
TMUX7612 50V, Low-RON, 1:1 (SPST), 4-Channel Precision Switches with 1.8V Logic

1 Features

- Dual supply range: ±4.5V to ±25V
- Single supply range: 4.5V to 50V
- Asymmetric dual supply support (For example: $V_{DD} = 37.5V, V_{SS} = -12.5V)$
- 1.8V logic compatible
- Precision performance:
 - Low on-resistance: 1.1Ω (typical)
 - Low capacitance: 27pF (typical)
 - Ultra-low on-resistance flatness: 0.0003Ω (typical)
 - High current support: 470mA (maximum)
 - Low on-leakage current: 3.7pA (typical), 0.3nA (maximum)
 - Low off-leakage current: 30pA (typical), 0.15nA (maximum)
 - Ultra-low charge injection: 2pC (typical)
- -40°C to +125°C operating temperature
- Rail-to-rail operation
- Bidirectional operation
- Break-before-make switching

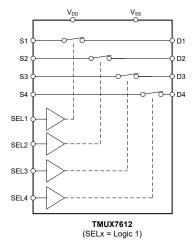
2 Applications

- Semiconductor test equipment
- SSR and photorelay replacement
- Automated test equipment
- LCD test equipment
- Memory test equipment
- Programmable logic controllers (PLC)
- Factory automation and control
- Instrumentation: lab, analytical, and portable
- Data acquisition systems (DAQ)
- Optical test equipment

On-Resistance vs Source or Drain Voltage

3 Description

The TMUX7612 is a complementary metal-oxide semiconductor (CMOS) switch device with four independently selectable 1:1, single-pole, single-throw (SPST) switch channels. The device works with a single supply (4.5V to 50V), dual supplies (±4.5V to $\pm 25V$), or asymmetric supplies (such as $V_{DD} = 37.5V$, V_{SS} = -12.5V). The TMUX7612 supports bidirectional analog and digital signals on the source (Sx) and drain (Dx) pins ranging from V_{SS} to V_{DD} .


The switches of the TMUX7612 are controlled with appropriate logic control inputs on the SELx pins. The TMUX7612 features a special architecture which allows for ultra-low charge injection. This feature helps prevent unwanted coupling from the control input to the analog output of the device and reduces AC noise and offset errors.

The TMUX7612 is a part of the precision switches and multiplexers family of devices and have very low on and off leakage currents allowing them to be used in high precision measurement applications.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾	
TMUX7612	PW (TSSOP, 16)	5mm × 6.4mm	
	RUM (WQFN, 16)	4mm × 4mm	

- For all available packages, see the package option addendum at the end of the data sheet.
- The package size (length × width) is a nominal value and includes pins, where applicable.

TMUX7612 Block Diagram

Table of Contents

1 Features1	
2 Applications 1	
3 Description1 4 Pin Configuration and Functions3	
5 Specifications	
5.2 ESD Ratings	
5.3 Thermal Information	
5.4 Source or Drain Current through Switch	
5.5 Recommended Operating Conditions	
5.6 Electrical Characteristics (Global)6	
5.7 Electrical Characteristics (±15 V Dual Supply) 7	
5.8 Switching Characteristics (±15 V Dual Supply)9	
5.9 Electrical Characteristics (±20 V Dual Supply) 10	
5.10 Switching Characteristics (±20 V Dual Supply)11	
5.11 Electrical Characteristics (+37.5 V/–12.5 V Dual	
Supply)12	
5.12 Switching Characteristics (+37.5 V/–12.5 V	
Dual Supply)14	
5.13 Electrical Characteristics (12 V Single Supply)15	
5.14 Switching Characteristics (12 V Single Supply)16	
5.15 Typical Characteristics17	
6 Parameter Measurement Information21	
6.1 On-Resistance21	
6.2 Off-Leakage Current21	
6.3 On-Leakage Current22	
6.4 t _{ON} and t _{OFF} Time22	
6.5 Propagation Delay23	
6.6 Charge Injection24	

6.7 Off Isolation	24
6.8 Channel-to-Channel Crosstalk	25
6.9 Bandwidth	
6.10 THD + Noise	26
6.11 Power Supply Rejection Ratio (PSRR)	
7 Detailed Description	
7.1 Overview	
7.2 Functional Block Diagram	27
7.3 Feature Description	
7.4 Device Functional Modes	
8 Application and Implementation	30
8.1 Application Information	
8.2 Typical Application	
8.3 Thermal Considerations	
8.4 Power Supply Recommendations	33
8.5 Layout	
9 Device and Documentation Support	36
9.1 Documentation Support	
9.2 Receiving Notification of Documentation Updates	36
9.3 Support Resources	36
9.4 Trademarks	36
9.5 Electrostatic Discharge Caution	36
9.6 Glossary	
10 Revision History	
11 Mechanical, Packaging, and Orderable	
Information	36
11.1 Tape and Reel Information	37
11.2 Mechanical Data	

4 Pin Configuration and Functions

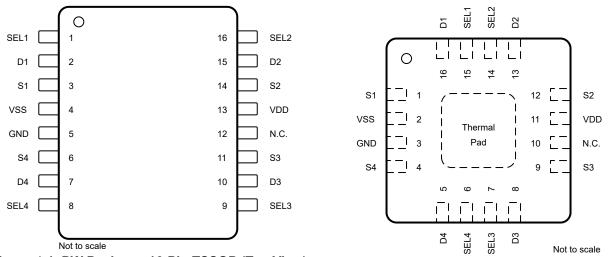


Figure 4-1. PW Package, 16-Pin TSSOP (Top View) Figure 4-2. RUM Package, 16-Pin WQFN (Top View)

Table 4-1. Pin Functions

	PIN								
			TYPE(1)	DESCRIPTION					
NAME	TSSOP	WQFN							
D1	2	16	I/O	Drain pin 1. Can be an input or output.					
D2	15	13	I/O	Drain pin 2. Can be an input or output.					
D3	10	8	I/O	Drain pin 3. Can be an input or output.					
D4	7	5	I/O	Drain pin 4. Can be an input or output.					
GND	5	3	Р	Ground (0 V) reference.					
N.C.	12	10	_	No internal connection. Can be shorted to GND or left floating					
S1	3	1	I/O	Source pin 1. Can be an input or output.					
S2	14	12	I/O	Source pin 2. Can be an input or output.					
S3	11	9	I/O	Source pin 3. Can be an input or output.					
S4	6	4	I/O	Source pin 4. Can be an input or output.					
SEL1	1	15	I	Logic control input 1, has internal pull-down resistor. Controls channel 1 state as provided in Table 7-1.					
SEL2	16	14	I	Logic control input 2, has internal pull-down resistor. Controls channel 2 state as provided in Table 7-1.					
SEL3	9	7	I	Logic control input 3, has internal pull-down resistor. Controls channel 3 state as provided in Table 7-1.					
SEL4	8	6	I	Logic control input 4, has internal pull-down resistor. Controls channel 4 state as provided in Table 7-1.					
VDD	13	11	Р	Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between VDD and GND					
vss	4	2	Р	Negative power supply. This pin is the most negative power-supply potential. For reliable operation, connect a decoupling capacitor ranging from $0.1\mu F$ to 10 μF between VSS and GND. In single-supply applications, this pin should be connected to ground.					
Thermal P	ad		_	The thermal exposed pad is connected internally. It is recommended that the pad be tied to VSS for best performance.					

⁽¹⁾ I = input, O = output, I/O = input and output, P = power.

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1) (2)

		MIN	MAX	UNIT
V _{DD} – V _{SS}			53	V
V_{DD}	Supply voltage	-0.5	53	V
V _{SS}		-32	0.5	V
V _{SEL}	Logic Supply Voltage	-0.5	53	V
I _{SEL}	Logic control input pin current (SEL pins)	-30	30	mA
V _S or V _D	Source or drain voltage (Sx, Dx)	V _{SS} -0.5	V _{DD} +0.5	V
I _{IK}	Diode clamp current ⁽³⁾	-30	30	mA
I _S or I _{D (CONT)}	Source or drain current (Sx, Dx)		I _{DC} + 10 % ⁽⁴⁾	mA
T _A	Ambient temperature	-55	150	°C
T _{stg}	Storage temperature	-65	150	°C
T _J	Junction temperature		150	°C

- (1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
- (2) All voltages are with respect to ground, unless otherwise specified.
- (3) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.
- (4) Refer to Source or Drain Current table for I_{DC} specifications.

5.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	5I/ESDA/ ±3000		
		Charged device model (CDM), per ANSI/ESDA/ JEDEC JS-002, all pins ⁽²⁾	±1500	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Thermal Information

		TMU	TMUX7612			
	THERMAL METRIC(1)	RUM (QFN)	PW (TSSOP)	UNIT		
		16 PINS	16 PINS			
R _{0JA}	Junction-to-ambient thermal resistance	42.8	99.3	°C/W		
R _{0JC(top)}	Junction-to-case (top) thermal resistance	27.9	27.7	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	17.9	46.5	°C/W		
Ψ_{JT}	Junction-to-top characterization parameter	0.3	1.3	°C/W		
Ψ_{JB}	Junction-to-board characterization parameter	17.9	45.7	°C/W		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	3.8	N/A	°C/W		

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

5.4 Source or Drain Current through Switch

Current through the Switch	Test Conditions	T _J = 25°C	T _J = 50°C	T _J = 85°C	T _J = 105°C	T _J = 125°C	T _J = 135°C	T _J = 150°C	UNIT
I _{DC} ⁽¹⁾	V_{SS} to V_{DD} - 2.5V	470	470	470	309	143	100	60	mA
I _{peak} (2)	V _{SS} to V _{DD} - 2.5V	470	470	470	470	470	470	470	mA

- See *Thermal Considerations* section for more details
- Pulse current of 1ms with 10% Duty Cycle

5.5 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
$V_{DD} - V_{SS}$ (1)	Power supply voltage differential	Power supply voltage differential			V
V _{DD}	Positive power supply voltage		4.5	50	V
V _S or V _D	Signal path input/output voltage (source or drain pin) (Sx, D)			V_{DD}	V
V _{SEL}	Logic Supply Voltage	Logic supply voltage	0	44	V
I _S or I _{D (CONT)}	Source or drain continuous current (Sx, D)			I _{DC} ⁽²⁾	mA
T _A	Ambient temperature			125	°C

- (1) V_{DD} and V_{SS} can be any value as long as $4.5 \text{ V} \le (V_{DD} V_{SS}) \le 50 \text{ V}$, and the minimum V_{DD} is met. (2) Refer to *Source or Drain Current* through Switch table for I_{DC} specifications.

