

www.ti.com

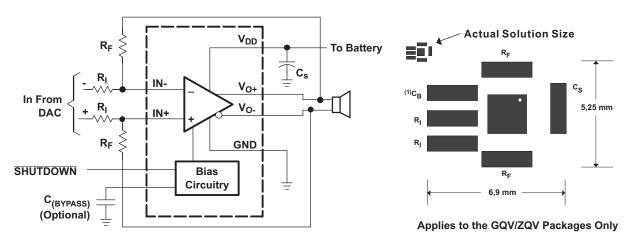
SLOS364F-MARCH 2002-REVISED JUNE 2008

1.25-W MONO FULLY DIFFERENTIAL AUDIO POWER AMPLIFIER

FEATURES

- 1.25 W Into 8 Ω From a 5-V Supply at THD = 1% (Typical)
- Low Supply Current: 1.7 mA Typical
- Shutdown Control < 10 μA
- Only Five External Components
 - Improved PSRR (90 dB) and Wide Supply Voltage (2.5 V to 5.5 V) for Direct Battery Operation
 - Fully Differential Design Reduces RF Rectification
 - Improved CMRR Eliminates Two Input Coupling Capacitors
 - C_(BYPASS) Is Optional Due to Fully Differential Design and High PSRR
- Avaliable in a 2 mm x 2 mm MicroStar Junior ™ BGA Package (GQV, ZQV)
- Available in 3 mm x 3 mm QFN Package (DRB)
- Available in an 8-Pin PowerPAD™ MSOP (DGN)

APPLICATIONS


 Designed for Wireless or Cellular Handsets and PDAs

DESCRIPTION

The TPA6203A1 is a 1.25-W mono fully differential amplifier designed to drive a speaker with at least $8-\Omega$ impedance while consuming less than 37 mm^2 (ZQV package option) total printed-circuit board (PCB) area in most applications. This device operates from 2.5 V to 5.5 V, drawing only 1.7 mA of quiescent supply current. The TPA6203A1 is available in the space-saving 2 mm x 2 mm MicroStar Junior BGA package, and the space saving 3 mm x 3 mm QFN (DRB) package.

Features like 85-dB PSRR from 90 Hz to 5 kHz, improved RF-rectification immunity, and small PCB area makes the TPA6203A1 ideal for wireless handsets. A fast start-up time of 4 μ s with minimal pop makes the TPA6203A1 ideal for PDA applications.

APPLICATION CIRCUIT

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

	PACKAGED DEVICES (1)(2)(3)					
	MicroStar Junior™ (GQV)	MicroStar Junior™ (ZQV)	QFN (DRB)	MSOP (DGN)		
Device	TPA6203A1GQVR	TPA6203A1ZQVR	TPA6203A1DRB	TPA6203A1DGN		
Symbolization	AADI	AAEI	AAJI	AAII		

- (1) The GQV is the standard MicroStar Junior package. The ZQV is a lead-free option and is qualified for 260° lead-free assembly.
- (2) The GQV and ZQV packages are only available taped and reeled. The suffix R designates taped and reeled parts.
- 3) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1)

			UNIT
Supply voltage, V _{DD}			-0.3 V to 6 V
Input voltage, V _I	-0.3 V to V _{DD} + 0.3 V		
Continuous total power dissi	See Dissipation Rating Table		
Operating free-air temperatu	-40°C to 85°C		
Junction temperature, T _J	-40°C to 125°C		
Storage temperature, T _{stg}	-65°C to 150°C		
Load towns rature 1.6 mm (1	/46 Inch) from coop for 40 coopeds	ZQV, DRB, DGN	260°C
Lead temperature 1,6 mm (1/16 Inch) from case for 10 seconds		GQV	235°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

		MIN	TYP	MAX	UNIT
Supply voltage, V _{DD}		2.5		5.5	V
High-level input voltage, V _{IH}	SHUTDOWN	2			V
Low-level input voltage, V _{IL}	SHUTDOWN			0.8	V
Common-mode input voltage, V _{IC}	V _{DD} = 2.5 V, 5.5 V, CMRR ≤ -60 dB	0.5		V _{DD} -0.8	V
Operating free-air temperature, T _A		-40		85	°C
Load impedance, Z _L		6.4	8		Ω

DISSIPATION RATINGS

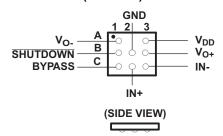
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
GQV, ZQV	885 mW	8.8 mW/°C	486 mW	354 mW
DRB	2.7 W	21.8 mW/°C	1.7 W	1.4 W

Product Folder Link(s): TPA6203A1

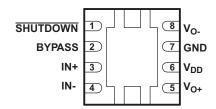
ELECTRICAL CHARACTERISTICS

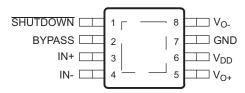
 $T_A = 25$ °C, Gain = 1 V/V

	PARAMETER	TEST CONDITIONS	}	MIN	TYP	MAX	UNIT
V _{OO}	Output offset voltage (measured differentially)	$V_{I} = 0 \text{ V}, V_{DD} = 2.5 \text{ V} \text{ to } 5.5 \text{ V}$				9	mV
PSRR	Power supply rejection ratio	V _{DD} = 2.5 V to 5.5 V			-90	-70	dB
01100		V_{DD} = 3.6 V to 5.5 V, V_{IC} = 0.5 V to V_{DD}	o-0.8		-70	-65	dB
CMRR	Common-mode rejection ratio	$V_{DD} = 2.5 \text{ V}, V_{IC} = 0.5 \text{ V to } 1.7 \text{ V}$			-62	-55	uБ
			V _{DD} = 5.5 V		0.30	0.46	
V_{OL}	V _{OL} Low-level output voltage	$R_L = 8 \Omega$, $V_{IN+} = V_{DD}$, $V_{IN-} = 0 \text{ V or } V_{IN+} = 0 \text{ V}$, $V_{IN-} = V_{DD}$	$V_{DD} = 3.6 \text{ V}$		0.22		V
			V _{DD} = 2.5 V		0.19	0.26	
			V _{DD} = 5.5 V	4.8	5.12		
V_{OH}	High-level output voltage	$R_{L} = 8 \Omega, V_{IN+} = V_{DD},$ $V_{IN-} = 0 V \text{ or } V_{IN+} = 0 V, V_{IN-} = V_{DD}$	$V_{DD} = 3.6 \text{ V}$		3.28		V
		VIN- = 0 V 01 VIN+ = 0 V, VIN- = VDD	V _{DD} = 2.5 V	2.1	2.24		
I _{IH}	High-level input current	V _{DD} = 5.5 V, V _I = 5.8 V	·			1.2	μΑ
$ I_{1L} $	Low-level input current	V _{DD} = 5.5 V, V _I = -0.3 V				1.2	μΑ
I_{DD}	Supply current	V _{DD} = 2.5 V to 5.5 V, No load, SHUTDO	DWN = 2 V		1.7	2	mA
I _{DD(SD)}	Supply current in shutdown mode	SHUTDOWN = 0.8 V, V _{DD} = 2.5 V to 5.5	5 V, No load		0.01	0.9	μΑ


OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C$, Gain = 1 V/V, $R_L = 8~\Omega$


