DIN

SCLK [

FS

SLAS235B - JULY 1999 - REVISED APRIL 2004

 V_{DD}

NOUT

AGND

6 REF

D OR DGK PACKAGE (TOP VIEW)

8

features

- 8-Bit Voltage Output DAC
- Programmable Internal Reference
- Programmable Settling Time:

1 μ s in Fast Mode, 3.5 μ s in Slow Mode

- Compatible With TMS320 and SPI™ Serial Ports
- Differential Nonlinearity . . . < 0.2 LSB
- Monotonic Over Temperature

applications

- Digital Servo Control Loops
- Digital Offset and Gain Adjustment
- Industrial Process Control
- Machine and Motion Control Devices
- Mass Storage Devices

description

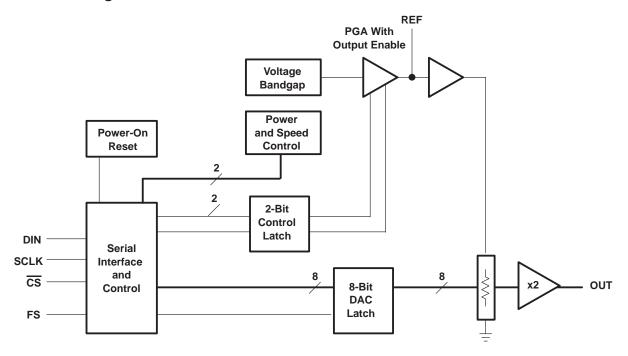
The TLV5624 is a 8-bit voltage output DAC with a flexible 4-wire serial interface. The serial interface allows glueless interface to TMS320 and SPI™, QSPI™, and Microwire™ serial ports. It is programmed with a 16-bit serial string containing 4 control and 8 data bits.

The resistor string output voltage is buffered by a x2 gain rail-to-rail output buffer. The programmable settling time of the DAC allows the designer to optimize speed vs power dissipation. With its on-chip programmable precision voltage reference, the TLV5624 simplifies overall system design.

Because of its ability to source up to 1 mA, the reference can also be used as a system reference. Implemented with a CMOS process, the device is designed for single supply operation from 2.7 V to 5.5 V. It is available in an 8-pin SOIC and 8-pin MSOP package to reduce board space in standard commercial and industrial temperature ranges.

AVAILABLE OPTIONS

	PACK	AGE
TA	SOIC (D)	MSOP (DGK)
0°C to 70°C	TLV5624CD	TLV5624CDGK
-40°C to 85°C	TLV5624ID	TLV5624IDGK


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corporation.

SLAS235B - JULY 1999 - REVISED APRIL 2004

functional block diagram

Terminal Functions

TERM	INAL	1/0/7	DECORIDE
NAME	NO.	I/O/P	DESCRIPTION
AGND	5	Р	Ground
CS	3	I	Chip select. Digital input active low, used to enable/disable inputs
DIN	1	I	Digital serial data input
FS	4	I	Frame sync input
OUT	7	0	DAC A analog voltage output
REF	6	I/O	Analog reference voltage input/output
SCLK	2	I	Digital serial clock input
V_{DD}	8	Р	Positive power supply

SLAS235B - JULY 1999 - REVISED APRIL 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage (V _{DD} to AGND)	7 V
Reference input voltage range	
Digital input voltage range	
Operating free-air temperature range, T _A : TLV5624C	0°C to 70°C
TLV5624I	–40°C to 85°C
Storage temperature range, T _{Stq}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			MIN	NOM	MAX	UNIT	
Owner houself a man V	V _{DD} = 5 V		4.5	5	5.5	.,	
Supply voltage, V _{DD}	V _{DD} = 3 V		2.7	3	3.3	V	
ower on reset, POR		0.55		2	V		
	DV _{DD} = 2.7 V		2			.,	
High-level digital input voltage, V _{IH}	DV _{DD} = 5.5 V		2.4			V	
	DV _{DD} = 2.7 V				0.6	.,	
Low-level digital input voltage, V _{IL}	DV _{DD} = 5.5 V				1	V	
Reference voltage, V _{ref} to REF terminal	V _{DD} = 5 V (see Note 1)	/	AGND	2.048	V _{DD} -1.5	V	
Reference voltage, V _{ref} to REF terminal	V _{DD} = 3 V (see Note 1)	/	AGND	1.024	V _{DD} -1.5	V	
Load resistance, R _L			2			kΩ	
Load capacitance, CL					100	pF	
Clock frequency, fCLK					20	MHz	
On another force air to one another. To	TLV5624C		0		70	°C	
Operating free-air temperature, T _A	TLV5624I		-40		85	30	

NOTE 1: Due to the x2 output buffer, a reference input voltage ≥ (V_{DD}−0.4 V)/2 causes clipping of the transfer function. The output buffer of the internal reference must be disabled, if an external reference is used.

