to ambient thermal resistance. See Thermal Information section of the datasheet. This
 parameter is highly dependent on board layout.

(4)

13.2 Layout Example

VIA to Power Ground Plane

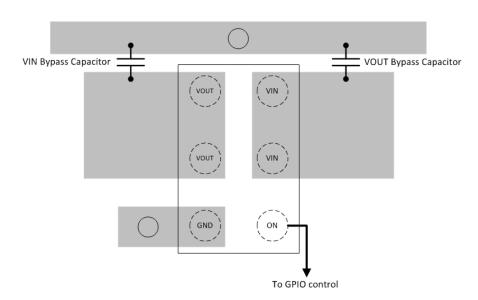


Figure 43. Layout Example

14 Device and Documentation Support

14.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TPS22963C	Click here	Click here	Click here	Click here	Click here
TPS22964C	Click here	Click here	Click here	Click here	Click here

14.2 Trademarks

Ultrabook is a trademark of Intel Corporation in the U.S. and/or other countries. All other trademarks are the property of their respective owners.

14.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

14.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

15 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: TPS22963C TPS22964C

www.ti.com 31-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
TPS22963CYZPR	Active	Production	DSBGA (YZP) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BD
TPS22963CYZPR.A	Active	Production	DSBGA (YZP) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BD
TPS22963CYZPT	Active	Production	DSBGA (YZP) 6	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BD
TPS22963CYZPT.A	Active	Production	DSBGA (YZP) 6	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	BD
TPS22964C2YZPR	Active	Production	DSBGA (YZP) 6	6000 JUMBO T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	DK
TPS22964C2YZPR.A	Active	Production	DSBGA (YZP) 6	6000 JUMBO T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	DK
TPS22964CYZPR	Active	Production	DSBGA (YZP) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	DK
TPS22964CYZPR.A	Active	Production	DSBGA (YZP) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	DK
TPS22964CYZPT	Active	Production	DSBGA (YZP) 6	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	DK
TPS22964CYZPT.A	Active	Production	DSBGA (YZP) 6	250 SMALL T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	DK

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

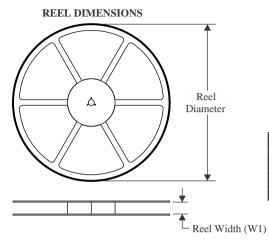
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

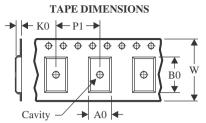
⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 31-Oct-2025


and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 10-Sep-2025

TAPE AND REEL INFORMATION

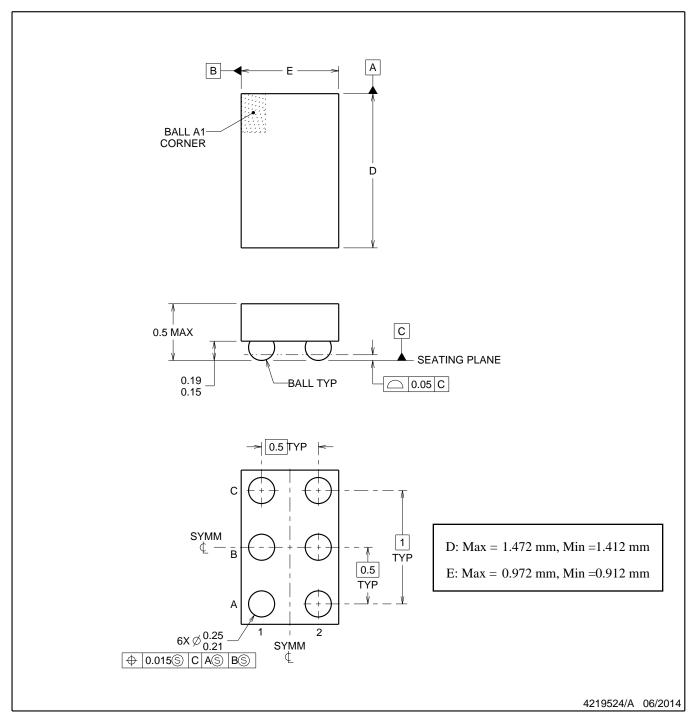
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22963CYZPR	DSBGA	YZP	6	3000	180.0	8.4	1.04	1.54	0.56	4.0	8.0	Q1
TPS22963CYZPT	DSBGA	YZP	6	250	180.0	8.4	1.04	1.54	0.56	4.0	8.0	Q1
TPS22964C2YZPR	DSBGA	YZP	6	6000	180.0	8.4	1.04	1.57	0.6	2.0	8.0	Q1
TPS22964CYZPR	DSBGA	YZP	6	3000	180.0	8.4	1.04	1.54	0.56	4.0	8.0	Q1
TPS22964CYZPT	DSBGA	YZP	6	250	180.0	8.4	1.04	1.54	0.56	4.0	8.0	Q1