5.6 Electrical Characteristics (Global)

Typical at V_{DD} = +15 V, V_{SS} = -15 V, V_L = 3.3V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT			
LOGIC INPUTS										
V _{IH}	Logic voltage high		-40°C to +125°C	1.3		44	V			
V _{IL}	Logic voltage low		-40°C to +125°C	0		0.8	V			
I _{IH}	Input leakage current		-40°C to +125°C		0.005	2	μA			
I _{IL}	Input leakage current		-40°C to +125°C	-2	-0.005		μA			
T _{SD}	Thermal shutdown				165		°C			
T _{SD_HYST}	Thermal shutdown hysteresis				15		°C			
C _{IN}	Logic input capacitance		-40°C to +125°C		4		pF			

5.7 Electrical Characteristics (±15 V Dual Supply)

 V_{DD} = +15 V ± 10%, V_{SS} = -15 V ±10% GND = 0 V (unless otherwise noted) Typical at V_{DD} = +15 V, V_{SS} = -15 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH		_				
			25°C		1.1	1.4	
R _{ON}		V _S = -10 V to +10 V	-40°C to +50°C			1.6	
	On-resistance	$I_D = -10 \text{ mA}$	-40°C to +85°C			1.8	Ω
			-40°C to +125°C			2.2	
			25°C		0.005		
4 D	On-resistance mismatch between	$V_S = -10 \text{ V to } +10 \text{ V}$	-40°C to +50°C			0.045	0
ΔR _{ON}	channels	$I_D = -10 \text{ mA}$	-40°C to +85°C			0.055	Ω
			-40°C to +125°C			0.060	
			25°C		0.0003		
_	On marietam and flat and a	V _S = -10 V to +10 V	-40°C to +50°C		-	0.045	0
R _{ON FLAT}	On-resistance flatness	$I_D = -10 \text{ mA}$	-40°C to +85°C			0.055	Ω
			-40°C to +125°C			0.060	
R _{ON DRIFT}	On-resistance drift	V _S = 0 V, I _S = -10 mA	-40°C to +125°C		0.006		Ω/°C
		10 5 1/ 1/ 10 5 1/	25°C	-0.15	0.03	0.15	
		V_{DD} = 16.5 V, V_{SS} = -16.5 V Switch state is off V_{S} = +10 V / -10 V V_{D} = -10 V / + 10 V	-40°C to +50°C	-0.3		0.3	nA
S(OFF)	Source off leakage current ⁽¹⁾		-40°C to +85°C	-0.65		0.65	
			-40°C to +125°C	-4		4	
	Drain off leakage current ⁽¹⁾	V_{DD} = 16.5 V, V_{SS} = -16.5 V Switch state is off V_{S} = +10 V / -10 V V_{D} = -10 V / + 10 V	25°C	-0.15	0.03	0.15	
			-40°C to +50°C	-0.3		0.3	
D(OFF)			-40°C to +85°C	-0.65		0.65	nA
			-40°C to +125°C	-4		4	
			25°C	-0.3	0.0037	0.3	1
I _{S(ON)}		$V_{DD} = 16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$	-40°C to +50°C	-0.4		0.4	nA
I _{D(ON)}	Channel on leakage current ⁽²⁾	Switch state is on $V_S = V_D = \pm 10 \text{ V}$	-40°C to +85°C	-0.55		0.55	
		VS VD 210 V	-40°C to +125°C	-4		4	
			25°C		10		
ΔI _{S(ON)}	Leakage current mismatch	$V_{DD} = 16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$	-40°C to +50°C		13		
$\Delta I_{D(ON)}$	between channels ⁽²⁾	Switch state is on $V_S = V_D = \pm 10 \text{ V}$	-40°C to +85°C		22		рA
		15 VD 210 V	-40°C to +125°C		32		
POWER S	SUPPLY						
			25°C		35	45	
DDQ	V _{DD} quiescent supply current	$V_{DD} = 16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$	-40°C to +85°C	1		55	μΑ
		All switches OFF	-40°C to +125°C			65	•
			25°C		435	480	
DD	V _{DD} supply current	$V_{DD} = 16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$	-40°C to +85°C		-	520	μΑ
		All switches ON	-40°C to +125°C			545	•
			25°C		15	20	
I _{ssq}	V _{SS} quiescent supply current	V _{DD} = 16.5 V, V _{SS} = -16.5 V	-40°C to +85°C	+		25	μΑ
OOQ	35 4	All switches OFF	-40°C to +125°C	1		40	l ,

5.7 Electrical Characteristics (±15 V Dual Supply) (continued)

 V_{DD} = +15 V ± 10%, V_{SS} = -15 V ±10% GND = 0 V (unless otherwise noted) Typical at V_{DD} = +15 V, V_{SS} = -15 V, V_{A} = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
I _{SS}		V_{DD} = 16.5 V, V_{SS} = -16.5 V All switches ON	25°C		340	380	
			-40°C to +85°C			410	μA
			-40°C to +125°C			425	

When V_S is positive, V_D is negative, or when V_S is negative, V_D is positive.

⁽²⁾ When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating.

5.8 Switching Characteristics (±15 V Dual Supply)

 $V_{DD} = +15 \text{ V} \pm 10\%, \ V_{SS} = -15 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +15 \text{ V}, \ V_{SS} = -15 \text{ V}, \ T_A = 25^{\circ}\text{C} \ \text{(unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
			25°C		2.0	2.5	μs
t _{ON}		$V_S = 10 \text{ V}$ $R_L = 300 \Omega, C_L = 35 \text{ pF}$	-40°C to +85°C			2.75	μs
		π_ – 300 22, 0_ – 33 μι	-40°C to +125°C			3	μs
			25°C		1.7	2.2	μs
t _{OFF}	Turn-off time from control input	$V_S = 10 \text{ V}$ $R_L = 300 \Omega, C_L = 35 \text{ pF}$	-40°C to +85°C			2.5	μs
		π. σσσ 11, σε σσ μι	-40°C to +125°C			3	μs
		.,	25°C		310		ns
t _{BBM}	Break-before-make time delay	$V_S = 10 \text{ V},$ $R_L = 300 \Omega, C_L = 35 \text{ pF}$	-40°C to +85°C	125			ns
		300 <u>11,</u> 0 <u>1</u> 30 p.	-40°C to +125°C	125			ns
Q _{INJ}	Charge injection	$V_S = 0 V, C_L = 100 pF$	25°C		-2		рC
O _{ISO}	Off-isolation	$R_L = 50 \ \Omega$, $C_L = 5 \ pF$ $V_S = 200 \ mV_{RMS}$, $V_{BIAS} = 0$ $V_S = 100 \ kHz$	25°C		-105		dB
O _{ISO}	Off-isolation	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} , V_{BIAS} = 0 V, f = 1 MHz	25°C		-74		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 200 \text{ mV}_{RMS}$, $V_{BIAS} = 0 \text{ V}$, f = 100 kHz	25°C		-114		dB
X _{TALK}	Crosstalk	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} , V_{BIAS} = 0 V, f = 1MHz	25°C		-105		dB
BW	–3dB Bandwidth	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 200 \text{ mV}_{RMS}$, $V_{BIAS} = 0 \text{ V}$	25°C		180		MHz
IL	Insertion loss	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} , V_{BIAS} = 0 V, f = 1 MHz	25°C		-0.095		dB
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 50 Ω , C_L = 5 pF, f = 1 MHz	25°C		-80		dB
THD+N	Total Harmonic Distortion + Noise	$V_{PP} = 15 \text{ V}, V_{BIAS} = 0 \text{ V}$ $R_L = 110 \Omega, C_L = 5 \text{ pF},$ $f = 20 \text{ Hz to } 20 \text{ kHz}$	25°C		0.0006		%
C _{S(OFF)}	Source off capacitance to ground	V _S = 0 V, f = 1 MHz	25°C		27		pF
C _{D(OFF)}	Drain off capacitance to ground	V _S = 0 V, f = 1 MHz	25°C		27		pF
C _{S(ON),} C _{D(ON)}	On capacitance to ground	V _S = 0 V, f = 1 MHz	25°C		22		pF

5.9 Electrical Characteristics (±20 V Dual Supply)

 $V_{DD} = +20 \text{ V} \pm 10\%, \ V_{SS} = -20 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +20 \text{ V}, \ V_{SS} = -20 \text{ V}, \ T_A = 25^{\circ}\text{C} \ \text{(unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
			25°C		1.1	1.4	
_		V _S = -15 V to +15 V	-40°C to +50°C			1.6	
R _{ON}	On-resistance	$I_D = -10 \text{ mA}$	-40°C to +85°C			1.9	Ω
			-40°C to +125°C			2.2	
			25°C		0.007		
	On-resistance mismatch between	V _S = -15 V to +15 V	-40°C to +50°C			0.04	
ΔR_{ON}	channels	$I_D = -10 \text{ mA}$	-40°C to +85°C			0.05	Ω
			-40°C to +125°C			0.06	
			25°C		0.006		
		V _S = -15 V to +15 V	-40°C to +50°C			0.065	
R _{ON FLAT}	On-resistance flatness	$I_D = -10 \text{ mA}$	-40°C to +85°C			0.070	Ω
			-40°C to +125°C			0.075	
R _{ON DRIFT}	On-resistance drift	V _S = 0 V, I _S = -10 mA	-40°C to +125°C		0.005		Ω/°C
0.1.2.1			25°C	-0.16	0.012	0.16	
	Source off leakage current ⁽¹⁾	V_{DD} = 22 V, V_{SS} = -22 V Switch state is off V_{S} = +15 V / -15 V V_{D} = -15 V / + 15 V	-40°C to +50°C	-0.6	0.05	0.6	
I _{S(OFF)}			-40°C to +85°C	-5	0.3	5	nA
			-40°C to +125°C	-40	1.8	40	
			25°C	-0.16	0.012	0.16	
		V_{DD} = 22 V, V_{SS} = -22 V Switch state is off V_{S} = +15 V / -15 V V_{D} = -15 V / + 15 V	-40°C to +50°C	-0.6	0.05	0.6	
$I_{D(OFF)}$	rain off leakage current ⁽¹⁾		-40°C to +85°C	-5	0.3	5	nA
			-40°C to +125°C	-40	1.8	40	
		V _{DD} = 22 V, V _{SS} = -22 V	25°C	-0.35	0.0045	0.35	
I _{S(ON)}			-40°C to +50°C	-0.45		0.45	
I _{D(ON)}	Channel on leakage current ⁽²⁾	Switch state is on $V_S = V_D = \pm 15 \text{ V}$	-40°C to +85°C	-0.6		0.6	nA
		AS AD TIOA	-40°C to +125°C	-6.5		6.5	
POWER S	SUPPLY						
			25°C		35	45	
I_{DDQ}	V _{DD} quiescent supply current	$V_{DD} = 22 \text{ V}, V_{SS} = -22 \text{ V}$	-40°C to +85°C			55	μA
		All switches OFF	-40°C to +125°C			75	
			25°C		435	480	
I _{DD}	V _{DD} supply current	$V_{DD} = 22 \text{ V}, V_{SS} = -22 \text{ V}$	-40°C to +85°C			520	μA
55		All switches ON	-40°C to +125°C			545	•
			25°C		15	20	
I _{SSQ}	V _{SS} quiescent supply current	V _{DD} = 22 V, V _{SS} = -22 V	-40°C to +85°C			30	μA
J0Q		All switches OFF	-40°C to +125°C			40	•
			25°C		340	400	
I _{SS}	V _{SS} supply current	V _{DD} = 22 V, V _{SS} = -22 V	-40°C to +85°C			425	μA
50	55 117	All switches ON	-40°C to +125°C			450	•
			1	1			

When V_S is positive, V_D is negative, or when V_S is negative, V_D is positive.

⁽²⁾ When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating.