	PARAMETER	TEST CONDIT	MIN TYP	MAX	UNIT	
			V _{DD} = 5 V	1.25		
Po	Output power	THD + N = 1%, f = 1 kHz	V _{DD} = 3.6 V	0.63		W
			V _{DD} = 2.5 V	0.3		
		V _{DD} = 5 V, P _O = 1 W, f = 1 kHz		0.06%		
THD+N	Total harmonic distortion plus noise	V _{DD} = 3.6 V, P _O = 0.5 W, f = 1 kHz		0.07%		
	plus noise	V _{DD} = 2.5 V, P _O = 200 mW, f = 1 kH:	Z	0.08%		
k _{SVR} Supply ripple rejection ratio	$\begin{split} &C_{(BYPASS)} = 0.47~^{\circ}\text{F}, \\ &V_{DD} = 3.6~\text{V to } 5.5~\text{V}, \\ &\text{Inputs ac-grounded with } C_{\text{I}} = 2~\mu\text{F} \end{split}$	f = 217 Hz to 2 kHz, $V_{RIPPLE} = 200 \text{ mV}_{PP}$	-87			
		f = 217 Hz to 2 kHz, $V_{RIPPLE} = 200 \text{ mV}_{PP}$	-82		dB	
			f = 40 Hz to 20 kHz, $V_{RIPPLE} = 200 \text{ mV}_{PP}$	≤-74		ı
SNR	Signal-to-noise ratio	V _{DD} = 5 V, P _O = 1 W	·	104		dB
.,	Outrout valta as a siss	No weightin		17		.,
V _n	Output voltage noise	f = 20 Hz to 20 kHz	A weighting	13		μV_{RMS}
	Common-mode rejection	V _{DD} = 2.5 V to 5.5 V,	f = 20 Hz to 1 kHz	≤-85		
CMRR	ratio	resistor tolerance = 0.1%, gain = 4V/V, V _{ICM} = 200 mV _{PP}	f = 20 Hz to 20 kHz	≤-74		dB
Z _I	Input impedance		·	2		МΩ
Z _O	Output impedance	Shutdown mode		>10k		
	Shutdown attenuation	$f = 20$ Hz to 20 kHz, $R_F = R_1 = 20$ kΩ	!	-80		dB

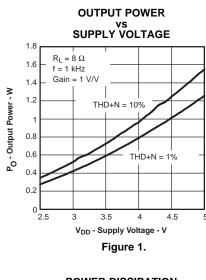

MicroStar Junior™ (GQV or ZQV) PACKAGE (TOP VIEW)

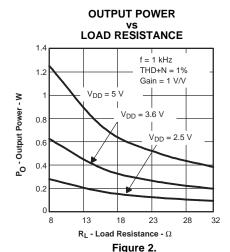
8-PIN QFN (DRB) PACKAGE (TOP VIEW)

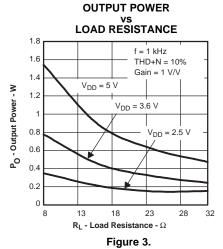
8-PIN MSOP (DGN) PACKAGE (TOP VIEW)

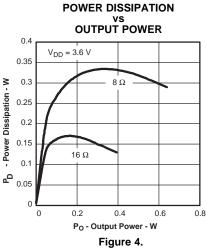
Terminal Functions

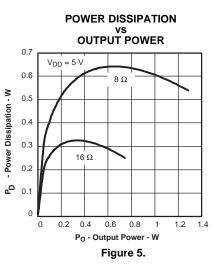
TERI	MINAL			
NAME	GQV	DRB, DGN	I/O	DESCRIPTION
BYPASS	C1	2	I	Mid-supply voltage. Adding a bypass capacitor improves PSRR.
GND	B2	7	I	High-current ground
IN-	C3	4	I	Negative differential input
IN+	C2	3	I	Positive differential input
SHUTDOWN	B1	1	I	Shutdown terminal (active low logic)
V_{DD}	А3	6	I	Supply voltage terminal
V _{O+}	В3	5	0	Positive BTL output
V _{O-}	A1	8	0	Negative BTL output
Thermal Pad				Connect to ground. Thermal pad must be soldered down in all applications to properly secure device on the PCB.

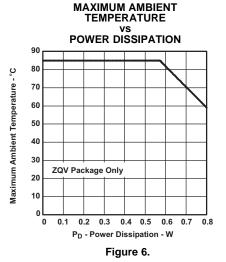

TYPICAL CHARACTERISTICS

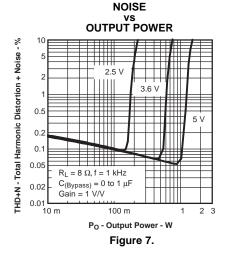

Table of Graphs

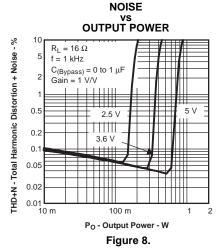

			FIGURE
D	Output nouser	vs Supply voltage	1
Po	Output power	vs Load resistance	2, 3
P_D	Power dissipation vs Output power		4, 5
	Maximum ambient temperature	vs Power dissipation	6
		vs Output power	7, 8
	Total harmonic distortion + noise	vs Frequency	9, 10, 11, 12
		vs Common-mode input voltage	13
	Supply voltage rejection ratio	vs Frequency	14, 15, 16, 17
	Supply voltage rejection ratio	vs Common-mode input voltage	18
	GSM Power supply rejection	vs Time	19
	GSM Power supply rejection	vs Frequency	20
CMRR	Common mode rejection ratio	vs Frequency	21
CIVIKK	Common-mode rejection ratio	vs Common-mode input voltage	22
	Closed loop gain/phase	vs Frequency	23
	Open loop gain/phase	vs Frequency	24
	Complex compact	vs Supply voltage	25
I _{DD}	Supply current	vs Shutdown voltage	26
	Start-up time	vs Bypass capacitor	27