www.ti.com 10-Sep-2025

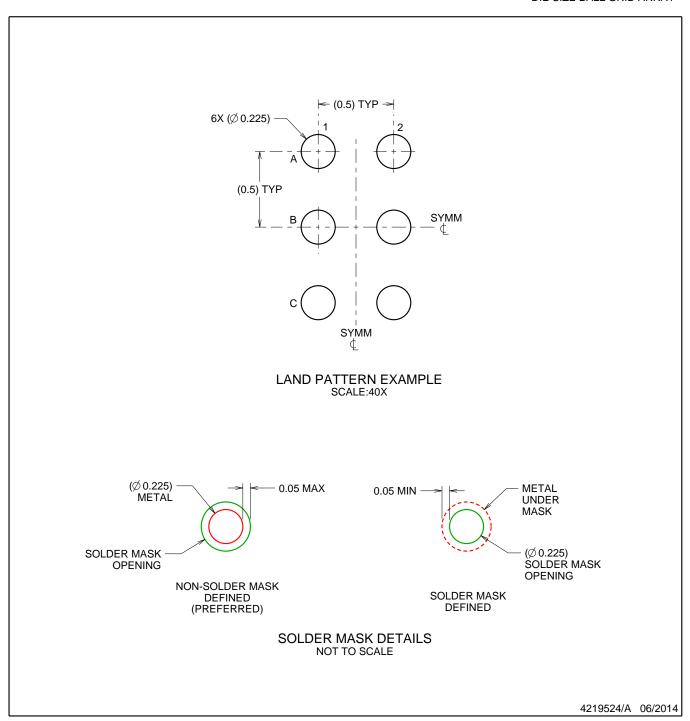


*All dimensions are nominal

7 til dilliononono di o monimidi							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22963CYZPR	DSBGA	YZP	6	3000	182.0	182.0	20.0
TPS22963CYZPT	DSBGA	YZP	6	250	182.0	182.0	20.0
TPS22964C2YZPR	DSBGA	YZP	6	6000	182.0	182.0	20.0
TPS22964CYZPR	DSBGA	YZP	6	3000	182.0	182.0	20.0
TPS22964CYZPT	DSBGA	YZP	6	250	182.0	182.0	20.0

DIE SIZE BALL GRID ARRAY

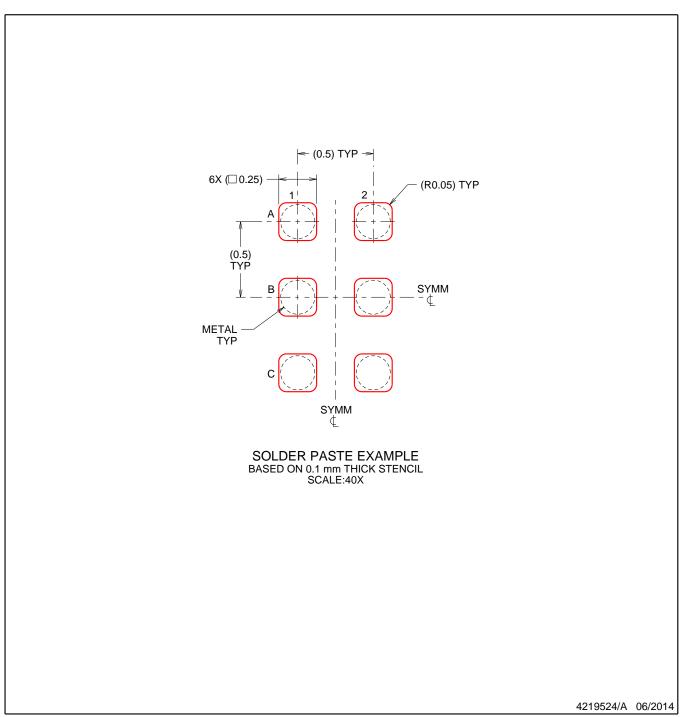
NOTES:


NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. NanoFree[™] package configuration.

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.
 For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025