5.10 Switching Characteristics (±20 V Dual Supply)

 $V_{DD} = +20 \text{ V} \pm 10\%, \ V_{SS} = -20 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +20 \text{ V}, \ V_{SS} = -20 \text{ V}, \ T_A = 25^{\circ}\text{C} \ \text{(unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
			25°C		2	2.5	μs
t _{ON}	Turn-on time from control input	$V_S = 10 \text{ V}$ $R_L = 300 \Omega, C_L = 35 \text{ pF}$	–40°C to +85°C			2.9	μs
		π_ σσσ 12, σ_ σσ μι	–40°C to +125°C			3	μs
			25°C		1.8	2.2	μs
t_{OFF}	Turn-off time from control input	$V_S = 10 \text{ V}$ $R_L = 300 \Omega, C_L = 35 \text{ pF}$	–40°C to +85°C			2.5	μs
		, , , , , , , , , , , , , , , , , , ,	–40°C to +125°C			2.8	μs
		.,	25°C		320		ns
t_{BBM}	Break-before-make time delay	$V_S = 10 \text{ V},$ $R_1 = 300 \Omega, C_1 = 35 \text{ pF}$	–40°C to +85°C	150			ns
			-40°C to +125°C	150			ns
Q_{INJ}	Charge injection	$V_S = 0 V, C_L = 100 pF$	25°C		-3		рC
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 200 \text{ mV}_{RMS}$, $V_{BIAS} = 0$ V, f = 100 kHz	25°C		-105		dB
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 200 \text{ mV}_{RMS}$, $V_{BIAS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	25°C		-76		dB
X _{TALK}	Crosstalk	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} , V_{BIAS} = 0 V, f = 100 kHz	25°C		-114		dB
X _{TALK}	Crosstalk	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} , V_{BIAS} = 0 V, f = 1MHz	25°C		-105		dB
BW	–3dB Bandwidth	R_L = 50 Ω , C_L = 5 pF V _S = 200 mV _{RMS} , V _{BIAS} = 0 V,	25°C		200		MHz
IL	Insertion loss	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} , V_{BIAS} = 0 V, f = 1 MHz	25°C		-0.093		dB
ACPSRR	AC Power Supply Rejection Ratio	V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 50 Ω , C_L = 5 pF, f = 1 MHz	25°C		-76		dB
THD+N	Total Harmonic Distortion + Noise	$V_{PP} = 20 \text{ V}, V_{BIAS} = 0 \text{ V}$ $R_L = 110 \Omega, C_L = 5 \text{ pF},$ $f = 20 \text{ Hz to } 20 \text{ kHz}$	25°C		0.0003		%
C _{S(OFF)}	Source off capacitance to ground	V _S = 0 V, f = 1 MHz	25°C		24		pF
C _{D(OFF)}	Drain off capacitance to ground	V _S = 0 V, f = 1 MHz	25°C		24		pF
C _{S(ON),} C _{D(ON)}	On capacitance to ground	V _S = 0 V, f = 1 MHz	25°C		21		pF

5.11 Electrical Characteristics (+37.5 V/-12.5 V Dual Supply)

 V_{DD} = +37.5 V - 10%, V_{SS} = -12.5 V -10%, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +37.5 V - 10%, V_{SS} = -12.5 V, T_A = 25°C (unless otherwise noted)

	$V_{DD} = +37.5 \text{ V} - 10\%, V_{SS} = -1$ PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
			25°C		1.1	1.35	
		V _S = -7.5 V to 32.5 V	-40°C to +50°C			1.6	
R _{ON}	On-resistance	$I_{\rm D} = -10 \text{ mA}$	-40°C to +85°C			1.8	Ω
			-40°C to +125°C			2.1	
			25°C		0.005		
	On-resistance mismatch between	V _S = -7.5 V to 32.5 V	-40°C to +50°C			0.055	•
ΔR _{ON}	channels	$I_D = -10 \text{ mA}$	-40°C to +85°C			0.065	Ω
			-40°C to +125°C		-	0.07	
			25°C		0.006		
_		V _S = -7.5 V to 32.5 V	-40°C to +50°C			0.075	•
R _{ON FLAT}	On-resistance flatness	$I_D = -10 \text{ mA}$	-40°C to +85°C			0.080	Ω
			-40°C to +125°C			0.085	
R _{ON DRIFT}	On-resistance drift	V _S = 0 V, I _S = -10 mA	-40°C to +125°C		0.006		Ω/°C
		V - 27 F V V - 40 F V	25°C	-0.3	0.021	0.3	
	$V_{DD} = 37.5 \text{ V}, V_{SS} = -12.5 \text{ V}$ Switch state is off	-40°C to +50°C	-0.8	0.07	0.8	4	
I _{S(OFF)}	Source off leakage current ⁽¹⁾	$V_S = 32.5 \text{ V} / -7.5 \text{ V}$	-40°C to +85°C	-6	0.4	6	nA
		$V_D = -7.5 \text{ V} / 32.5 \text{ V}$	-40°C to +125°C	-50	2.9	50	
	Drain off leakage current ⁽¹⁾	V_{DD} = 37.5 V, V_{SS} = -12.5 V Switch state is off V_{S} = 32.5 V / -7.5 V V_{D} = -7.5 V / 32.5 V	25°C	-0.3	0.021	0.3	
			–40°C to +50°C	-0.8	0.07	0.8	Λ
I _{D(OFF)}			-40°C to +85°C	-6	0.4	6	nA
			-40°C to +125°C	-50	2.9	50	
		V_{DD} = 37.5 V, V_{SS} = -12.5 V Switch state is on V_{S} = V_{D} = 32.5 V or -7.5 V	25°C	-0.35	0.02	0.35	
I _{S(ON)}	Channel on looks as assument(2)		–40°C to +50°C	-0.45		0.45	Λ
$I_{D(ON)}$	Channel on leakage current ⁽²⁾		-40°C to +85°C	-1.1		1.1	nA
			-40°C to +125°C	-8		8	
			25°C		1.1		
ΔI _{S(ON)}	Leakage current mismatch	$V_{DD} = 37.5 \text{ V}, V_{SS} = -12.5 \text{ V}$	-40°C to +50°C		2.1		Λ
$\Delta I_{D(ON)}$	between channels ⁽²⁾	Switch state is on $V_S = V_D = 32.5 \text{ V or } -7.5 \text{ V}$	-40°C to +85°C		4		рA
			-40°C to +125°C		12.1		
POWER S	SUPPLY						
			25°C		38	50	
I_{DDQ}	V _{DD} quiescent supply current	V_{DD} = 37.5 V, V_{SS} = -12.5 V All switches OFF	–40°C to +85°C			60	μΑ
		All SWILONGS OF T	-40°C to +125°C			75	
			25°C		435	480	
I _{DD}	V _{DD} supply current	V_{DD} = 37.5 V, V_{SS} = -12.5 V All switches ON	-40°C to +85°C			520	μΑ
		All switches UN	-40°C to +125°C			545	
			25°C		17	25	
I _{SSQ}	V _{SS} quiescent supply current	V_{DD} = 37.5 V, V_{SS} = -12.5 V All switches OFF	–40°C to +85°C			30	μΑ
		VII PANIFOLICA OLL	-40°C to +125°C			45	

5.11 Electrical Characteristics (+37.5 V/-12.5 V Dual Supply) (continued)

 $V_{DD} = +37.5 \text{ V} - 10\%, \ V_{SS} = -12.5 \text{ V} - 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +37.5 \text{ V} - 10\%, \ V_{SS} = -12.5 \text{ V}, \ T_A = 25^{\circ}\text{C} \ \text{(unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
			25°C		340	380	
I _{SS}	V _{SS} supply current	All switches ON	–40°C to +85°C			400	μΑ
			-40°C to +125°C			430	

When V_S is positive, V_D is negative, or when V_S is negative, V_D is positive.

⁽²⁾ When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating.

5.12 Switching Characteristics (+37.5 V/-12.5 V Dual Supply)

 $\begin{aligned} &V_{DD} = +37.5 \text{ V} \pm 10\%, V_{SS} = -12.5 \text{ V} \pm 10\%, \text{ GND} = 0 \text{ V} \text{ (unless otherwise noted)} \\ &\text{Typical at V}_{DD} = +37.5 \text{ V} \pm 10\%, V_{SS} = -12.5 \text{ V}, T_{A} = 25^{\circ}\text{C} \text{ (unless otherwise noted)} \end{aligned}$

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
			25°C		2.1	3	μs
ton		$V_S = 10 \text{ V}$ $R_L = 300 \Omega, C_L = 35 \text{ pF}$	-40°C to +85°C			3.5	μs
		π_ – 300 22, 0_ – 33 μι	-40°C to +125°C			4	μs
			25°C		1.74	2	μs
t _{OFF}	Turn-off time from control input	$V_S = 10 \text{ V}$ $R_L = 300 \Omega, C_L = 35 \text{ pF}$	-40°C to +85°C			2.1	μs
		ι.ς σου 11, σς σο μ.	-40°C to +125°C			2.5	μs
		.,	25°C		350		ns
ВВМ	Break-before-make time delay	$V_S = 10 \text{ V},$ $R_L = 300 \Omega, C_L = 35 \text{ pF}$	-40°C to +85°C	310			ns
		·· [-40°C to +125°C	300			ns
Q_{INJ}	Charge injection	$V_S = 12.5 \text{ V}, C_L = 100 \text{ pF}$	25°C		6.5		рC
O _{ISO}	Off-isolation	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} ,VBIAS = 12.5 V, f = 100 kHz	25°C		-105		dB
O _{ISO}	Off-isolation	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} ,VBIAS = 12.5 V, f = 1 MHz	25°C		– 75		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 200 \text{ mV}_{RMS}$, $VBIAS = 12.5 V$, $f = 100 \text{ kHz}$	25°C		-110		dB
X _{TALK}	Crosstalk	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} , VBIAS = 12.5 V, f = 1MHz	25°C		-100		dB
BW	–3dB Bandwidth	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} , VBIAS = 12.5 V,	25°C		200		MHz
IL	Insertion loss	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} , VBIAS = 12.5 V, f = 1 MHz	25°C		-0.093		dB
ACPSRR	AC Power Supply Rejection Ratio	$\begin{aligned} & V_{PP} = 0.62 \text{ V on } V_{DD} \text{ and } V_{SS} \\ & R_L = 50 \Omega \text{ , } C_L = 5 \text{ pF,} \\ & f = 1 \text{ MHz} \end{aligned}$	25°C		-80		dB
THD+N	Total Harmonic Distortion + Noise	$V_{PP} = 15 \text{ V}, V_{BIAS} = 0 \text{ V}$ $R_L = 110 \Omega$, $C_L = 5 \text{ pF}$, $f = 20 \text{ Hz}$ to 20 kHz	25°C		0.0005		%
C _{S(OFF)}	Source off capacitance to ground	V _S = 12.5 V, f = 1 MHz	25°C		24		pF
C _{D(OFF)}	Drain off capacitance to ground	V _S = 12.5 V, f = 1 MHz	25°C		24		pF
C _{S(ON),} C _{D(ON)}	On capacitance to ground	V _S = 12.5 V, f = 1 MHz	25°C		21		pF