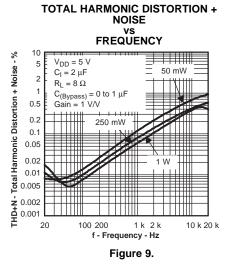



TYPICAL CHARACTERISTICS

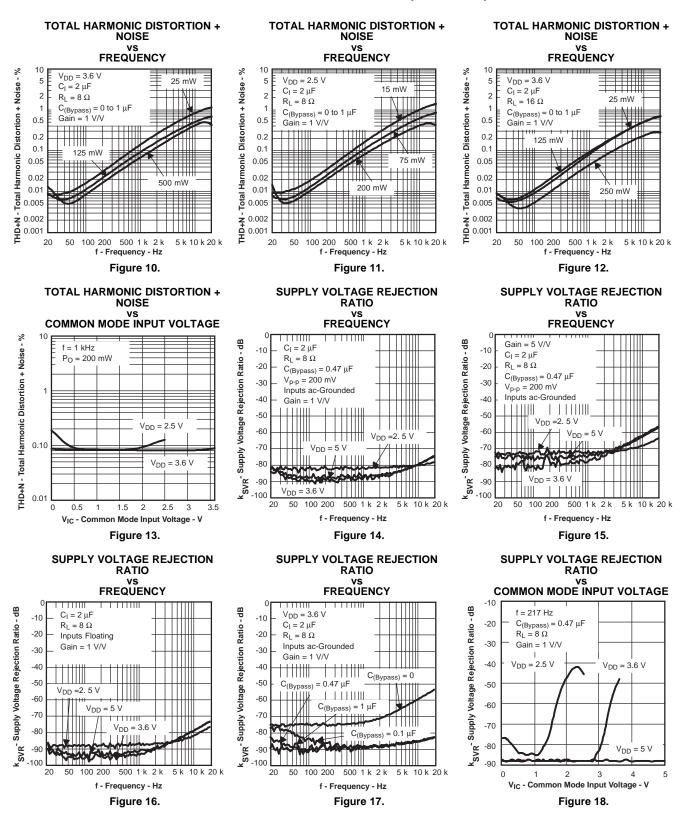






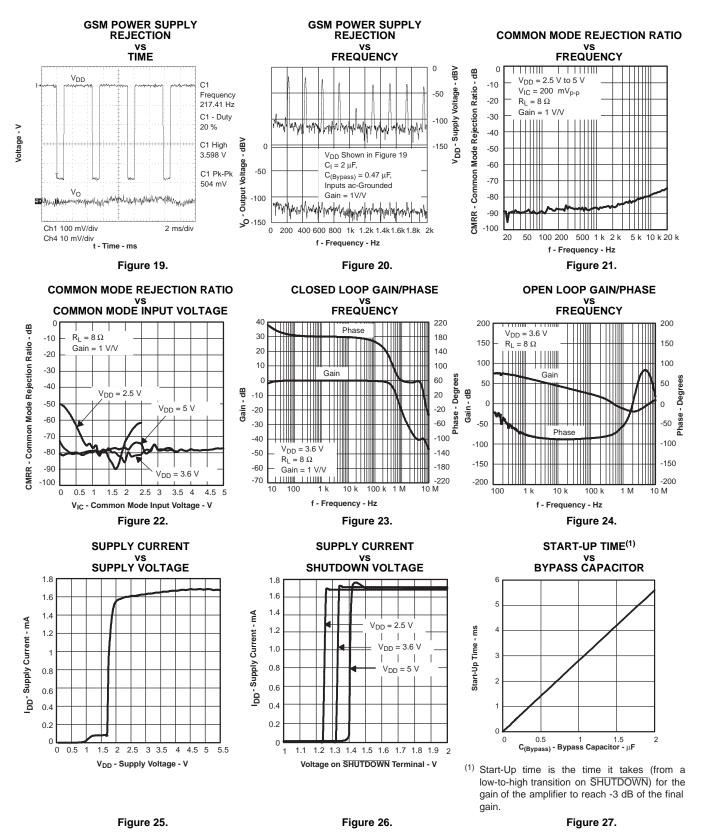

TOTAL HARMONIC DISTORTION +

TOTAL HARMONIC DISTORTION +



Submit Documentation Feedback

Copyright © 2002–2008, Texas Instruments Incorporated



TYPICAL CHARACTERISTICS (continued)

TYPICAL CHARACTERISTICS (continued)

Submit Documentation Feedback

Copyright © 2002–2008, Texas Instruments Incorporated

APPLICATION INFORMATION

FULLY DIFFERENTIAL AMPLIFIER

The TPA6203A1 is a fully differential amplifier with differential inputs and outputs. The fully differential amplifier consists of a differential amplifier and a common- mode amplifier. The differential amplifier ensures that the amplifier outputs a differential voltage that is equal to the differential input times the gain. The common-mode feedback ensures that the common-mode voltage at the output is biased around $V_{\text{DD}}/2$ regardless of the common- mode voltage at the input.

Advantages of Fully Differential Amplifiers

- Input coupling capacitors not required: A fully differential amplifier with good CMRR, like the TPA6203A1, allows the inputs to be biased at voltage other than mid-supply. For example, if a DAC has mid-supply lower than the mid-supply of the TPA6203A1, the common-mode feedback circuit adjusts for that, and the TPA6203A1 outputs are still biased at mid-supply of the TPA6203A1. The inputs of the TPA6203A1 can be biased from 0.5 V to V_{DD} 0.8 V. If the inputs are biased outside of that range, input coupling capacitors are required.
- Mid-supply bypass capacitor, C_(BYPASS), not required: The fully differential amplifier does not require a bypass capacitor. This is because any shift in the mid-supply affects both positive and

- negative channels equally and cancels at the differential output. However, removing the bypass capacitor slightly worsens power supply rejection ratio (k_{SVR}), but a slight decrease of k_{SVR} may be acceptable when an additional component can be eliminated (see Figure 17).
- Better RF-immunity: GSM handsets save power by turning on and shutting off the RF transmitter at a rate of 217 Hz. The transmitted signal is picked-up on input and output traces. The fully differential amplifier cancels the signal much better than the typical audio amplifier.

APPLICATION SCHEMATICS

Figure 28 through Figure 30 show application schematics for differential and single-ended inputs. Typical values are shown in Table 1.

Table 1. Typical Component Values

COMPONENT	VALUE
R _I	10 kΩ
R _F	10 kΩ
C _(BYPASS) ⁽¹⁾	0.22 μF
C _S	1 μF
C _I	0.22 μF
(1) C _(BYPASS) is optional	

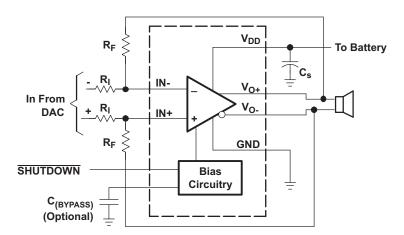


Figure 28. Typical Differential Input Application Schematic

Copyright © 2002–2008, Texas Instruments Incorporated

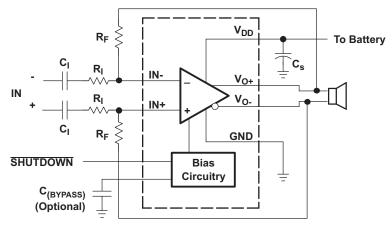


Figure 29. Differential Input Application Schematic Optimized With Input Capacitors

Figure 30. Single-Ended Input Application Schematic

Selecting Components

Resistors (R_F and R_I)

The input (R_I) and feedback resistors (R_F) set the gain of the amplifier according to Equation 1.

$$Gain = R_F/R_I \tag{1}$$

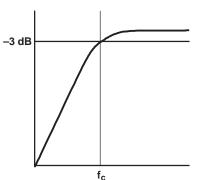
 R_F and R_I should range from 1 k Ω to 100 k Ω . Most graphs were taken with $R_F = R_I = 20$ k Ω .

Resistor matching is very important in fully differential amplifiers. The balance of the output on the reference voltage depends on matched ratios of the resistors. CMRR, PSRR, and the cancellation of the second harmonic distortion diminishes if resistor mismatch occurs. Therefore, it is recommended to use 1% tolerance resistors or better to keep the performance optimized.

Bypass Capacitor (CBYPASS) and Start-Up Time

The internal voltage divider at the BYPASS pin of this device sets a mid-supply voltage for internal references and sets the output common mode voltage to $V_{DD}/2$. Adding a capacitor to this pin filters any noise into this pin and increases the k_{SVR} . $C_{(BYPASS)}$ also determines the rise time of V_{O+} and V_{O-} when the device is taken out of shutdown. The larger the capacitor, the slower the rise time. Although the output rise time depends on the bypass capacitor value, the device passes audio 4 μs after taken out of shutdown and the gain is slowly ramped up based on $C_{(BYPASS)}$.

To minimize *pops* and *clicks*, design the circuit so the impedance (resistance and capacitance) detected by both inputs, IN+ and IN-, is equal.



Input Capacitor (C_I)

The TPA6203A1 does not require input coupling capacitors if using a differential input source that is biased from 0.5 V to V_{DD} - 0.8 V. Use 1% tolerance or better gain-setting resistors if not using input coupling capacitors.