TLV5624

2.7-V TO 5.5-V LOW POWER 8-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN

SLAS235B - JULY 1999 - REVISED APRIL 2004

electrical characteristics over recommended operating conditions (unless otherwise noted)

power supply

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
No load,		No load, All inputs = AGND or V _{DD} ,	Fast		2.3	3.3	mA
IDD Power supply cui	Power supply current	DAC latch = 0x800	Slow		1.5	1.9	mA
	Power down supply current	See Figure 8			0.01	10	μΑ
		Zero scale, See Note 2			-65		j
PSRR	Power supply rejection ratio	Full scale, See Note 3			-65		dB

NOTES: 2. Power supply rejection ratio at zero scale is measured by varying VDD and is given by:

 $PSRR = 20 \log [(E_{ZS}(V_{DD}max) - E_{ZS}(V_{DD}min))/V_{DD}max]$

3. Power supply rejection ratio at full scale is measured by varying V_{DD} and is given by: $PSRR = 20 \log [(E_G(V_{DD}max) - E_G(V_{DD}min))/V_{DD}max]$

static DAC specifications

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Resolution		8			bits
INL	Integral nonlinearity, end point adjusted	See Note 4		±0.3	±0.5	LSB
DNL	Differential nonlinearity	See Note 5		±0.07	±0.2	LSB
EZS	Zero-scale error (offset error at zero scale)	See Note 6			±20	mV
E _{ZS} TC	Zero-scale-error temperature coefficient	See Note 7		10		ppm/°C
EG	Gain error	See Note 8			±0.6	% full scale V
E _G T _C	Gain error temperature coefficient	See Note 9		10		ppm/°C

- NOTES: 4. The relative accuracy or integral nonlinearity (INL) sometimes referred to as linearity error, is the maximum deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale errors. Tested from code 10 to code 255.
 - 5. The differential nonlinearity (DNL) sometimes referred to as differential error, is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code. Tested from code 10 to code 255.
 - 6. Zero-scale error is the deviation from zero voltage output when the digital input code is zero.

 - 7. Zero-scale-error temperature coefficient is given by: E_{ZS} TC = $[E_{ZS}$ (T_{max}) E_{ZS} (T_{min})]/ V_{ref} × 10⁶/(T_{max} T_{min}). 8. Gain error is the deviation from the ideal output ($2V_{ref}$ 1 LSB) with an output load of 10 k Ω excluding the effects of the zero-error. 9. Gain temperature coefficient is given by: E_{G} TC = $[E_{G}(T_{max}) E_{G}(T_{min})]/V_{ref}$ × 10⁶/(T_{max} T_{min}).

output specifications

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VO	Output voltage	$R_L = 10 \text{ k}\Omega$	0		V _{DD} -0.4	V
	Output load regulation accuracy	$V_{O} = 4.096 \text{ V}, 2.048 \text{ V} R_{L} = 2 \text{ k}\Omega$		±0.10	±0.25	% full scale V

reference pin configured as output (REF)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{ref} (OUTL)	Low reference voltage		1.003	1.024	1.045	V
V _{ref} (OUTH)	High reference voltage	V _{DD} > 4.75 V	2.027	2.048	2.069	V
I _{ref(source)}	Output source current				1	mA
I _{ref(sink)}	Output sink current		-1			mA
	Load capacitance		1	10		ωF
PSRR	Power supply rejection ratio			-65		dB

SLAS235B - JULY 1999 - REVISED APRIL 2004

electrical characteristics over recommended operating conditions (unless otherwise noted) (Continued)

reference pin configured as input (REF)