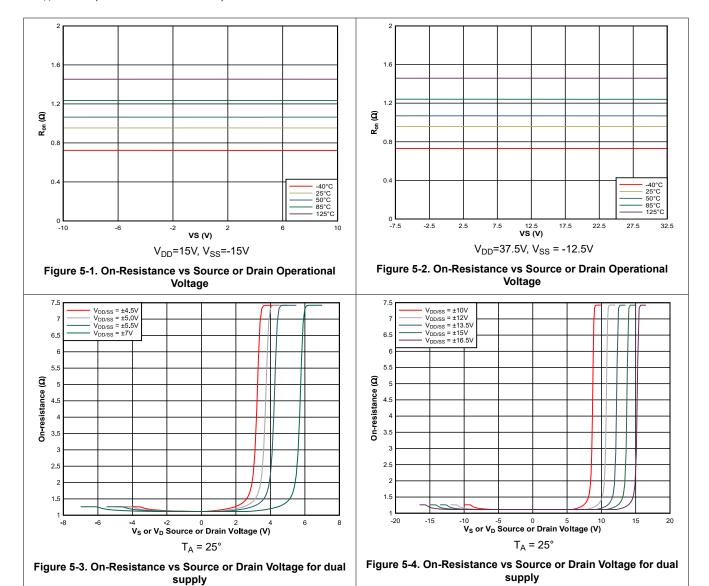
5.13 Electrical Characteristics (12 V Single Supply)

 $\begin{aligned} &V_{DD} = +12 \text{ V} \pm 10\%, \text{ V}_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V} \text{ (unless otherwise noted)} \\ &\text{Typical at V}_{DD} = +12 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C} \text{ (unless otherwise noted)} \end{aligned}$

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
			25°C		1.15	1.6	
Б	On an about an an	V _S = 3 V to 9 V	-40°C to +50°C			1.75	•
R _{ON}	On-resistance	$I_D = -10 \text{ mA}$	–40°C to +85°C			2	Ω
			-40°C to +125°C			2.3	
			25°C		0.005		
A D	On-resistance mismatch between	V _S = 3 V to 9 V	–40°C to +50°C			0.05	_
ΔR _{ON}	channels	$I_D = -10 \text{ mA}$	-40°C to +85°C			0.05	Ω
			–40°C to +125°C			0.05	
			25°C		0.084		
Б		V _S = 3 V to 9 V	-40°C to +50°C			0.13	•
R _{ON FLAT}	On-resistance flatness	$I_D = -10 \text{ mA}$	-40°C to +85°C			0.15	Ω
			-40°C to +125°C			0.16	
R _{ON DRIFT}	On-resistance drift	$V_S = 0 \text{ V}, I_S = -10 \text{ mA}$	-40°C to +125°C		0.006		Ω/°C
	Source off leakage current ⁽¹⁾	V_{DD} = 12 V, V_{SS} = 0 V Switch state is off V_{S} = 1 V / 10 V V_{D} = 10 V / 1 V	25°C	-0.07	0.0035	0.07	
			-40°C to +50°C	-0.16		0.16	4
I _{S(OFF)}			-40°C to +85°C	-0.6		0.6	nA
			-40°C to +125°C	-12		12	
		V _{DD} = 12 V, V _{SS} = 0 V Switch state is off V _S = 1 V / 10 V	25°C	-0.07	0.0027	0.07	
	Dunin off lanks as assumed (1)		–40°C to +50°C	-0.16		0.16	Λ
I _{D(OFF)}	Drain off leakage current ⁽¹⁾		-40°C to +85°C	-0.6		0.6	nA
		V _D = 10 V / 1 V	-40°C to +125°C	-12		12	
			25°C	-0.3	0.003	0.3	
I _{S(ON)}	Character to the second of (2)	V _{DD} = 12 V, V _{SS} = 0 V	–40°C to +50°C	-0.4		0.4	Λ
$I_{D(ON)}$	Channel on leakage current ⁽²⁾	Switch state is on $V_S = V_D = 1 \text{ V or } 10 \text{ V}$	–40°C to +85°C	-0.5		0.5	nA
			–40°C to +125°C	-6		6	
POWER S	SUPPLY		'	-			
			25°C		30	40	
I_{DDQ}	V _{DD} quiescent supply current	V _{DD} = 12 V, V _{SS} = 0 V All switches OFF	-40°C to +85°C		,	45	μΑ
		7 11 3 11 10 10 0 1 1	-40°C to +125°C			55	
			25°C		385	440	
I _{DD}	V _{DD} supply current	V _{DD} = 12 V, V _{SS} = 0 V All switches ON	-40°C to +85°C			470	μΑ
		All SWILCHES ON	-40°C to +125°C			480	

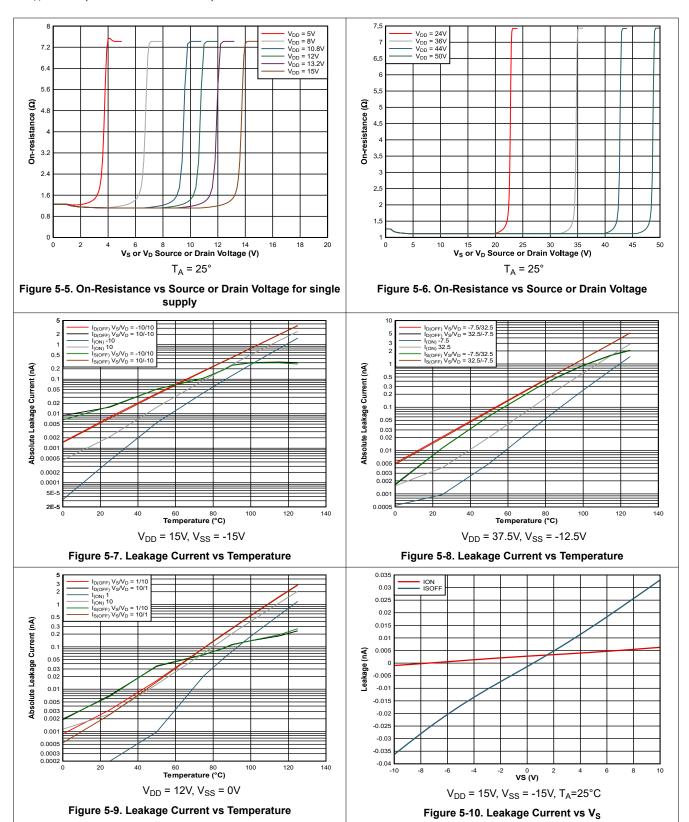
⁽¹⁾ When V_S is positive, V_D is negative, or when V_S is negative, V_D is positive.

When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating.

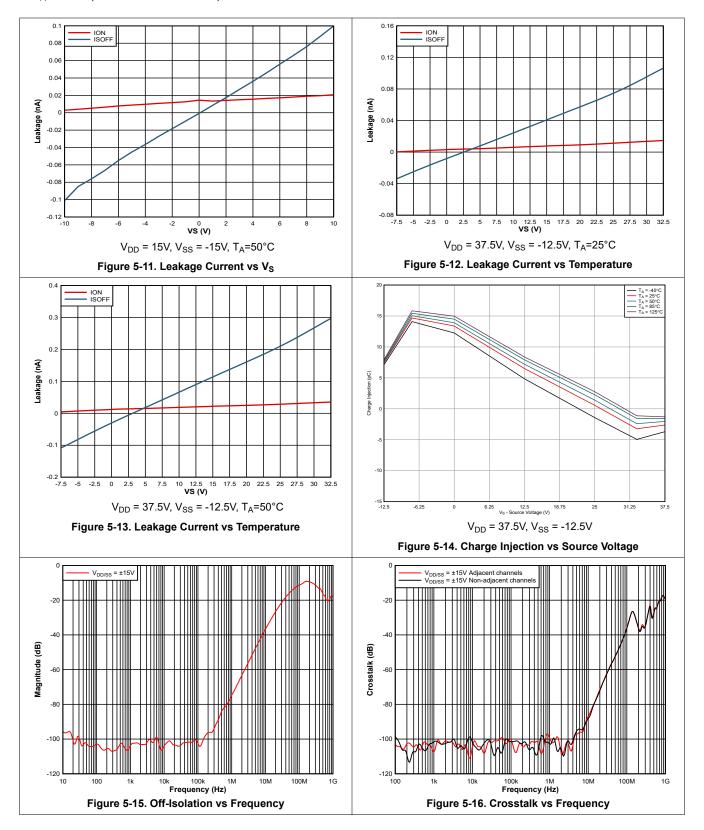


5.14 Switching Characteristics (12 V Single Supply)

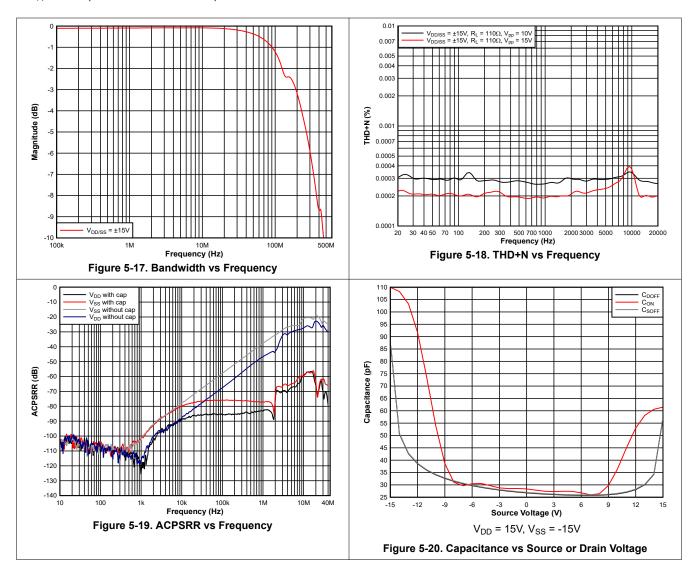
 V_{DD} = +12 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +12 V, V_{SS} = 0 V, T_A = 25°C (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
			25°C		2	2.5	μs
ton	Turn-on time from control input	$V_S = 8 V$ $R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C			3	μs
		11, 000 sz, og 00 pi	-40°C to +125°C			3.5	μs
			25°C		1.7	2.2	μs
t _{OFF}	Turn-off time from control input	$V_S = 8 V$ $R_L = 300 \Omega, C_L = 35 pF$	-40°C to +85°C			2.5	μs
		π. σσσ 11, σε σσ μι	-40°C to +125°C			3	μs
			25°C		320		ns
t _{BBM}	Break-before-make time delay	$V_S = 8 V$, $R_L = 300 \Omega$, $C_L = 35 pF$	-40°C to +85°C	160			ns
		π. σσσ 11, σε σσ μι	-40°C to +125°C	160			ns
Q _{INJ}	Charge injection	V _S = 6 V, C _L = 100 pF	25°C		4		рC
O _{ISO}	Off-isolation	$R_L = 50 \Omega$, $C_L = 5 pF$ $V_S = 200 \text{ mV}_{RMS}$, $VBIAS = 6$ V, f = 100 kHz	25°C		-100		dB
O _{ISO}	Off-isolation	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} , VBIAS = 6 V, f = 1 MHz	25°C		-70		dB
X _{TALK}	Crosstalk	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} , VBIAS = 6 V, f = 100 kHz	25°C		-114		dB
X _{TALK}	Crosstalk	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} , VBIAS = 6 V, f = 1MHz	25°C		-105		dB
BW	–3dB Bandwidth	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} , VBIAS = 6 V	25°C		165		MHz
IL	Insertion loss	R_L = 50 Ω , C_L = 5 pF V_S = 200 mV _{RMS} , VBIAS = 6 V, f = 1 MHz	25°C		-0.095		dB
ACPSRR	AC Power Supply Rejection Ratio	$\begin{aligned} & V_{PP} = 0.62 \text{ V on } V_{DD} \text{ and } V_{SS} \\ & R_L = 50 \Omega \text{ , } C_L = 5 \text{ pF,} \\ & f = 1 \text{ MHz} \end{aligned}$	25°C		-78		dB
THD+N	Total Harmonic Distortion + Noise	$V_{PP} = 6 \text{ V}, V_{BIAS} = 6 \text{ V}$ $R_L = 110 \Omega, C_L = 5 \text{ pF},$ $f = 20 \text{ Hz to } 20 \text{ kHz}$	25°C		0.0095		%
C _{S(OFF)}	Source off capacitance to ground	V _S = 6 V, f = 1 MHz	25°C		37		pF
C _{D(OFF)}	Drain off capacitance to ground	V _S = 6 V, f = 1 MHz	25°C		37		pF
C _{S(ON),} C _{D(ON)}	On capacitance to ground	V _S = 6 V, f = 1 MHz	25°C		27		pF