In the single-ended input application an input capacitor, C_l , is required to allow the amplifier to bias the input signal to the proper dc level. In this case, C_l and R_l form a high-pass filter with the corner frequency determined in Equation 2.

$$f_{C} = \frac{1}{2\pi R_{I}C_{I}} \tag{2}$$

The value of C_I is important to consider as it directly affects the bass (low frequency) performance of the circuit. Consider the example where R_I is 10 k Ω and the specification calls for a flat bass response down to 100 Hz. Equation 2 is reconfigured as Equation 3.

$$C_{\parallel} = \frac{1}{2\pi R_{\parallel} f_{C}}$$
 (3)

In this example, C_l is 0.16 μF , so one would likely choose a value in the range of 0.22 μF to 0.47 μF . A further consideration for this capacitor is the leakage path from the input source through the input network (R_l, C_l) and the feedback resistor (R_F) to the load. This leakage current creates a dc offset voltage at the input to the amplifier that reduces useful headroom, especially in high gain applications. For this reason, a ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor should face the amplifier input in most applications, as the dc level there is held at $V_{DD}/2$, which is likely higher than the source dc level. It is important to confirm the capacitor polarity in the application.

Decoupling Capacitor (C_S)

The TPA6203A1 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to ensure the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also prevents oscillations for long lead lengths between the amplifier and the speaker. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series- resistance (ESR) ceramic capacitor, typically 0.1 μF to 1 μF , placed as close as possible to the device V_{DD} lead works best. For filtering lower frequency noise signals, a 10- μF or greater capacitor placed near the audio power amplifier also helps, but is not required in most applications because of the high PSRR of this device.

USING LOW-ESR CAPACITORS

Low-ESR capacitors are recommended throughout this applications section. A real (as opposed to ideal) capacitor can be modeled simply as a resistor in series with an ideal capacitor. The voltage drop across this resistor minimizes the beneficial effects of the capacitor in the circuit. The lower the equivalent value of this resistance the more the real capacitor behaves like an ideal capacitor.

DIFFERENTIAL OUTPUT VERSUS SINGLE-ENDED OUTPUT

Figure 31 shows a Class-AB audio power amplifier (APA) in a fully differential configuration. The TPA6203A1 amplifier has differential outputs driving both ends of the load. There are several potential benefits to this differential drive configuration, but initially consider power to the load. The differential drive to the speaker means that as one side is slewing up, the other side is slewing down, and vice versa. This in effect doubles the voltage swing on the load as compared to a ground referenced load. Plugging 2 x $V_{O(PP)}$ into the power equation, where voltage is squared, yields 4x the output power from the same supply rail and load impedance (see Equation 4).

Copyright © 2002–2008, Texas Instruments Incorporated

$$V_{(rms)} = \frac{V_{O(PP)}}{2\sqrt{2}}$$

$$V_{(rms)}^{2}$$

(4)

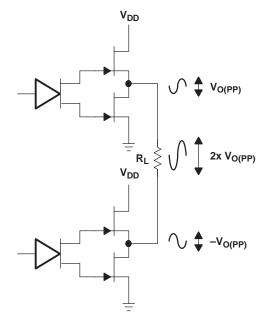


Figure 31. Differential Output Configuration

In a typical wireless handset operating at 3.6 V, bridging raises the power into an 8-Ω speaker from a singled-ended (SE, ground reference) limit of 200 mW to 800 mW. In sound power that is a 6-dB improvement—which is loudness that can be heard. In addition to increased power there are frequency response concerns. Consider the single-supply SE configuration shown in Figure 32. A coupling capacitor is required to block the dc offset voltage from reaching the load. This capacitor can be guite large (approximately 33 μ F to 1000 μ F) so it tends to be expensive, heavy, occupy valuable PCB area, and additional drawback have the limiting of

low-frequency performance of the system. This frequency-limiting effect is due to the high pass filter network created with the speaker impedance and the coupling capacitance and is calculated with Equation 5.

$$f_{C} = \frac{1}{2\pi R_{L} C_{C}} \tag{5}$$

For example, a $68-\mu F$ capacitor with an $8-\Omega$ speaker would attenuate low frequencies below 293 Hz. The BTL configuration cancels the dc offsets, which eliminates the need for the blocking capacitors. Low-frequency performance is then limited only by the input network and speaker response. Cost and PCB space are also minimized by eliminating the bulky coupling capacitor.

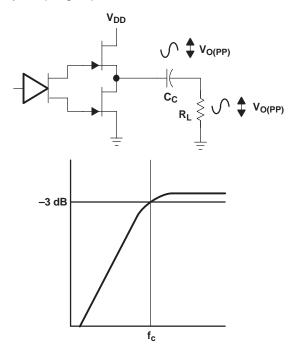


Figure 32. Single-Ended Output and Frequency Response

Increasing power to the load does carry a penalty of increased internal power dissipation. The increased dissipation is understandable considering that the BTL configuration produces 4x the output power of the SE configuration.

FULLY DIFFERENTIAL AMPLIFIER EFFICIENCY AND THERMAL INFORMATION

Class-AB amplifiers are inefficient. The primary cause of these inefficiencies is voltage drop across the output stage transistors. There are two components of the internal voltage drop. One is the headroom or dc voltage drop that varies inversely to output power. The second component is due to the sinewave nature of the output. The total voltage drop can be calculated by subtracting the RMS value of the output voltage from V_{DD}. The internal voltage drop multiplied by the average value of the supply current, $I_{DD}(avg)$, determines the internal power dissipation of the amplifier.

An easy-to-use equation to calculate efficiency starts out as being equal to the ratio of power from the power supply to the power delivered to the load. To accurately calculate the RMS and average values of power in the load and in the amplifier, the current and voltage waveform shapes must first be understood (see Figure 33).

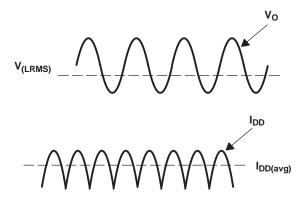


Figure 33. Voltage and Current Waveforms for **BTL Amplifiers**

Although the voltages and currents for SE and BTL are sinusoidal in the load, currents from the supply different between SE and BTL configurations. In an SE application the current waveform is a half-wave rectified shape, whereas in BTL it is a full-wave rectified waveform. This means RMS conversion factors are different. Keep in mind that for most of the waveform both the push and pull transistors are not on at the same time, which supports the fact that each amplifier in the BTL device only draws current from the supply for half the waveform. The following equations are the basis for calculating amplifier efficiency.