	PARAMETER TEST CONDITIONS		MIN	TYP	MAX	UNIT	
٧ı	V _I Input voltage		0		V _{DD-1.5}	V	
RĮ	Input resistance				10		$M\Omega$
C_{I}	Input capacitance				5		pF
	Defended insert handwidth	DEE 0.0 V + 4.004 V do	Fast		1.3		MHz
	Reference input bandwidth	REF = $0.2 \text{ V}_{pp} + 1.024 \text{ V dc}$	Slow		525		kHz
	Reference feedthrough	REF = 1 V _{pp} at 1 kHz + 1.024 V dc (see Note 10)	EF = 1 V _{pp} at 1 kHz + 1.024 V dc (see Note 10)		-80	·	dB

NOTE 10: Reference feedthrough is measured at the DAC output with an input code = 0x000.

digital inputs

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{IH}	High-level digital input current	$V_I = V_{DD}$			1	μΑ
IIL	Low-level digital input current	V _I = 0 V	-1			μΑ
Ci	Input capacitance			8		pF

analog output dynamic performance

PARAMETER		TEST	CONDITIONS		MIN	TYP	MAX	UNIT
	Output and an Cara full and	$R_L = 10 \text{ k}\Omega$,	C _L = 100 pF,	Fast		1	3	_
ts(FS)	Output settling time, full scale	See Note 11	_	Slow		3.5	7	μs
	Output and the office and the said	$R_L = 10 \text{ k}\Omega$,	C _L = 100 pF,	Fast		0.5	1.5	_
ts(CC)	Output settling time, code to code	See Note 12		Slow		1	2	μs
0.0	Olemante	$R_L = 10 \text{ k}\Omega$,	C _L = 100 pF,	Fast		8		\// -
SR	Slew rate	See Note 13		Slow		1.5		V/μs
	Glitch energy	$\frac{DIN = 0 \text{ to } 1,}{CS = V_{DD}}$	f _{CLK} = 100 kH	z,		5		nV-S
SNR	Signal-to-noise ratio				53	57		
S/(N+D)	Signal-to-noise + distortion	f _S = 480 kSPS,	f _{out} = 1 kHz,		48	47		.ID
THD	Total harmonic distortion	$R_L = 10 \text{ k}\Omega$,	$C_L = 100 pF$			-50	-48	dB
	Spurious free dynamic range				50	62	·	

- NOTES: 11. Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change of 0x020 to 0xFDFand 0xFDF to 0x020 respectively. Not tested, assured by design.
 - 12. Settling time is the time for the output signal to remain within \pm 0.5 LSB of the final measured value for a digital input code change of one count. Not tested, assured by design.
 - 13. Slew rate determines the time it takes for a change of the DAC output from 10% to 90% full-scale voltage.

SLAS235B – JULY 1999 – REVISED APRIL 2004

digital input timing requirements

		MIN	NOM	MAX	UNIT
t _{su(CS-FS)}	Setup time, CS low before FS falling edge	10			ns
t _{su(FS-CK)}	Setup time, FS low before first negative SCLK edge	8			ns
t _{su(C16-FS)}	Setup time, $16^{\mbox{th}}$ negative SCLK edge after FS low on which bit D0 is sampled before rising edge of FS	10			ns
^t su(C16-CS)	Setup time, 16 th positive SCLK edge (first positive after D0 is sampled) before $\overline{\text{CS}}$ rising edge. If FS is used instead of 16 th positive edge to update DAC, then setup time between FS rising edge and $\overline{\text{CS}}$ rising edge.	10			ns
t _{wH}	SCLK pulse duration high	25			ns
t _{WL}	SCLK pulse duration low	25			ns
t _{su(D)}	Setup time, data ready before SCLK falling edge	8			ns
tH(D)	Hold time, data held valid after SCLK falling edge	5		·	ns
t _{wH(FS)}	FS pulse duration high	25			ns