5.15 Typical Characteristics



5.15 Typical Characteristics (continued)



5.15 Typical Characteristics (continued)

5.15 Typical Characteristics (continued)

6 Parameter Measurement Information

6.1 On-Resistance

The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (Dx) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote on-resistance. Figure 6-1 shows the measurement setup used to measure R_{ON} . Voltage (V) and current (I_{SD}) are measured using this setup, and R_{ON} is computed with $R_{ON} = V / I_{SD}$:

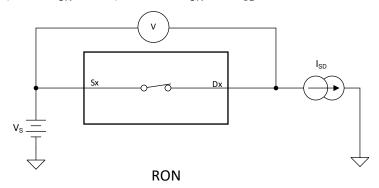


Figure 6-1. On-Resistance Measurement Setup

6.2 Off-Leakage Current

There are two types of leakage currents associated with a switch during the off state:

- 1. Source off-leakage current.
- 2. Drain off-leakage current.

Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is off. This current is denoted by the symbol I_{S(OFF)}.

Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off. This current is denoted by the symbol $I_{D(OFF)}$.

Figure 6-2 shows the setup used to measure both off-leakage currents.

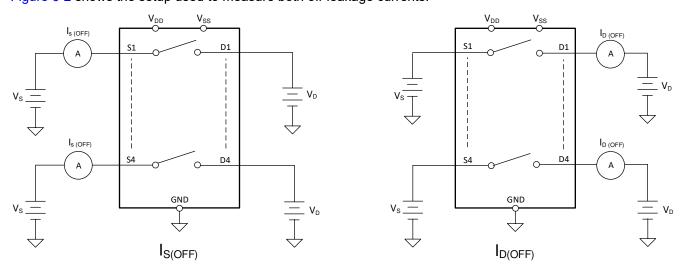


Figure 6-2. Off-Leakage Measurement Setup

6.3 On-Leakage Current

Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch is on. This current is denoted by the symbol I_{S(ON)}.

Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is on. This current is denoted by the symbol $I_{D(ON)}$.

Either the source pin or drain pin is left floating during the measurement. Figure 6-3 shows the circuit used for measuring the on-leakage current, denoted by $I_{S(ON)}$ or $I_{D(ON)}$.

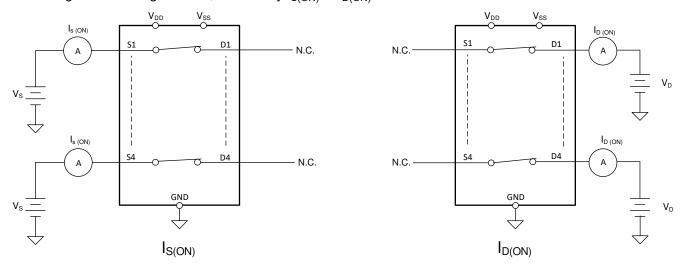


Figure 6-3. On-Leakage Measurement Setup

6.4 t_{ON} and t_{OFF} Time

Turn-on time is defined as the time taken by the output of the device to rise to 90% after the enable has risen past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. Figure 6-4 shows the setup used to measure turn-on time, denoted by the symbol $t_{\rm ON}$.

Turn-off time is defined as the time taken by the output of the device to fall to 10% after the enable has fallen past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. Figure 6-4 shows the setup used to measure turn-off time, denoted by the symbol t_{OFF} .

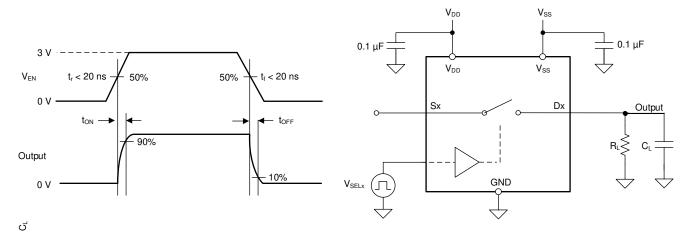


Figure 6-4. Turn-On and Turn-Off Time Measurement Setup

6.5 Propagation Delay

Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal has risen or fallen past the 50% threshold. Figure 6-5 shows the setup used to measure propagation delay, denoted by the symbol t_{PD} .

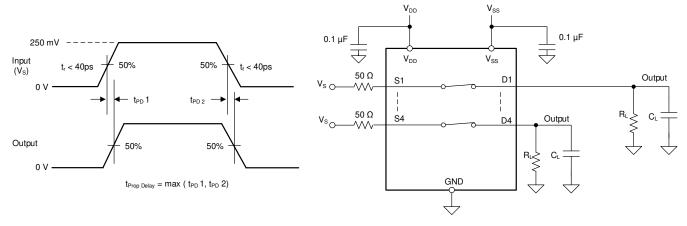


Figure 6-5. Propagation Delay Measurement Setup

6.6 Charge Injection

This device has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted by the symbol Q_C. Figure 6-6 shows the setup used to measure charge injection from source (Sx) to drain (Dx).

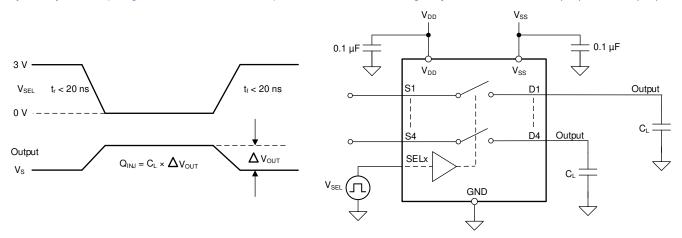


Figure 6-6. Charge-Injection Measurement Setup

6.7 Off Isolation

Off isolation is defined as the ratio of the signal at the drain pin (Dx) of the device when a signal is applied to the source pin (Sx) of an off-channel. The characteristic impedance, Z_0 , for the measurement is 50 Ω . Figure 6-7 shows the setup used to measure off isolation. Use off isolation equation to compute off isolation.

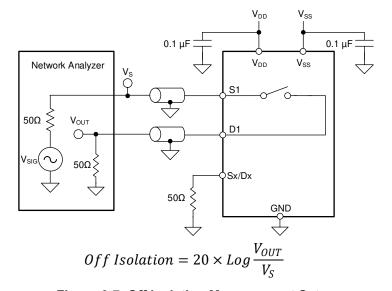


Figure 6-7. Off Isolation Measurement Setup

6.8 Channel-to-Channel Crosstalk

Crosstalk is defined as the ratio of the signal at the drain pin (Dx) of a different channel, when a signal is applied at the source pin (Sx) of an on-channel. The characteristic impedance, Z_0 , for the measurement is 50 Ω . Figure 6-8 shows the setup used to measure, and the equation used to compute crosstalk.

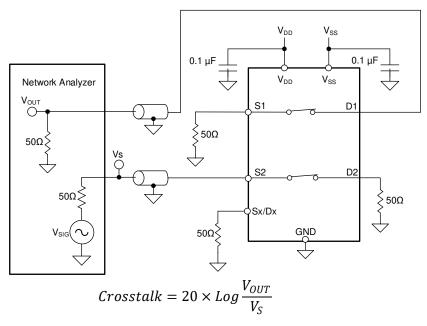


Figure 6-8. Channel-to-Channel Crosstalk Measurement Setup

6.9 Bandwidth

Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (Dx) of the device. The characteristic impedance, Z_0 , for the measurement is 50 Ω . Figure 6-9 shows the setup used to measure bandwidth.

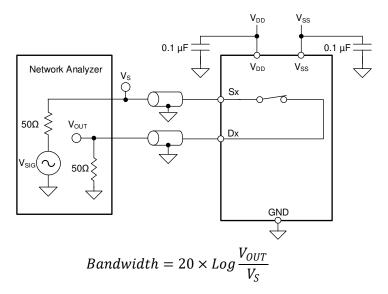


Figure 6-9. Bandwidth Measurement Setup

6.10 THD + Noise

The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the mux output. The on-resistance of the device varies with the amplitude of the input signal and results in distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as THD + N.

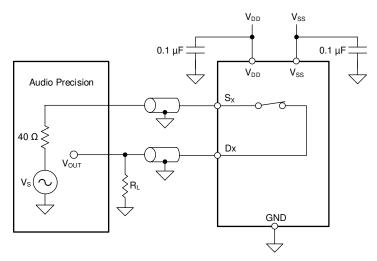


Figure 6-10. THD + N Measurement Setup

6.11 Power Supply Rejection Ratio (PSRR)

PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave of 100 mV_{PP} . The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the AC PSRR.

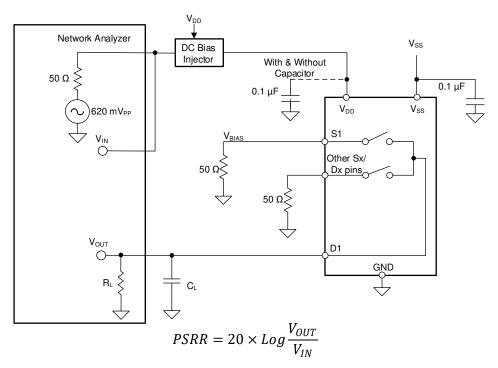


Figure 6-11. AC PSRR Measurement Setup

Product Folder Links: TMUX7612

Submit Document Feedback

7 Detailed Description

7.1 Overview

TMUX7612 is a 1:1 (SPST), 4-channel switch. This device has four independently selectable single-pole, single-throw switches that are turned-on or turned-off based on the state of the corresponding select pin. This device works well with dual supplies, a single supply, or asymmetric supplies such as $V_{DD} = 37.5V$, $V_{SS} = -12.5V$.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Bidirectional Operation

The TMUX7612 conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). Each channel has similar characteristics in both directions and supports both analog and digital signals.

7.3.2 Rail-to-Rail Operation

The valid signal path input and output voltage for TMUX7612 ranges from V_{SS} to V_{DD} .

7.3.3 1.8 V Logic Compatible Inputs

The TMUX7612 has 1.8-V logic compatible control for all logic control inputs. 1.8-V logic level inputs allows the TMUX7612 to interface with processors that have lower logic I/O rails and eliminates the need for an external translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations, refer to Simplifying Design with 1.8 V logic Muxes and Switches.

7.3.4 Flat On-Resistance

The TMUX7612 is designed with a special switch architecture to produce ultra-flat on-resistance (RON) across most of the switch input operating region. The flat RON response allows the device to be used in precision applications since the RON is controlled regardless of the signals sampled. The architecture is implemented without a charge pump so unwanted noise is not produced from the device to affect sampling accuracy.