Efficiency of a BTL amplifier =
$$\frac{P_L}{P_{SUP}}$$

where:

$$P_L = \frac{V_L \text{rms}^2}{R_L}$$
, and $V_{LRMS} = \frac{V_P}{\sqrt{2}}$, therefore, $P_L = \frac{V_P^2}{2R_L}$

and
$$P_{SUP} = V_{DD}I_{DD}$$
 avg and I_{DD} avg $= \frac{1}{\pi}\int_0^{\pi} \frac{V_P}{R_I} \sin(t) dt = \frac{1}{\pi} \times \frac{V_P}{R_L} \left[\cos(t)\right]_0^{\pi} = \frac{2V_P}{\pi R_L}$

Therefore.

$$\mathsf{P}_{SUP} \; = \; \frac{2 \, \mathsf{V}_{DD} \, \mathsf{V}_{P}}{\pi \, \mathsf{R}_{I}}$$

substituting PL and PSUP into equation 6,

Efficiency of a BTL amplifier
$$= \frac{\frac{V_P^2}{2 R_L}}{\frac{2 V_{DD} V_P}{\pi R_L}} = \frac{\pi V_P}{4 V_{DD}}$$
where:

$$V_{P} = \sqrt{2 P_{L} R_{L}}$$

P_L = Power delivered to load P_{SUP} = Power drawn from power supply V_{LRMS} = RMS voltage on BTL load R_L = Load resistance $V_P = Peak voltage on BTL load$ I_{DD}avg = Average current drawn from the power supply V_{DD} = Power supply voltage η_{BTL} = Efficiency of a BTL amplifier

(6)

Therefore.

$$\eta_{BTL} = \frac{\pi \sqrt{2 P_L R_L}}{4 V_{DD}}$$
 (7)

Table 2. Efficiency and Maximum Ambient Temperature vs Output Power in 5-V 8-Ω BTL Systems

Output Power (W)	Efficiency (%)	Internal Dissipation (W)	Power From Supply (W)	Max Ambient Temperature (°C)
0.25	31.4	0.55	0.75	62
0.50	44.4	0.62	1.12	54
1.00	62.8	0.59	1.59	58
1.25	70.2	0.53	1.78	65

Table 2 employs Equation 7 to calculate efficiencies for four different output power levels. Note that the efficiency of the amplifier is quite low for lower power levels and rises sharply as power to the load is increased resulting in a nearly flat internal power dissipation over the normal operating range. Note that the internal dissipation at full output power is less than in the half power range. Calculating the efficiency for a specific system is the key to proper power supply design. For a 1.25-W audio system with 8- Ω loads and a 5-V supply, the maximum draw on the power supply is almost 1.8 W.

A final point to remember about Class-AB amplifiers is how to manipulate the terms in the efficiency equation to the utmost advantage when possible. Note that in Equation 7, V_{DD} is in the denominator. This indicates that as V_{DD} goes down, efficiency goes up.

A simple formula for calculating the maximum power dissipated, P_{Dmax} , may be used for a differential output application:

$$P_{D \text{ max}} = \frac{2 V_{DD}^2}{\pi^2 R_L}$$
 (8)

 P_{Dmax} for a 5-V, 8- Ω system is 634 mW.

The maximum ambient temperature depends on the heat sinking ability of the PCB system. The derating factor for the 2 mm x 2 mm Microstar Junior package is shown in the dissipation rating table. Converting this to θ_{JA} :

$$\Theta_{\text{JA}} = \frac{1}{\text{Derating Factor}} = \frac{1}{0.0088} = 113^{\circ}\text{C/W}$$
 (9)

Given θ_{JA} , the maximum allowable junction temperature, and the maximum internal dissipation, the maximum ambient temperature can be calculated with the following equation. The maximum recommended junction temperature for the TPA6203A1 is 125°C.

$$T_A Max = T_J Max - \Theta_{JA} P_{Dmax}$$

= 125 - 113(0.634) = 53.3°C (10)

Equation 10 shows that the maximum ambient temperature is 53.3°C at maximum power dissipation with a 5-V supply.

Table 2 shows that for most applications no airflow is required to keep junction temperatures in the specified range. The TPA6203A1 is designed with thermal protection that turns the device off when the junction temperature surpasses 150°C to prevent damage to the IC. Also, using more resistive than 8- Ω speakers dramatically increases the thermal performance by reducing the output current.

PCB LAYOUT

In making the pad size for the BGA balls, it is recommended that the layout use soldermask-defined (SMD) land. With this method, the copper pad is made larger than the desired land area, and the opening size is defined by the opening in the solder mask material. The advantages normally associated with this technique include more closely controlled size and better copper adhesion to the laminate. Increased copper also increases the thermal performance of the IC. Better size control is the result of photo imaging the stencils for masks. Small plated vias should be placed near the center ball connecting ball B2 to the ground plane. Added plated vias and ground plane act as a heatsink and increase the thermal performance of the device. Figure 34 shows the appropriate diameters for a 2 mm X 2 mm MicroStar Junior™ BGA layout.

It is very important to keep the TPA6203A1 external components very close to the TPA6203A1 to limit noise pickup. The TPA6203A1 evaluation module (EVM) layout is shown in the next section as a layout example.

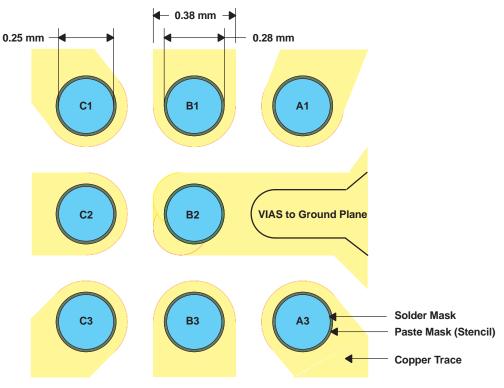


Figure 34. MicroStar Junior™ BGA Recommended Layout

8-Pin QFN (DRB) Layout

Use the following land pattern for board layout with the 8-pin QFN (DRB) package. Note that the solder paste should use a hatch pattern to fill solder paste at 50% to ensure that there is not too much solder paste under the package.

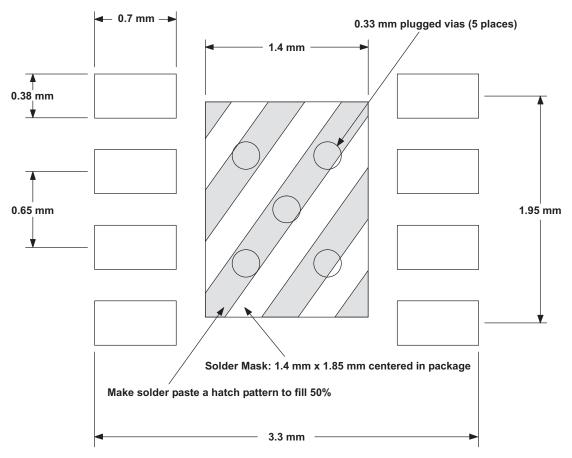


Figure 35. TPA6203A1 8-Pin QFN (DRB) Board Layout (Top View)

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TPA6203A1DGN	Active	Production	HVSSOP (DGN) 8	80 TUBE	Yes	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	AAII
TPA6203A1DGN.B	Active	Production	HVSSOP (DGN) 8	80 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AAII
TPA6203A1DGNR	Active	Production	HVSSOP (DGN) 8	2500 LARGE T&R	Yes	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	AAII
TPA6203A1DGNR.B	Active	Production	HVSSOP (DGN) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AAII
TPA6203A1DRB	Active	Production	SON (DRB) 8	121 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	AAJI
TPA6203A1DRB.B	Active	Production	SON (DRB) 8	121 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	AAJI
TPA6203A1DRBR	Active	Production	SON (DRB) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	AAJI
TPA6203A1DRBR.B	Active	Production	SON (DRB) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	AAJI
TPA6203A1DRBRG4	Active	Production	SON (DRB) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	AAJI
TPA6203A1DRBRG4.B	Active	Production	SON (DRB) 8	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	AAJI
TPA6203A1NMBR	Active	Production	NFBGA (NMB) 8	2500 LARGE T&R	Yes	SNAGCU	Level-2-260C-1 YEAR	-40 to 85	AAEI
TPA6203A1NMBR.B	Active	Production	NFBGA (NMB) 8	2500 LARGE T&R	Yes	SNAGCU	Level-2-260C-1 YEAR	-40 to 85	AAEI