PARAMETER MEASUREMENT INFORMATION

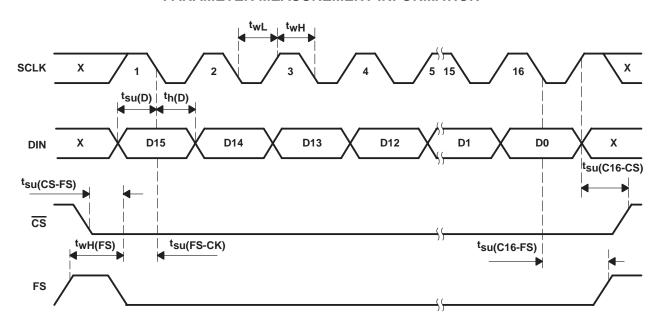
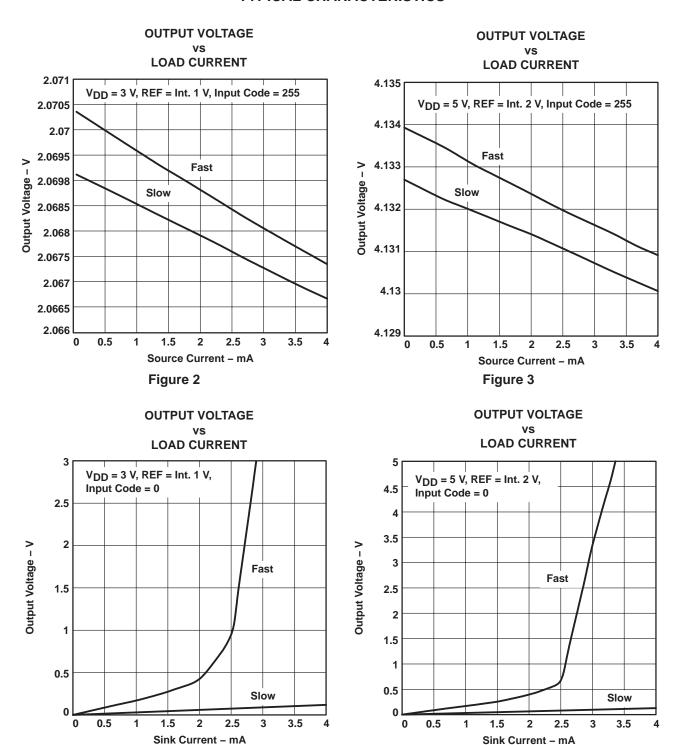
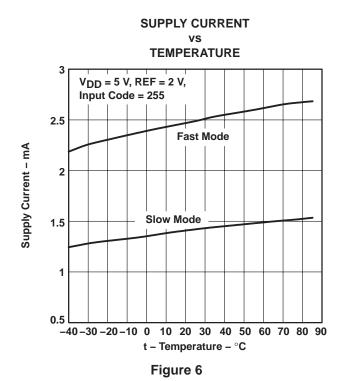
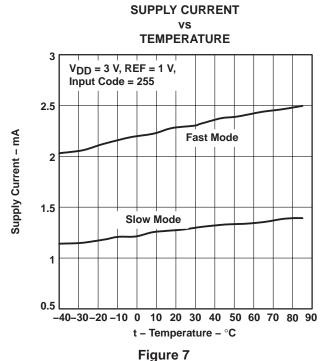


Figure 1. Timing Diagram

TYPICAL CHARACTERISTICS






Figure 4

Sink Current - mA

Figure 5

TYPICAL CHARACTERISTICS

POWER DOWN SUPPLY CURRENT

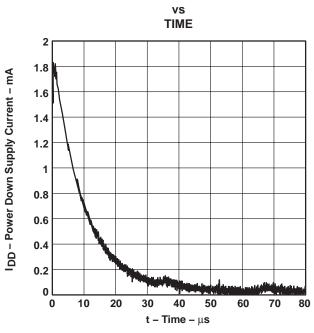
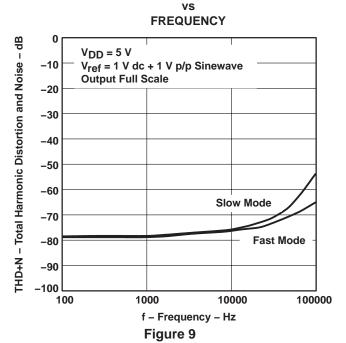