This architecture also keeps RON the same regardless of the supply voltage. The flattest on-resistance region extends roughly from 5 V above VSS to 5 V below VDD. As long as this headroom is maintained, the TMUX7612 exhibits an extremely linear response.

Copyright © 2024 Texas Instruments Incorporated

7.3.5 Power-Up Sequence Free

The TMUX7612 supports any power up sequencing. With the supply rails (VDD and VSS), any rail can be powered on first. Similarly, when powering down the supply rails can be powered down in any order.

7.3.6 Ultra-Low Charge Injection

The TMUX7612 contains specialized architecture to significantly reduce charge injection, which is consistent across supply and bias conditions. The result is a dramatic drop in AC noise when switching compared to other low on-resistance multiplexers or switches.

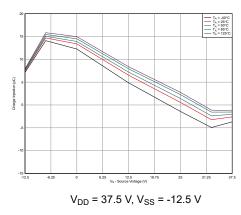


Figure 7-1. Charge Injection vs Source Voltage

7.3.7 Ultra-Low Leakage Current

The TMUX7612 provides extremely low on-leakage and off-leakage currents. This device is capable of switching signals from high source-impedance inputs into a high input-impedance op amp with minimal offset error because of the ultra-low leakage currents. Figure 7-2 shows typical leakage currents of the TMUX7612 devices versus source or drain voltage at V_{DD} = 32.5 V, V_{SS} = -12.5 V and 50°C. The typical performance seen here is less than 0.2 nA at 50°C, which enables the TMUX7612 to be used in a wide array of precision applications.

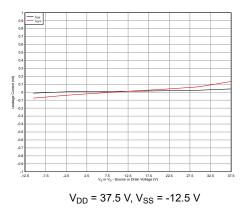


Figure 7-2. Leakage Current at 50°C vs Bias Voltage

7.4 Device Functional Modes

The TMUX7612 has four independently selectable single-pole, single-throw switches that are turned-on or turned-off based on the state of the corresponding select pin. The control pins operate down to 1.8 V logic and can be as high as 44 V.

The TMUX7612 devices can be operated without any external components except for the supply decoupling capacitors. The SELx pins have internal pull-down resistors.

7.4.1 Truth Tables

Table 7-1 provides the truth table for TMUX7612.

Table 7-1. TMUX7612 Truth Table

SEL x ⁽¹⁾	CHANNEL x
0	Channel x OFF
1	Channel x ON

(1) x denotes 1, 2, 3, or 4 for the corresponding channel.

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The TMUX7612 is a part of the precision switches and multiplexers family of devices. The device operates with dual supplies ($\pm 4.5 \text{ V}$ to $\pm 25 \text{ V}$), a single supply (4.5 V to 50 V), or asymmetric supplies (such as $\text{V}_{\text{DD}} = 37.5 \text{ V}$, $\text{V}_{\text{SS}} = -12.5 \text{ V}$), and offers a true rail-to-rail input and output signal range. The TMUX7612 offers a low R_{ON}, low on and off leakage currents and ultra-low charge injection performance. These features make the TMUX7612 a great option for high-performance and high-voltage industrial applications.

8.2 Typical Application

New generation LCD test equipment often requires simultaneous high-precision, high-voltage, multi-channel measurement capabilities and minimum channel-to-channel variation during measurement.

In LCD test systems, the parametric measurement unit (PMU) is tasked to measure device (DUT) LCD driver parametric information in terms of voltage and current. To measure current, voltage is applied at the DUT pin. To measure voltage, current is applied at the DUT pin. A 4-channel SPST switch can be used to select appropriate signals in the feedback path and measurement path in the two measurement modes. The PMU typically supports a voltage range of -12 V to 35 V and can be any combination of high or low current. An appropriate switch like the TMUX7612 with low on-resistance works well in these applications to increase the capability of higher current and even PMU ganging where multiple PMU channels are connected in parallel, allowing for a higher current output. Figure 8-1 shows a simplified diagram of such an implementation. The extremely flat on-resistance profile reduced the IR drop variation across the switch, enabling a much more streamlined calibration.

For calibration and diagnostics, the LCD test equipment also includes signals routed to the input path to confirm the system is calibrated across the life of a product or after installation. The multiplexer connects the selected signal to the appropriate pin. The TMUX7612 devices with very low RON (1.35 Ω typical) and on-leakage current (1 nA maximum) allows these devices to be used in precision measurement applications providing rail-to-rail operation suitable for high voltage testing.

Product Folder Links: TMUX7612

Copyright © 2024 Texas Instruments Incorporated

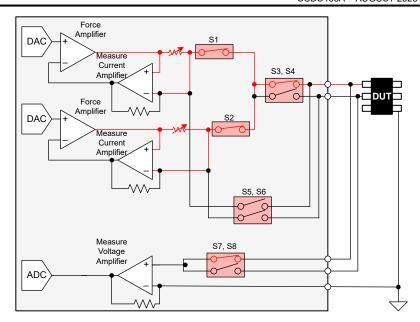


Figure 8-1. PMU Ganging Multiple Channels in Parallel

8.2.1 Detailed Design Procedure

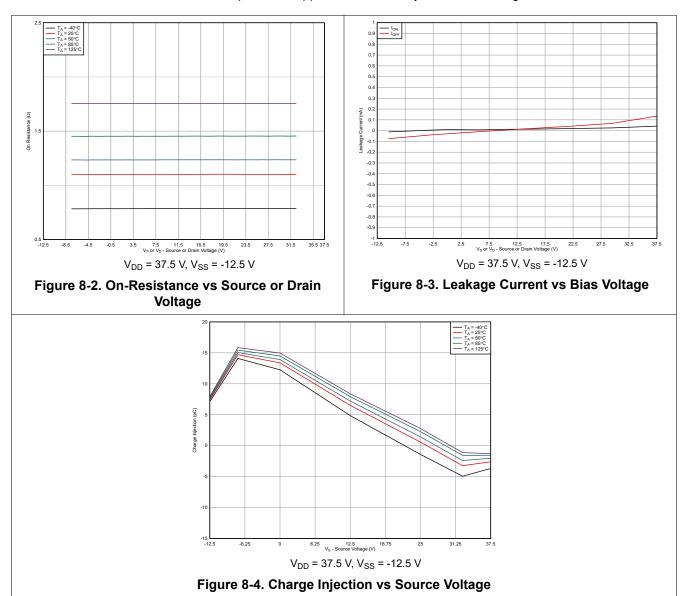
Figure 9-1 shows one example of how two TMUX7612 can be used to gang two PMU channels together for higher current serial measurements while keeping the option for lower current parallel measurements. Here, switches S1 and S2 are used to gang the output current of the two force amplifiers in parallel to achieve a higher current output. The measure current amplifiers sense the current over the shunt resistors as a feedback to the force amplifier. S3 and S4 are used to select the DUT (device under test) channel. S7 and S8 are switched so that the correct DUT channel voltage can be measured by the measure voltage amplifier. Finally, S5 and S6 can be used when S1, S2, S3, and S4 are open to force current on both DUT channels in parallel if the higher current is not needed. This is only a two PMU channel solution but the amount of channels can be increased to any number by adding more switches.

The TMUX7612 can support 1.8-V logic signals on the control input, allowing the device to interface with low logic controls of an FPGA or MCU. All inputs to the switch must fall within the recommend operating conditions of the TMUX7612 including signal range and continuous current. For this design with a positive supply of 37.5 V on V_{DD} , and a negative supply of -12.5 V on V_{SS} , the signal range can be 37.5 V to -12.5 V. For the best linear performance, the signal range should be held within a 5 V headroom below the positive and above the negative supplies. The maximum continuous current (I_{DC}) can be up to 470 mA as shown in the *Recommended Operating Conditions* table for wide-range current measurement.

8.2.2 Design Requirements

For this design example, use the parameters listed in Table 8-1.

Table 8-1. Design Parameters


PARAMETERS	VALUES			
Supply (V _{DD})	37.5 V			
Supply (V _{SS}) –12.5 V				
Input / Output signal range	–12.5 V to 37.5 V (Rail-to-Rail operation)			
Imput / Output signal range	-10 V to 32.5 V (Best performance with headroom)			
Max current through each channel	470 mA			
Control logic thresholds	1.8 V compatible			

Copyright © 2024 Texas Instruments Incorporated

8.2.3 Application Curve

TMUX7612 has excellent linearity, leakage, and charge injection performance making them an excellent choice to minimize noise and offset errors for precision applications and very low current range measurements.

8.3 Thermal Considerations

For analog switches in many applications, several 100s of mA of current needs to be supported through the switch (from source to drain, or NO/NC to COM). Many devices already have a maximum current specified based on ambient temperature, but if a device specifies with junction temperature or you want to calculate for your specific use case (temperature, supply voltage, channels in parallel) you can use the following equations and scheme.

There are mainly 2 limitations to this maximum current:

- 1. Inherent metal limitations of the device
- 2. Thermal self-heating limitations

To calculate maximum current for your specific setup you need the following information:

- T_A = maximum ambient temperature
- R_{OJA} = package thermal coefficients
- R_{ON} = on resistance
- n = number of channels in parallel
- · Limitations on maximum current based on junction temperature from the datasheet

Below is an example using TMUX7612 specifications:

Device maximum T_{.I}=150°C

For this example we assume 20°C of self-heating at a maximum T_A =105°C and operating with 4 channels at once at ±15V. We can assume worst case R_{ON} = 2.2 Ω . This number is taken from the maximum specified value at T_A = 125°C where T_J =125°C since the specification assumes no self-heating. Using the following equation we can calculate the maximum thermal limitation.

Similarly, you can calculate the T_J and total power dissipated in these examples with the following equations. Note there will be some small power dissipated from the supply current consumption of the device, which is ignored here.

$$T_I = R_{\theta IA} \times I^2 \times R_{ON} \times n + T_A \tag{1}$$

$$P_{total} = \frac{T_J - T_A}{R_{\theta JA}} \tag{2}$$

Pulse current can be calculated the same way, but using the duty cycle, d. Typically, pulse current is specified at a 10% duty cycle; however, do not exceed the maximum current provided in the pulse current table even with a shorter duty cycle.

$$I = \frac{1}{d} \sqrt{\frac{T_J - T_A}{R_{\theta JA} \times R_{ON} \times n}} \tag{3}$$

$$T_{I} = R_{\theta IA} \times (d \times I)^{2} \times R_{ON} \times n + T_{A}$$

$$\tag{4}$$

8.4 Power Supply Recommendations

The TMUX7612 device operates across a wide supply range of ± 4.5 V to ± 25 V (4.5 V to 50V in single-supply mode). The device also performs well with asymmetrical supplies such as $V_{DD} = 37.5$ V and $V_{SS} = -12.5$ V.

Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails to other components. Good power-supply decoupling is important to achieve optimum performance. For improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μ F to 10 μ F at both the V_{DD} and V_{SS} pins to ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to ground and power planes. Always make sure a solid ground (GND) connection is established before supplies are ramped.