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

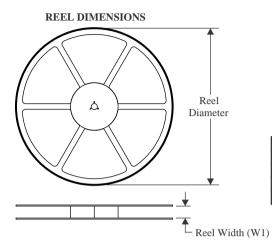
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

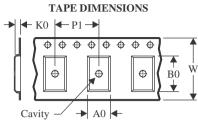
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM


www.ti.com 11-Nov-2025


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 24-Jul-2025

TAPE AND REEL INFORMATION

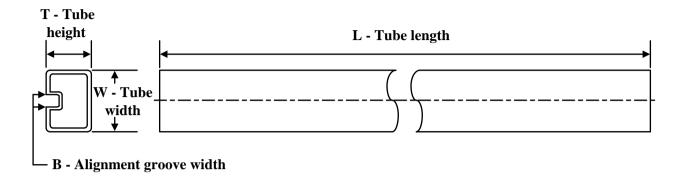
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPA6203A1DGNR	HVSSOP	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPA6203A1DGNR	HVSSOP	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPA6203A1DRBR	SON	DRB	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPA6203A1DRBR	SON	DRB	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPA6203A1DRBRG4	SON	DRB	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPA6203A1NMBR	NFBGA	NMB	8	2500	330.0	8.4	2.3	2.3	1.4	4.0	8.0	Q1

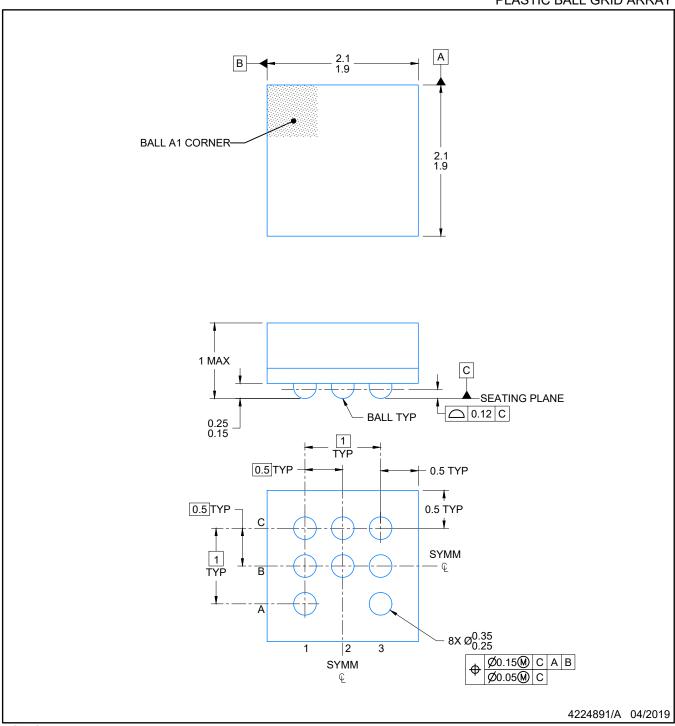
www.ti.com 24-Jul-2025


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPA6203A1DGNR	HVSSOP	DGN	8	2500	358.0	335.0	35.0
TPA6203A1DGNR	HVSSOP	DGN	8	2500	364.0	364.0	27.0
TPA6203A1DRBR	SON	DRB	8	3000	353.0	353.0	32.0
TPA6203A1DRBR	SON	DRB	8	3000	346.0	346.0	33.0
TPA6203A1DRBRG4	SON	DRB	8	3000	346.0	346.0	33.0
TPA6203A1NMBR	NFBGA	NMB	8	2500	338.1	338.1	20.6

PACKAGE MATERIALS INFORMATION

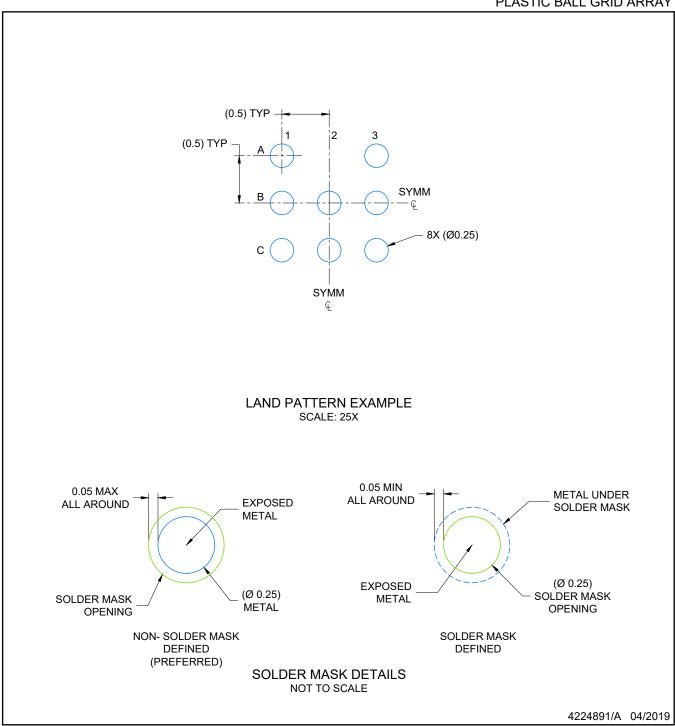
www.ti.com 24-Jul-2025


TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
TPA6203A1DGN	DGN	HVSSOP	8	80	330	6.55	500	2.88
TPA6203A1DGN.B	DGN	HVSSOP	8	80	330	6.55	500	2.88
TPA6203A1DRB	DRB	VSON	8	121	381	4.82	2286	NA
TPA6203A1DRB.B	DRB	VSON	8	121	381	4.82	2286	NA

PLASTIC BALL GRID ARRAY


NOTES:

NanoFree is a trademark of Texas Instruments.

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

PLASTIC BALL GRID ARRAY

NOTES: (continued)

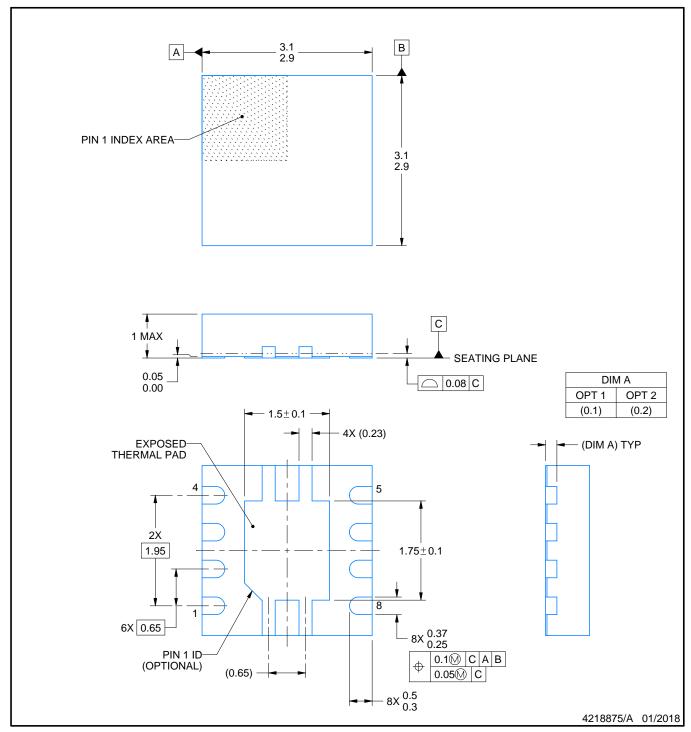
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments Literature number SNVA009 (www.ti.com/lit/snva009).