Figure 8

TOTAL HARMONIC DISTORTION AND NOISE

SLAS235B - JULY 1999 - REVISED APRIL 2004

TYPICAL CHARACTERISTICS

TOTAL HARMONIC DISTORTION vs FREQUENCY

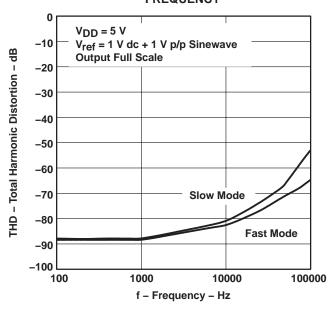


Figure 10

DIFFERENTIAL NONLINEARITY

DIGITAL OUTPUT CODE

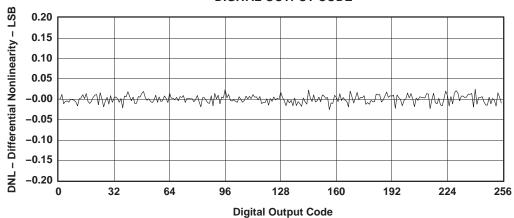


Figure 11

TYPICAL CHARACTERISTICS

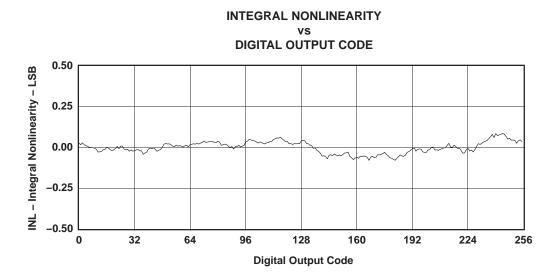


Figure 12

APPLICATION INFORMATION

general function

The TLV5624 is an 8-bit, single supply DAC, based on a resistor string architecture. It consists of a serial interface, a speed and power-down control logic, a programmable internal reference, a resistor string, and a rail-to-rail output buffer.

The output voltage (full scale determined by reference) is given by:

$$2 REF \frac{CODE}{2^n} [V]$$

where REF is the reference voltage and CODE is the digital input value within the range 0_{10} to 2^{n-1} , where n = 8 (bits). The 16-bit word, consisting of control bits and a new DAC value, is illustrated in the *data format* section. A power on reset initially resets the internal latches to a defined state (all bits zero).

serial interface

The device has to be enabled with \overline{CS} set to low. A falling edge of FS starts shifting the data bit-per-bit (starting with the MSB) to the internal register on high-low transitions of SCLK. After 16 bits have been transferred or FS rises, the content of the shift register is moved to the DAC latch, which updates the voltage output to the new level.

The serial interface of the TLV5624 can be used in two basic modes:

- Four wire (with chip select)
- Three wire (without chip select)

Using chip select (four-wire mode), it is possible to have more than one device connected to the serial port of the data source (DSP or microcontroller). Figure 13 shows an example with two TLV5624s connected directly to a TMS320 DSP.

SLAS235B - JULY 1999 - REVISED APRIL 2004

APPLICATION INFORMATION

serial interface (continued)

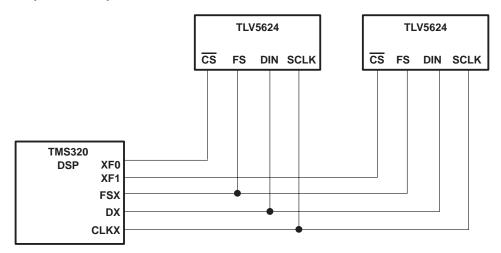


Figure 13. TMS320 Interface

If there is no need to have more than one device on the serial bus, then \overline{CS} can be tied low. Figure 14 shows an example of how to connect the TLV5624 to TMS320, SPI™ or Microwire™ using only three pins.

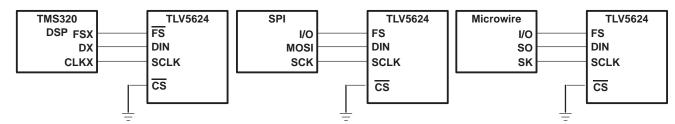


Figure 14. Three-Wire Interface

Notes on SPI™ and Microwire™: Before the controller starts the data transfer, the software has to generate a falling edge on the I/O pin connected to FS. If the word width is 8 bits (SPI™ and Microwire™), two write operations must be performed to program the TLV5624. After the write operation(s), the DAC output is updated automatically on the next positive clock edge following the 16th falling clock edge.

serial clock frequency and update rate

The maximum serial clock frequency is given by:

$$f_{sclkmax} = \frac{1}{t_{whmin} + t_{wlmin}} = 20 \text{ MHz}$$

The maximum update rate is:

$$f_{updatemax} = \frac{1}{16 (t_{whmin} + t_{wlmin})} = 1.25 \text{ MHz}$$

Note that the maximum update rate is just a theoretical value for the serial interface, as the settling time of the TLV5624 has to be considered, too.

SLAS235B - JULY 1999 - REVISED APRIL 2004

APPLICATION INFORMATION

data format

The 16-bit data word for the TLV5624 consists of two parts:

• Program bits (D15..D12)

New data (D11..D0)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	l
R1	SPD	PWR	R0				8 Dat	a bits				0	0	0	0	ĺ

SPD: Speed control bit $1 \rightarrow$ fast mode $0 \rightarrow$ slow mode PWR: Power control bit $1 \rightarrow$ power down $0 \rightarrow$ normal operation

The following table lists the possible combination of the register select bits:

register select bits

R1	R0	REGISTER
0	0	Write data to DAC
0	1	Reserved
1	0	Reserved
1	1	Write data to control register

The meaning of the 12 data bits depends on the selected register. For the DAC register, bits D11...D4 determine the new DAC output value:

data bits: DAC

D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
			New DA	.C Value				0	0	0	0

If the control register is selected, then D1, D0 of the 12 data bits are used to program the reference voltage:

data bits: CONTROL

D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	REF1	REF2

X: don't care

REF1 and REF0 determine the reference source and, if internal reference is selected, the reference voltage.

reference bits

REF1	REF0	REFERENCE
0	0	External
0	1	1.024 V
1	0	2.048 V
1	1	External

NOTE: A 0.1 μ F bypass capacitor must be installed on the reference pin (pin 6). If internal reference is used a 10 μ F capacitor must also be installed for reference voltage stability.

CAUTION:

If external reference voltage is applied to the REF pin, external reference MUST be selected.

SLAS235B - JULY 1999 - REVISED APRIL 2004

APPLICATION INFORMATION

Example:

- Set DAC output, select fast mode, select internal reference at 2.048 V:
 - 1. Set reference voltage to 2.048 V (CONTROL register):

	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
ſ	1	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0

2. Write new DAC value and update DAC output:

	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
ſ	0	1	0	0			Ne	w DAC c	utput val	ue			0	0	0	0

The DAC output is updated on the rising clock edge after D0 is sampled.

To output data consecutively using the same DAC configuration, it is not necessary to program the CONTROL register again.

linearity, offset, and gain error using single ended supplies

When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With a positive offset, the output voltage changes on the first code change. With a negative offset, the output voltage may not change with the first code, depending on the magnitude of the offset voltage.

The output amplifier attempts to drive the output to a negative voltage. However, because the most negative supply rail is ground, the output cannot drive below ground and clamps the output at 0 V.

The output voltage then remains at zero until the input code value produces a sufficient positive output voltage to overcome the negative offset voltage, resulting in the transfer function shown in Figure 15.

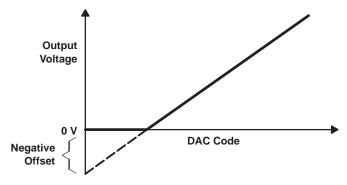


Figure 15. Effect of Negative Offset (Single Supply)

This offset error, not the linearity error, produces this breakpoint. The transfer function would have followed the dotted line if the output buffer could drive below the ground rail.

For a DAC, linearity is measured between zero-input code (all inputs 0) and full-scale code after offset and full scale are adjusted out or accounted for in some way. However, single supply operation does not allow for adjustment when the offset is negative due to the breakpoint in the transfer function. So the linearity is measured between full-scale code and the lowest code that produces a positive output voltage.

SLAS235B - JULY 1999 - REVISED APRIL 2004

APPLICATION INFORMATION

power-supply bypassing and ground management

Printed-circuit boards that use separate analog and digital ground planes offer the best system performance. Wire-wrap boards do not perform well and should not be used. The two ground planes should be connected together at the low-impedance power-supply source. The best ground connection may be achieved by connecting the DAC AGND terminal to the system analog ground plane, making sure that analog ground currents are well managed and there are negligible voltage drops across the ground plane.

A 0.1- μF ceramic-capacitor bypass should be connected between V_{DD} and AGND and mounted with short leads as close as possible to the device. Use of ferrite beads may further isolate the system analog supply from the digital power supply.

Figure 16 shows the ground plane layout and bypassing technique.

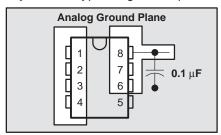


Figure 16. Power-Supply Bypassing

definitions of specifications and terminology

integral nonlinearity (INL)

The relative accuracy or integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale errors.

differential nonlinearity (DNL)

The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code.

zero-scale error (E_{7S})

Zero-scale error is defined as the deviation of the output from 0 V at a digital input value of 0.

gain error (E_G)

Gain error is the error in slope of the DAC transfer function.

total harmonic distortion (THD)

THD is the ratio of the rms value of the first six harmonic components to the value of the fundamental signal. The value for THD is expressed in decibels.

signal-to-noise ratio + distortion (S/N+D)

S/N+D is the ratio of the rms value of the output signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for S/N+D is expressed in decibels.

spurious free dynamic range (SFDR)

Spurious free dynamic range is the difference between the rms value of the output signal and the rms value of the largest spurious signal within a specified bandwidth. The value for SFDR is expressed in decibels.

www.ti.com

11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
TLV5624CD	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	5624C
TLV5624CD.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	5624C
TLV5624CDG4	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	5624C
TLV5624CDGK	Active	Production	VSSOP (DGK) 8	80 TUBE	Yes	NIPDAUAG	Level-1-260C-UNLIM	0 to 70	ADR
TLV5624CDGK.A	Active	Production	VSSOP (DGK) 8	80 TUBE	Yes	NIPDAUAG	Level-1-260C-UNLIM	0 to 70	ADR
TLV5624CDGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	0 to 70	ADR
TLV5624CDGKR.A	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	0 to 70	ADR
TLV5624ID	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	56241
TLV5624ID.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	56241
TLV5624IDGK	Active	Production	VSSOP (DGK) 8	80 TUBE	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ADS
TLV5624IDGK.A	Active	Production	VSSOP (DGK) 8	80 TUBE	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ADS
TLV5624IDGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ADS
TLV5624IDGKR.A	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ADS
TLV5624IDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	56241
TLV5624IDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	56241

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity A0

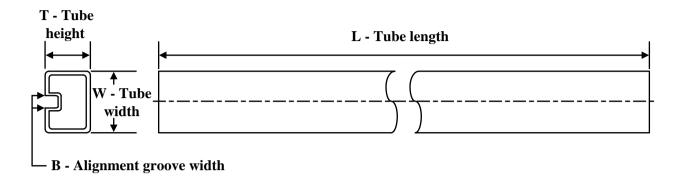
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV5624CDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV5624IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV5624IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 23-May-2025

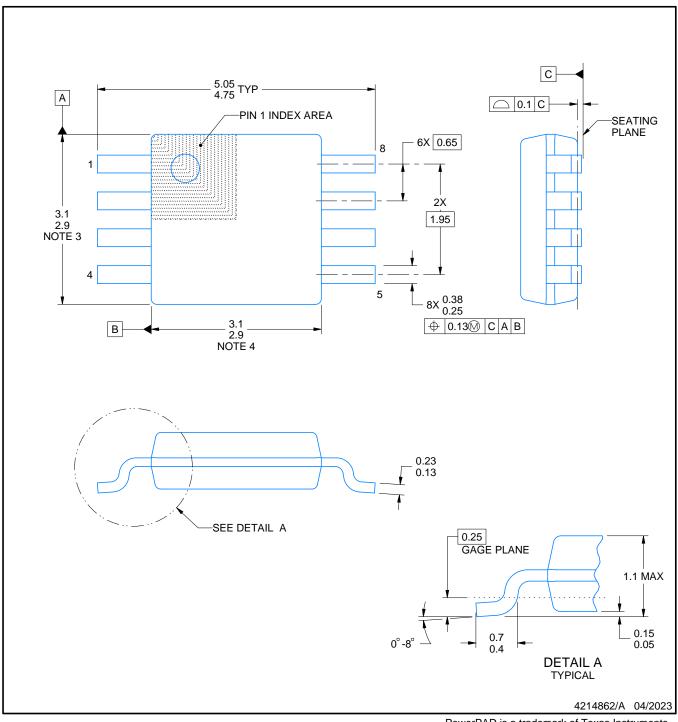

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV5624CDGKR	VSSOP	DGK	8	2500	350.0	350.0	43.0
TLV5624IDGKR	VSSOP	DGK	8	2500	350.0	350.0	43.0
TLV5624IDR	SOIC	D	8	2500	350.0	350.0	43.0

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE



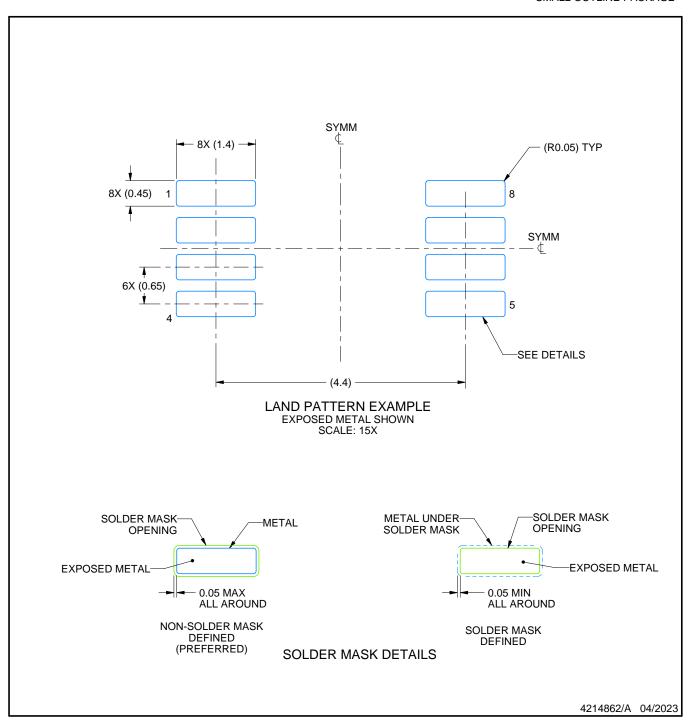
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
TLV5624CD	D	SOIC	8	75	505.46	6.76	3810	4
TLV5624CD.A	D	SOIC	8	75	505.46	6.76	3810	4
TLV5624CDG4	D	SOIC	8	75	505.46	6.76	3810	4
TLV5624CDGK	DGK	VSSOP	8	80	331.47	6.55	3000	2.88
TLV5624CDGK.A	DGK	VSSOP	8	80	331.47	6.55	3000	2.88
TLV5624ID	D	SOIC	8	75	505.46	6.76	3810	4
TLV5624ID.A	D	SOIC	8	75	505.46	6.76	3810	4
TLV5624IDGK	DGK	VSSOP	8	80	331.47	6.55	3000	2.88
TLV5624IDGK.A	DGK	VSSOP	8	80	331.47	6.55	3000	2.88

SMALL OUTLINE PACKAGE

NOTES:

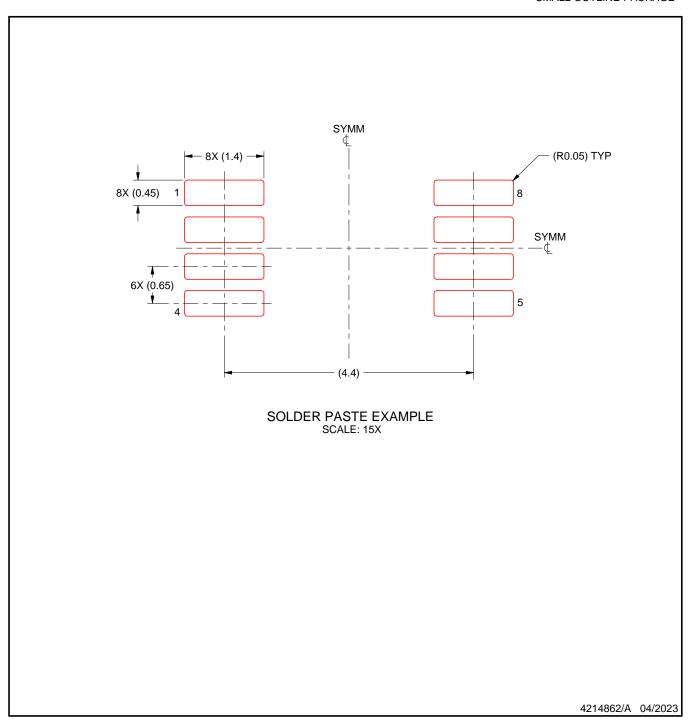
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025