8.5 Layout

8.5.1 Layout Guidelines

When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners. Figure 8-5 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

Copyright © 2024 Texas Instruments Incorporated

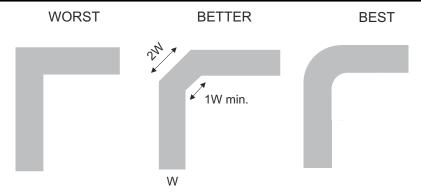


Figure 8-5. Trace Example

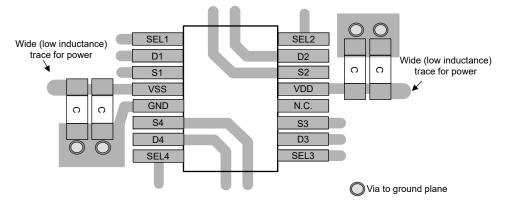

Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal's transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points, through-hole pins are not recommended at high frequencies.

Figure 8-6 shows an example of a PCB layout with the TMUX7612.

Some key considerations are:

- For reliable operation, connect a decoupling capacitor ranging from 0.1 μF to 10 μF between VDD/VSS and GND. We recommend a 0.1 μF and 1 μF capacitor, placing the lowest value capacitor as close to the pin as possible. Make sure that the capacitor voltage rating is sufficient for the supply voltage.
- · Keep the input lines as short as possible.
- Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.
- Using multiple vias in parallel will lower the overall inductance and is beneficial for connection to ground planes.

8.5.2 Layout Example

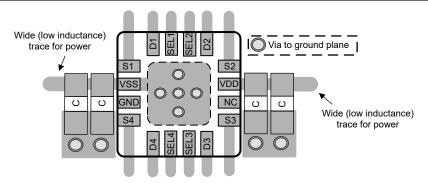


Figure 8-6. TMUX7612 Layout Example

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, When to Replace a Relay with a Multiplexer application brief
- Texas Instruments, Improving Signal Measurement Accuracy in Automated Test Equipment application brief
- Texas Instruments, Sample & Hold Glitch Reduction for Precision Outputs Reference Design reference guide
- Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches application brief
- Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers application note
- Texas Instruments, QFN/SON PCB Attachment application note

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Notifications to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

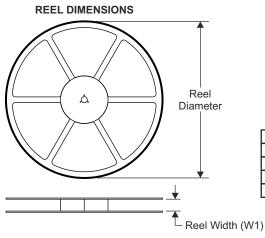
TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

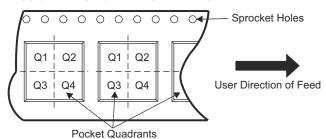
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (August 2023) to Revision A (December 2024)

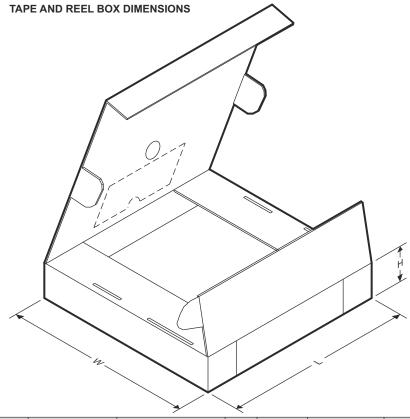

Page

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.


11.1 Tape and Reel Information

Α0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

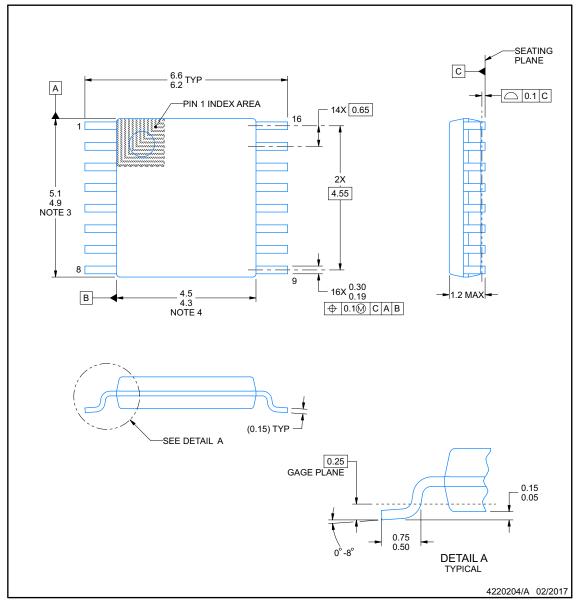

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
PTMUX7612PWR	TSSOP	PW	16	3000	330	12.4	6.90	5.60	1.60	8	12	Q1
PTMUX7612RUMR	WQFN	RUM	16	3000	330	12.4	4.25	4.25	1.15	8	12	Q2

Copyright © 2024 Texas Instruments Incorporated

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PTMUX7612PWR	TSSOP	PW	16	3000	367	367	35
PTMUX7612RUMR	WQFN	RUM	16	3000	360	360	36

Product Folder Links: TMUX7612


11.2 Mechanical Data

PW0016A

PACKAGE OUTLINE

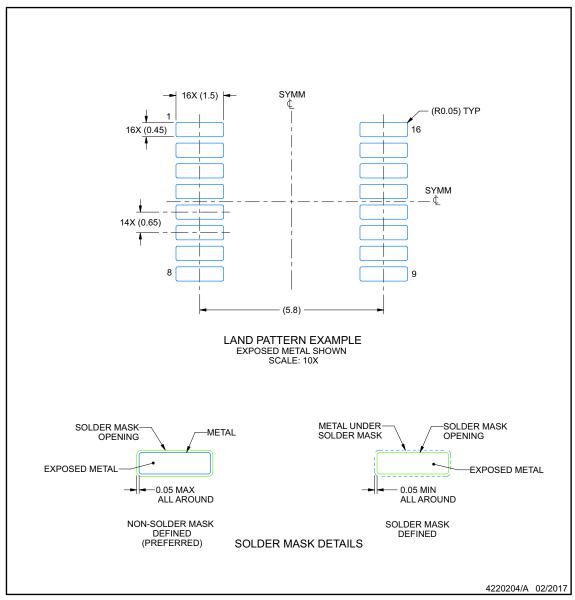
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-153.



EXAMPLE BOARD LAYOUT

PW0016A

TSSOP - 1.2 mm max height

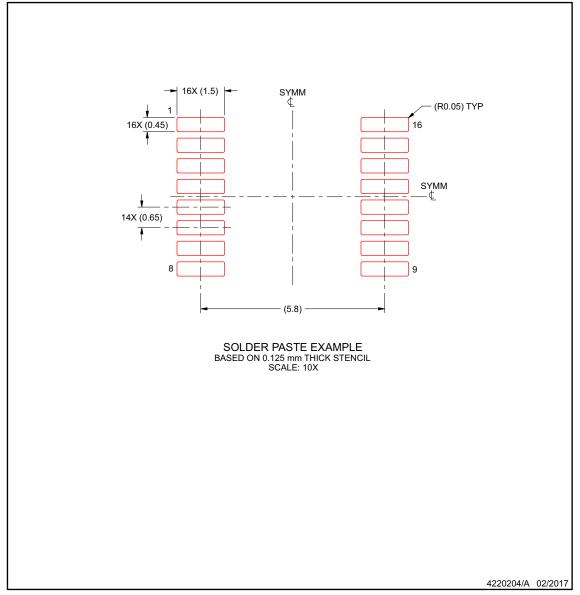
SMALL OUTLINE PACKAGE

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated



EXAMPLE STENCIL DESIGN

PW0016A

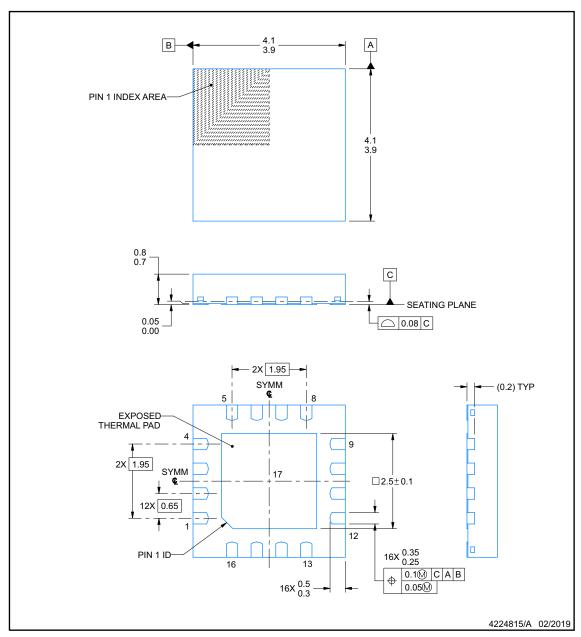
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

 9. Board assembly site may have different recommendations for stencil design.

RUM0016E



PACKAGE OUTLINE

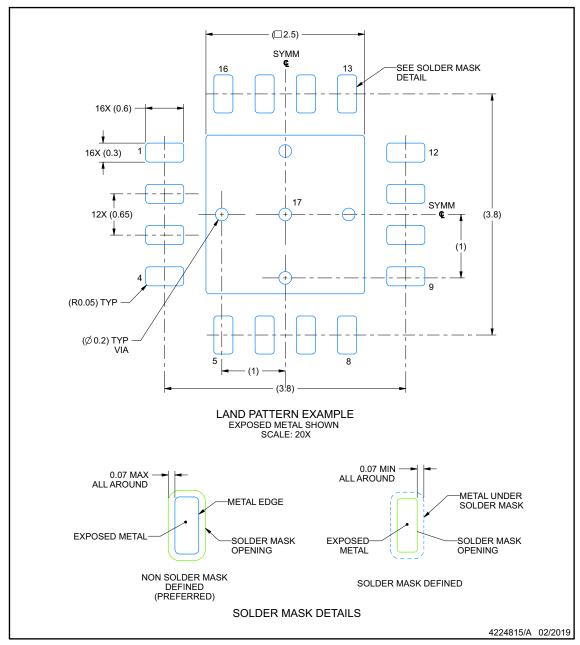
WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

Product Folder Links: TMUX7612



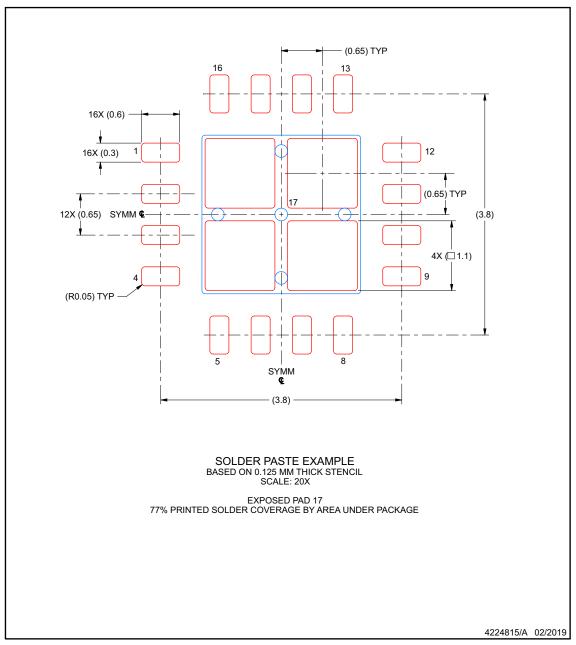
EXAMPLE BOARD LAYOUT

RUM0016E

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



EXAMPLE STENCIL DESIGN

RUM0016E

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status Material type Page		Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TMUX7612PWR	Active	Production	TSSOP (PW) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7612
TMUX7612PWR.A	Active	Production	TSSOP (PW) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	7612
TMUX7612RUMR	Active	Production	WQFN (RUM) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TMUX
									7612
TMUX7612RUMR.A	Active	Production	WQFN (RUM) 16	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	TMUX
									7612

⁽¹⁾ Status: For more details on status, see our product life cycle.