4224891/A 04/2019

PLASTIC BALL GRID ARRAY (0.5) TYP -SYMM (R0.05) – 8X (□0.25) SYMM SOLDER PASTE EXAMPLE BASED ON 0.100 mm THICK STENCIL SCALE: 25X

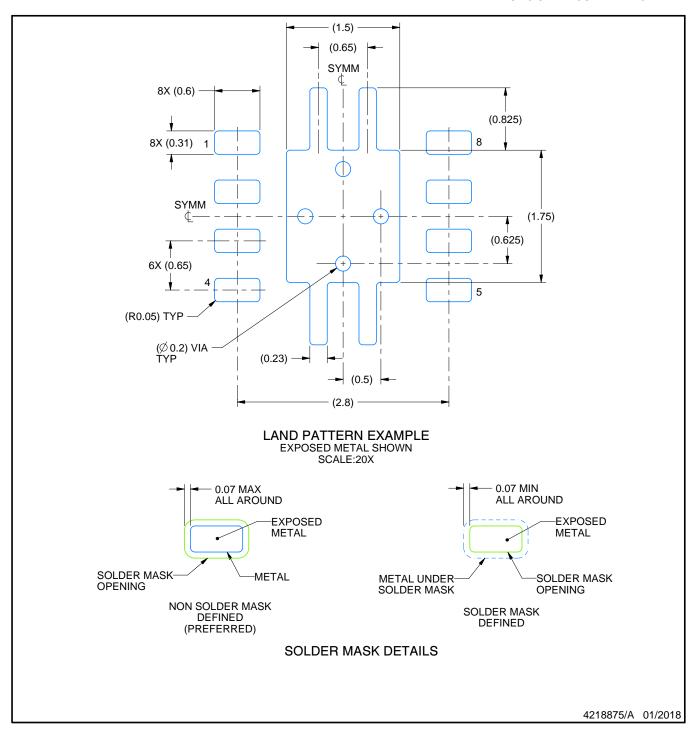
NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4203482/L

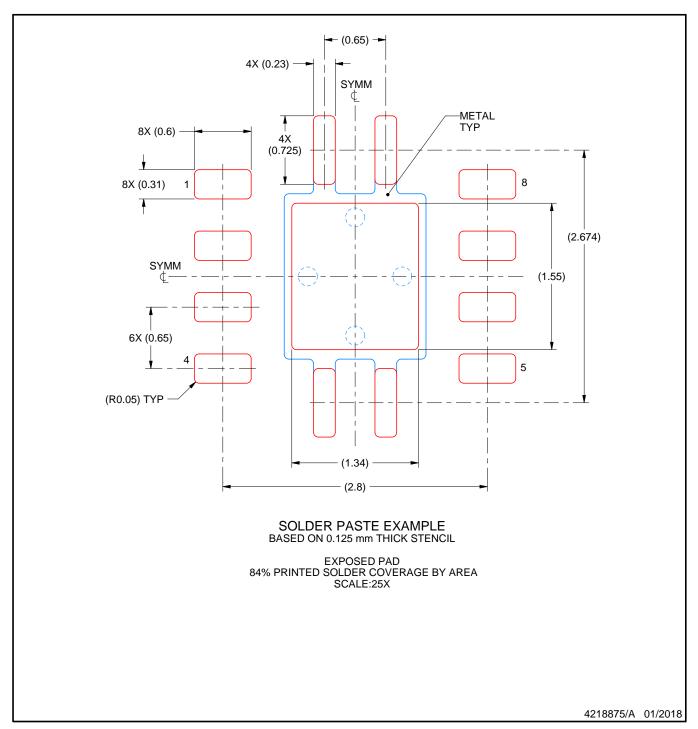
PLASTIC SMALL OUTLINE - NO LEAD



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC SMALL OUTLINE - NO LEAD

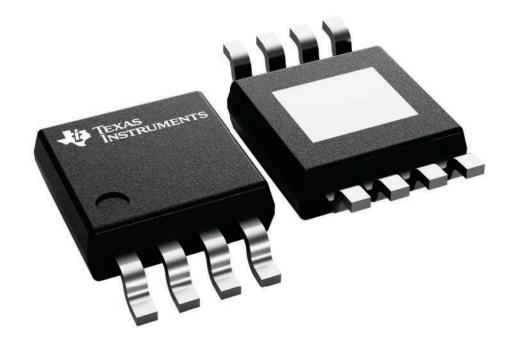


NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

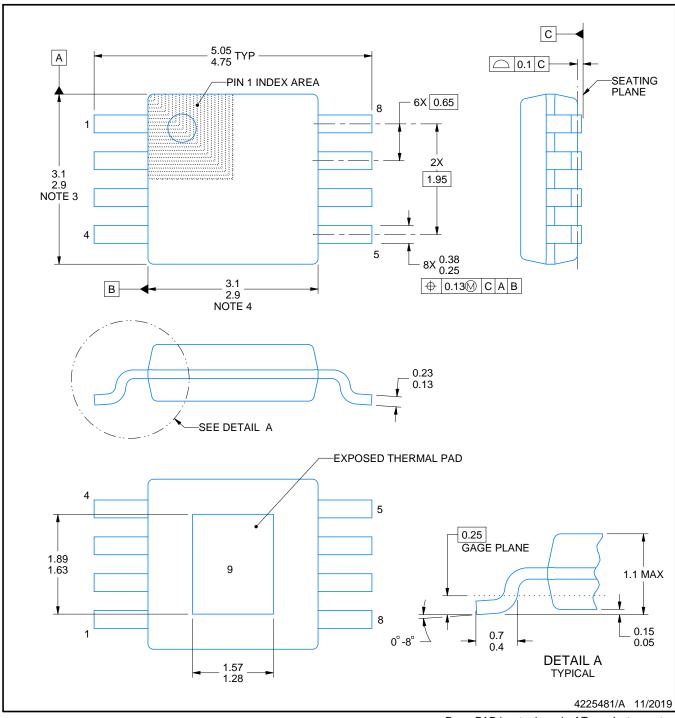
PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)


6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

3 x 3, 0.65 mm pitch

SMALL OUTLINE PACKAGE


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

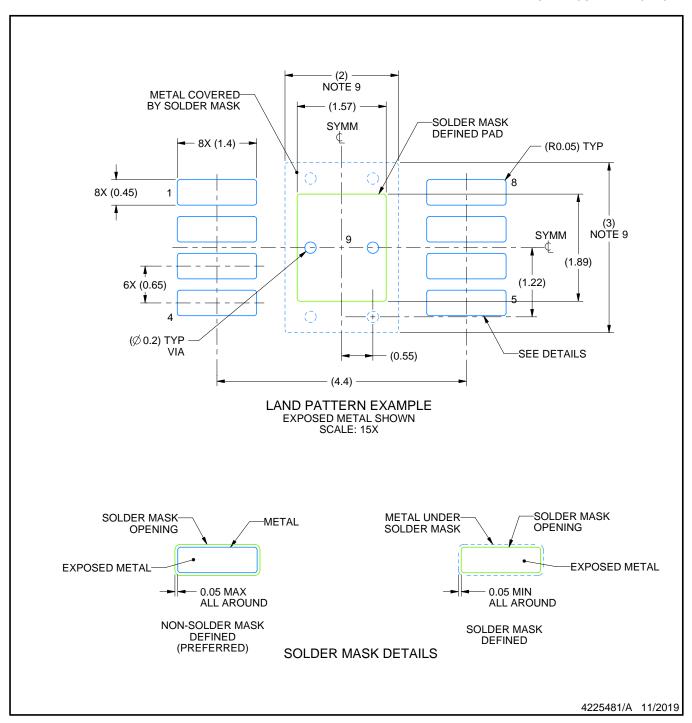
INSTRUMENTS www.ti.com

$\textbf{PowerPAD}^{^{\text{\tiny{TM}}}}\,\textbf{VSSOP - 1.1 mm max height}$

SMALL OUTLINE PACKAGE

NOTES:

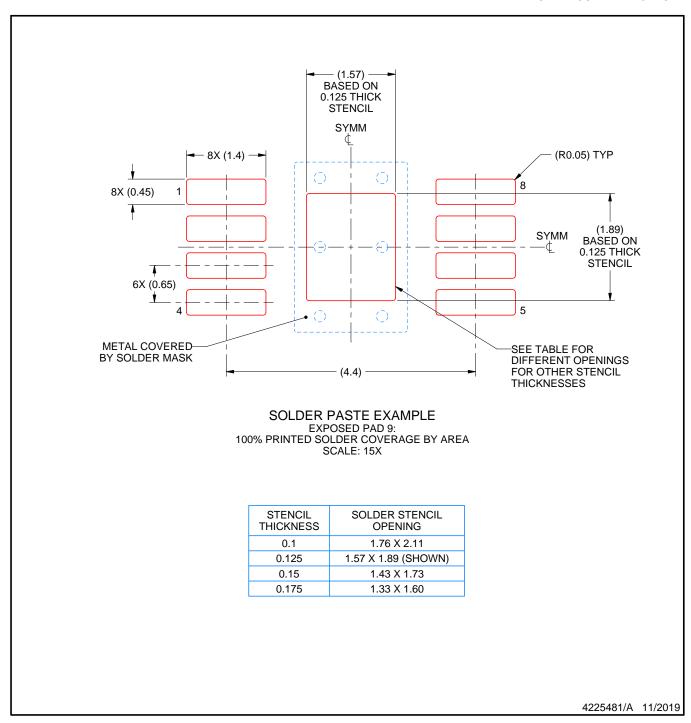
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

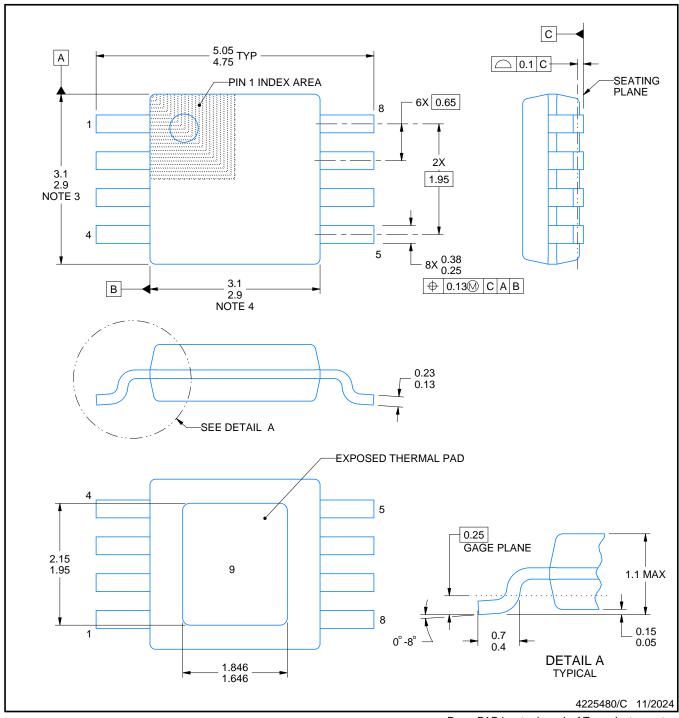
SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE


NOTES: (continued)

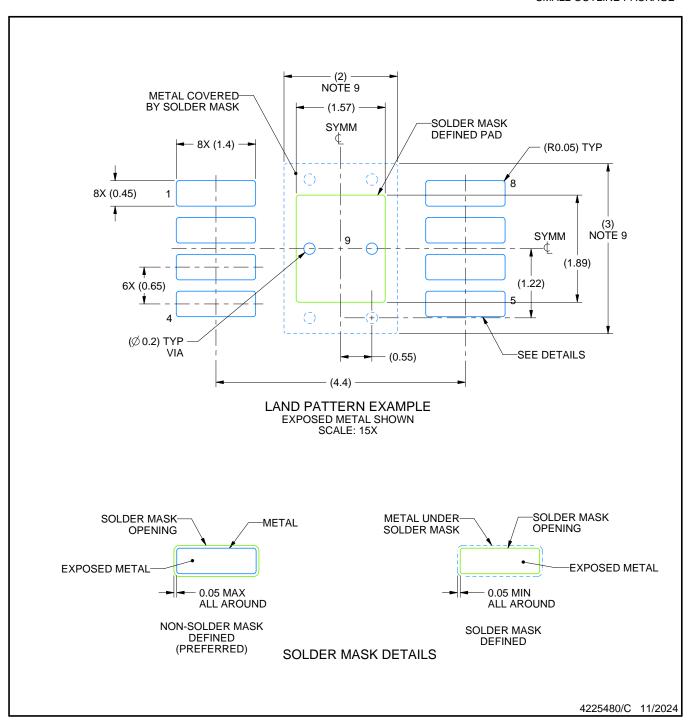
- 10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 11. Board assembly site may have different recommendations for stencil design.

PowerPAD[™] HVSSOP - 1.1 mm max height

SMALL OUTLINE PACKAGE

NOTES:

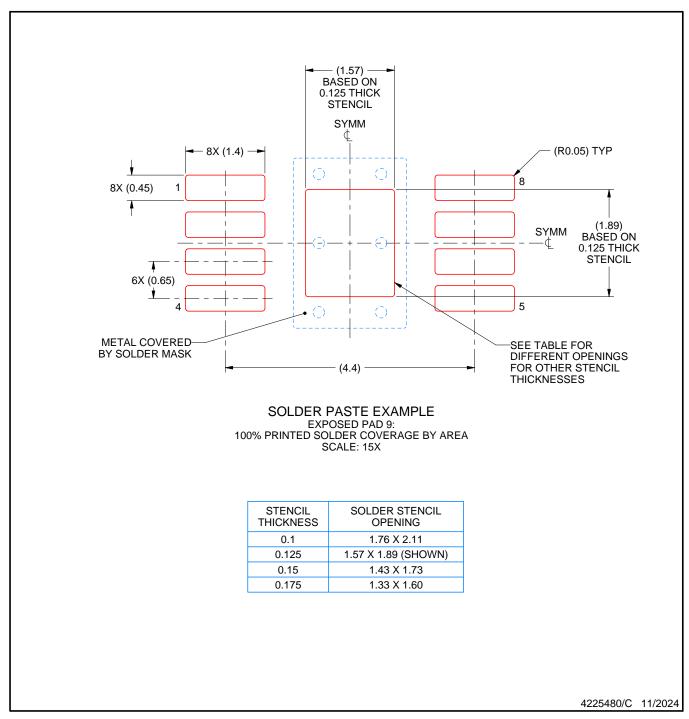
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 11. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025