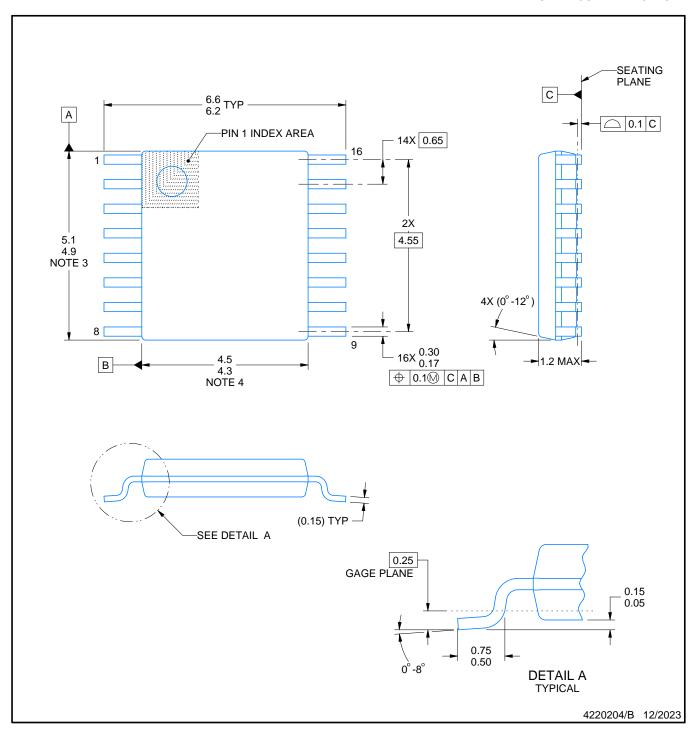
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

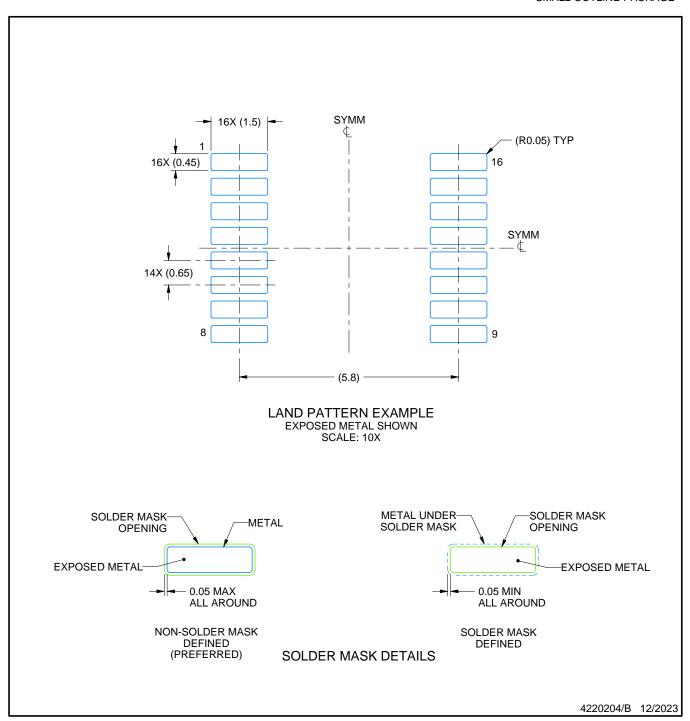

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

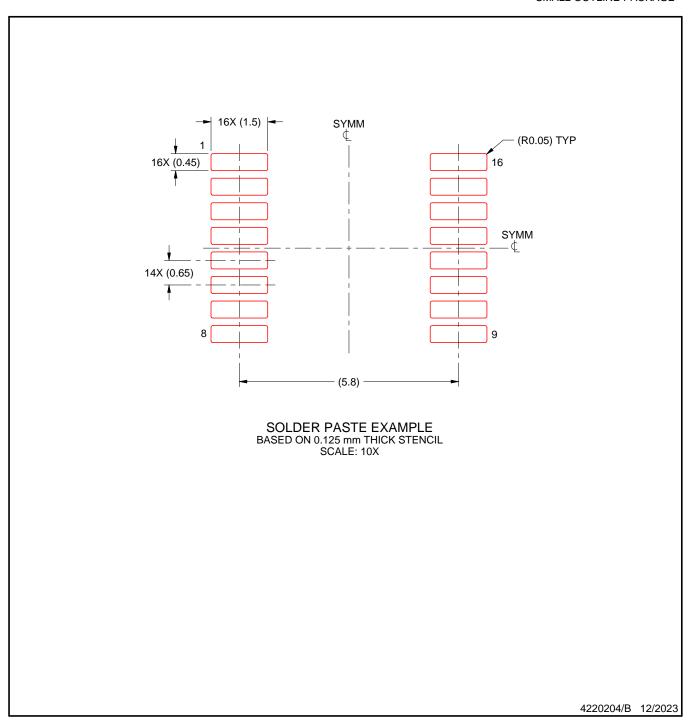
SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

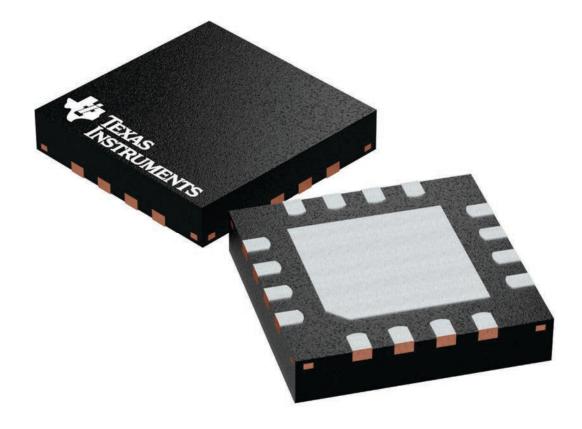
 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

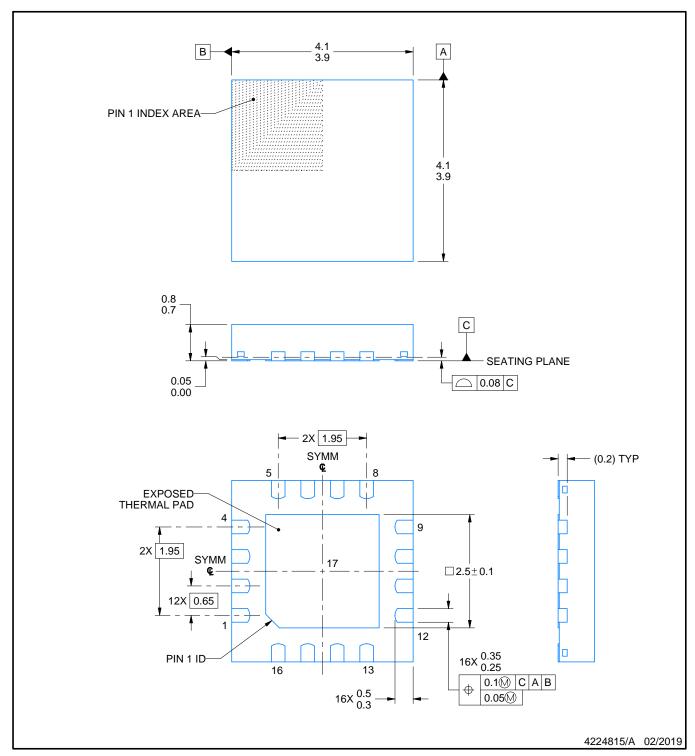

SMALL OUTLINE PACKAGE

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

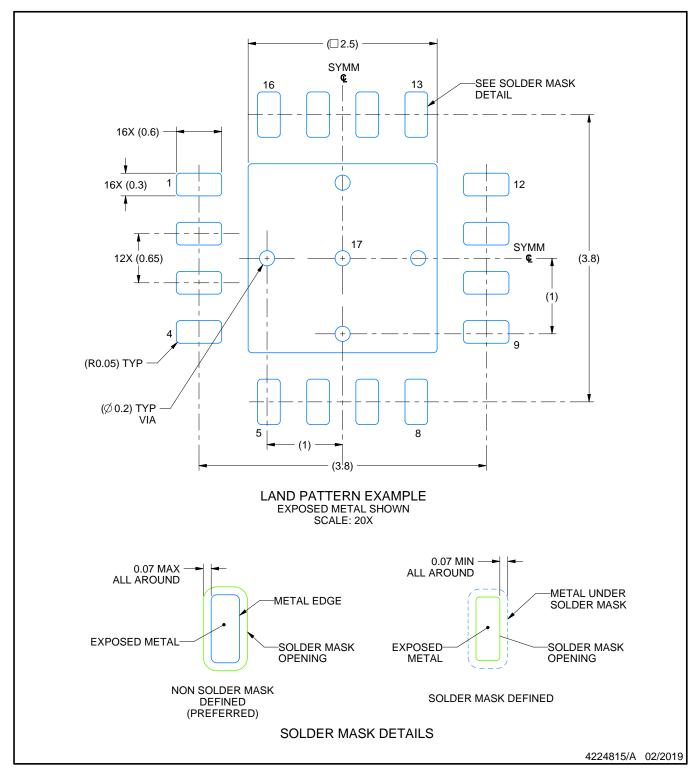

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

4 x 4, 0.65 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

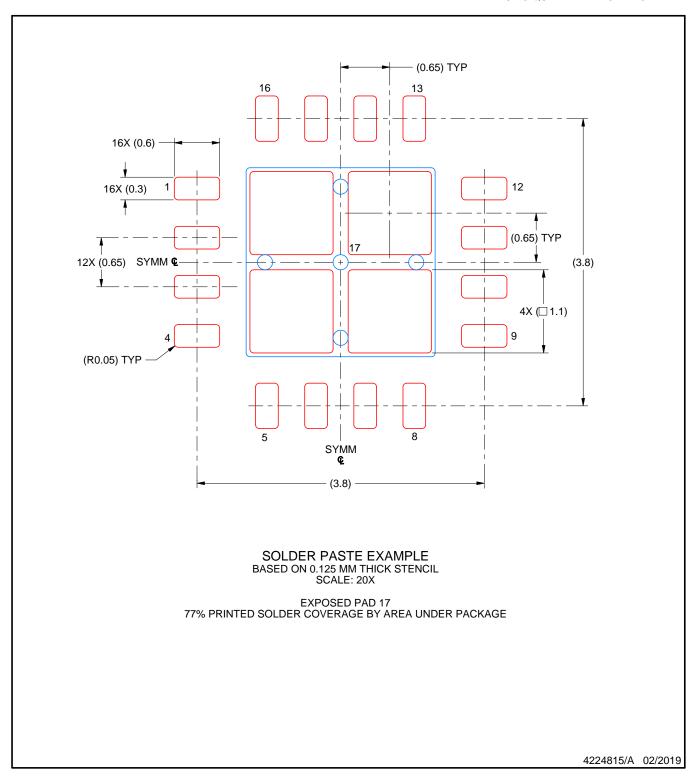
This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.


PLASTIC QUAD FLATPACK - NO LEAD

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated