TLC04/MF4A-50, TLC14/MF4A-100 BUTTERWORTH FOURTH-ORDER LOW-PASS SWITCHED-CAPACITOR FILTERS

SLAS021A - NOVEMBER 1986 - REVISED MARCH 1995

 Low Clock-to-Cutoff-Frequency Ratio Error TLC04/MF4A-50...±0.8% TLC14/MF4A-100...±1%

- Filter Cutoff Frequency Dependent Only on External-Clock Frequency Stability
- Minimum Filter Response Deviation Due to External Component Variations Over Time and Temperature
- Cutoff Frequency Range From 0.1 Hz to 30 kHz, V_{CC±} = ±2.5 V
- 5-V to 12-V Operation
- Self Clocking or TTL-Compatible and CMOS-Compatible Clock Inputs
- Low Supply-Voltage Sensitivity
- Designed to be Interchangeable With National MF4-50 and MF4-100

D OR P PACKAGE (TOP VIEW) CLKIN [1 8 FILTER IN CLKR [2 7 V_{CC+} LS [3 6 AGND V_{CC-} [4 5 FILTER OUT

description

The TLC04/MF4A-50 and TLC14/MF4A-100 are monolithic Butterworth low-pass switched-capacitor filters. Each is designed as a low-cost, easy-to-use device providing accurate fourth-order low-pass filter functions in circuit design configurations.

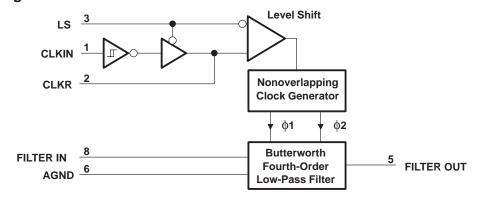
Each filter features cutoff frequency stability that is dependent only on the external-clock frequency stability. The cutoff frequency is clock tunable and has a clock-to-cutoff frequency ratio of 50:1 with less than $\pm 0.8\%$ error for the TLC04/MF4A-50 and a clock-to-cutoff frequency ratio of 100:1 with less than $\pm 1\%$ error for the TLC14/MF4A-100. The input clock features self-clocking or TTL- or CMOS-compatible options in conjunction with the level shift (LS) terminal.

The TLC04C/MF4A-50C and TLC14C/MF4A-100C are characterized for operation from 0°C to 70°C. The TLC04I/MF4A-50I and TLC14I/MF4A-100I are characterized for operation from -40°C to 85°C. The TLC04M/MF4A-50M and TLC14M/MF4A-100M are characterized over the full military temperature range of -55°C to 125°C.

AVAILABLE OPTIONS

	CLOCK-TO-CUTOFF	PACKAGE						
TA	FREQUENCY RATIO	SMALL OUTLINE (D)	PLASTIC DIP (P)					
0°C to 70°C	50:1 100:1	TLC04CD/MF4A-50CD TLC14CD/MF4A-100CD	TLC04CP/MF4A-50CP TLC14CP/MF4A-100CP					
-40°C to 85°C	50:1 100:1	TLC04ID/MF4A-50ID TLC14ID/MF4A-100ID	TLC04IP/MF4A-50IP TLC14IP/MF4A-100IP					
−55°C to 125°C	50:1 100:1		TLC04MP/MF4A-50MP TLC14MP/MF4A-100MP					

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TLC04CDR/MF4A-50CDR).


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TLC04/MF4A-50, TLC14/MF4A-100 **BUTTERWORTH FOURTH-ORDER LOW-PASS**

SLAS021A - NOVEMBER 1986 - REVISED MARCH 1995

functional block diagram

Terminal Functions

TERMINA	۸L	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
AGND	6	I	Analog ground. The noninverting input to the operational amplifiers of the Butterworth fourth-order low-pass filter.
CLKIN	1	I	Clock in. CLKIN is the clock input terminal for CMOS-compatible clock or self-clocking options. For either option, LS is at V_{CC-} . For self-clocking, a resistor is connected between CLKIN and CLKR and a capacitor is connected from CLKIN to ground.
CLKR	2	I	Clock R. CLKR is the clock input for a TTL-compatible clock. For a TTL clock, LS is connected to midsupply and CLKIN can be left open, but it is recommended that it be connected to either V _{CC+} or V _{CC-} .
FILTER IN	8	I	Filter input
FILTER OUT	5	0	Butterworth fourth-order low-pass filter output
LS	3	ı	Level shift. LS accommodates the various input clocking options. For CMOS-compatible clocks or self-clocking, LS is at V _{CC} and for TTL-compatible clocks, LS is at midsupply.
V _{CC+}	7	I	Positive supply voltage terminal
V _{CC} -	4	ı	Negative supply voltage terminal

TLC04/MF4A-50, TLC14/MF4A-100 BUTTERWORTH FOURTH-ORDER LOW-PASS SWITCHED-CAPACITOR FILTERS

SLAS021A - NOVEMBER 1986 - REVISED MARCH 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC+} (see Note 1)		±7\
	TLC04C/MF4A-50C, TLC14C/MF4A-100C 0°C	
	TLC04I/MF4A-50I, TLC14I/MF4A-100I40°C	to 85°C
	TLC04M/MF4A-50M, TLC14M/MF4A-100M55°C to	o 125°C
Storage temperature range, T _{sta}	65°C to	ວ 150°C
	case for 10 seconds	

NOTE 1: All voltage values are with respect to the AGND terminal.

recommended operating conditions

		TLC04/I	MF4A-50	TLC14/N	IF4A-100	UNIT
		MIN	MAX	MIN	MAX	UNII
Positive supply voltage, V _{CC+}		2.25	6	2.25	6	V
Negative supply voltage, V _{CC} -		-2.25	-6	-2.25	-6	V
High-level input voltage, V _{IH}		2		2		V
Low-level input voltage, V _{IL}			0.8		0.8	V
Clock fraguency f (and Note 3)	$V_{CC\pm} = \pm 2.5 \text{ V}$	5	1.5 x 10 ⁶	5	1.5 x 10 ⁶	Hz
Clock frequency, f _{clock} (see Note 2)	V _{CC±} = ±5 V	5	2x10 ⁶	5	2x10 ⁶	ПZ
Cutoff frequency, f _{CO} (see Note 3)		0.1	40 x 10 ³	0.05	20 x 10 ³	Hz
	TLC04C/MF4A-50C, TLC14C/MF4A-100C	0	70	0	70	
Operating free-air temperature, TA	TLC04I/MF4A-50I, TLC14I/MF4A-100I	-40	85	-40	85	°C
	TLC04M/MF4A-50M, TLC14M/MF4A-100M	-55	125	-55	125	

NOTES: 2. Above 250 kHz, the input clock duty cycle should be 50% to allow the operational amplifiers the maximum time to settle while processing analog samples.

electrical characteristics over recommended operating free-air temperature range, $V_{CC+} = 2.5 \text{ V}$, $V_{CC-} = -2.5 \text{ V}$, $f_{clock} \le 250 \text{ kHz}$ (unless otherwise noted)

filter section

	PARAMETER		TEST SOMBITIONS	TLC04/MF4A-50			TLC1	UNIT		
	PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNII	
Voo	Output offset voltage				25			50		mV
Von	Peak output voltage	V _{OM+}	R _I = 10 kΩ	1.8	2		1.8	2		V
VOM	reak output voltage	VOM-	K[= 10 K22	-1.25	-1.7		-1.25	-1.7		V
laa	Short-circuit output current	Source	$T_{\Delta} = 25^{\circ}C$, See Note 4		-0.5			-0.5		mA
los	Short-circuit output current	Sink	$T_A = 25$ °C, See Note 4		4			4		IIIA
ICC	Supply current		f _{Clock} = 250 kHz		1.2	2.25		1.2	2.25	mA

[‡] All typical values are at $T_A = 25$ °C.

NOTE 4: $I_{OS(source)}$ is measured by forcing the output to its maximum positive voltage and then shorting the output to the V_{CC-} terminal $I_{OS(sink)}$ is measured by forcing the output to its maximum negative voltage and then shorting the output to the V_{CC-} terminal.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{3.} The cutoff frequency is defined as the frequency where the response is 3.01 dB less than the dc gain of the filter.

TLC04/MF4A-50, TLC14/MF4A-100 BUTTERWORTH FOURTH-ORDER LOW-PASS SWITCHED-CAPACITOR FILTERS

SLAS021A - NOVEMBER 1986 - REVISED MARCH 1995

electrical characteristics over recommended operating free-air temperature range, V_{CC+} = 5 V, V_{CC-} = -5 V, $f_{clock} \le$ 250 kHz (unless otherwise noted)

filter section

	PARAMETER		TEST	TLC	TLC04/MF4A-50			TLC14/MF4A-100		
	PARAWETER	CONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
Voo	Output offset voltage				150			200		mV
V	Peak output voltage	V _{OM+}	P 10 kO	3.75	4.3		3.75	4.5		V
VOM	reak output voltage	V_{OM-}	$R_L = 10 \text{ k}\Omega$	-3.75	-4.1		-3.75	-4.1		V
la a	Chart aircuit autaut aurrant	Source	T _A = 25°C,		-2			-2		mA
los	Short-circuit output current	Sink	See Note 4		5			5		IIIA
Icc	Supply current	•	f _{clock} = 250 kHz		1.8	3		1.8	3	mA
ksvs	Supply voltage sensitivity (see	Figures 1 and 2)			-30			-30		dB

[†] All typical values are at $T_A = 25$ °C.

NOTE 4: $I_{OS(source)}$ is measured by forcing the output to its maximum positive voltage and then shorting the output to the V_{CC-} terminal. $I_{OS(sink)}$ is measured by forcing the output to its maximum negative voltage and then shorting the output to the V_{CC-} terminal.

clocking section

	PARAMETER	_	TEST (CONDITIONS	MIN	TYP	MAX	UNIT
\/ı .	Positive-going input threshold voltage		$V_{CC+} = 10 V$	V _{CC} -=0	6.1	7	8.9	V
VIT+	rositive-going input tilleshold voltage		$V_{CC+} = 5 V$,	VCC-=0	3.1	3.5	4.4	V
\/: -	Negative-going input threshold voltage	CLKIN	$V_{CC+} = 10 V$	VCC-=0	1.3	3	3.8	V
VIT-	Negative-going input threshold voltage	CLKIN	$V_{CC+} = 5 V$,	VCC-=0	0.6	1.5	1.9	V
٧,	Hysteresis voltage (V _{IT+} – V _{IT} _)]	$V_{CC+} = 10 V$	VCC-=0	2.3	4	7.6	V
V _{hys}	Trysteresis voltage (v + - v _)		$V_{CC+} = 5 V$,	VCC-=0	1.2	2	3.8	v
Va	High-level output voltage		V _{CC} = 10 V	I _O = -10 μA	9			V
VOH	Tilgit-level output voltage		V _{CC} = 5 V	10 = - 10 μΑ	4.5			
\/a.	Low-level output voltage]	V _{CC} = 10 V	Io - 10 !! A			1	V
VOL	Low-level output voltage		V _{CC} = 5 V	ΙΟ = 10 μΑ			0.5	V
	Input lookogo gurrent	CLKR	V _{CC} = 10 V	10 V LS at midsupply,			2	
	Input leakage current	CLKK	V _{CC} = 5 V	T _A = 25°C			2	μΑ
]	V _{CC} = 10 V	CLKR and CLKIN	-3	-7		A
	Output ourrent		V _{CC} = 5 V	shortened to V _{CC} -	-0.75	-2		mA
10	Output current		V _{CC} = 10 V	CLKR and CLKIN	3	7		
			V _{CC} = 5 V	shortened to V _{CC+}	0.75	2		mA

 $[\]uparrow$ All typical values are at T_A = 25°C.

operating characteristics over recommended operating free-air temperature range, $V_{CC+} = 2.5 \text{ V}$, $V_{CC-} = -2.5 \text{ V}$ (unless otherwise noted)

DARAMETER	TEOT COM	NITIONIO.	TLC	04/MF4 <i>A</i>	\-50	TLC	UNIT		
PARAMETER	TEST COND	MIN	TYP†	MAX	MIN	TYP†	MAX	UNII	
Maximum clock frequency, f _{max}	See Note 2		1.5	3		1.5	3		MHz
Clock-to-cutoff-frequency ratio (f _{clock} /f _{co})	$f_{Clock} \le 250 \text{ kHz},$	T _A = 25°C	49.27	50.07	50.87	99	100	101	Hz/Hz
Temperature coefficient of clock-to-cutoff frequency ratio	f _{clock} ≤ 250 kHz			±25			±25		ppm/°C
	$f_{CO} = 5 \text{ kHz},$	f = 6 kHz	-7.9	-7.57	-7.1				-ID
Frequency response above and below	$f_{clock} = 250 \text{ kHz},$ $T_A = 25^{\circ}\text{C}$	f = 4.5 kHz	-1.7	-1.46	-1.3				dB
cutoff frequency (see Note 5)	$f_{CO} = 5 \text{ kHz},$	f = 3 kHz				-7.9	-7.42	-7.1	dB
	$f_{Clock} = 250 \text{ kHz},$ $T_A = 25^{\circ}\text{C}$	f = 2.25 kHz				-1.7	-1.51	-1.3	uв
Dynamic range (see Note 6)	T _A = 25°C			80			78		dB
Stop-band frequency attentuation at 2 f _{CO}	f _{Clock} ≤ 250 kHz		24	25		24	25		dB
Voltage amplification, dc	$f_{Clock} \le 250 \text{ kHz},$	$RS \leq 2 \; k\Omega$	-0.15	0	0.15	-0.15	0	0.15	dB
Peak-to-peak clock feedthrough voltage	T _A = 25°C			5			5		mV

[†] All typical values are at $T_A = 25$ °C.

NOTES: 2. Above 250 kHz, the input clock duty cycle should be 50% to allow the operational amplifiers the maximum time to settle while processing analog samples.

- 5. The frequency responses at f are referenced to a dc gain of 0 dB.
- 6. The dynamic range is referenced to 1.06 V rms (1.5 V peak) where the wideband noise over a 30-kHz bandwidth is typically $106 \,\mu\text{V}$ rms for the TLC04/MF4A-50 and 135 μV rms for the TLC14/MF4A-100.

operating characteristics over recommended operating free-air temperature range, $V_{CC+} = 5 \text{ V}$, $V_{CC-} = -5 \text{ V}$ (unless otherwise noted)

DARAMETER	TEAT 00115	NITIONO	TLC	04/MF4 <i>A</i>	\-50	TLC	14/MF4A	-100	
PARAMETER	TEST CONL	TEST CONDITIONS			MAX	MIN	TYP†	MAX	UNIT
Maximum clock frequency, f _{max}	See Note 2		2	4		2	4		MHz
Clock-to-cutoff-frequency ratio (f _{clock} /f _{co})	f _{Clock} ≤ 250 kHz,	$T_A = 25^{\circ}C$	49.58	49.98	50.38	99	100	101	Hz/Hz
Temperature coefficient of clock-to-cutoff frequency ratio	f _{clock} ≤ 250 kHz			±15			±15		ppm/°C
	$f_{CO} = 5 \text{ kHz},$	f = 6 kHz	-7.9	-7.57	-7.1				
Frequency response above and below	$f_{Clock} = 250 \text{ kHz},$ $T_A = 25^{\circ}\text{C}$	f = 4.5 kHz	-1.7	-1.44	-1.3				dB
cutoff frequency (see Note 5)	$f_{CO} = 5 \text{ kHz},$	f = 3 kHz				-7.9	-7.42	-7.1	dB
	$f_{clock} = 250 \text{ kHz},$ $T_A = 25^{\circ}\text{C}$	f = 2.25 kHz				-1.7	-1.51	-1.3	UD
Dynamic range (see Note 6)	T _A = 25°C			86			84		dB
Stop-band frequency attentuation at 2 f _{CO}	f _{clock} ≤ 250 kHz		24	25		24	25		dB
Voltage amplification, dc	f _{Clock} ≤ 250 kHz,	$RS \le 2 k\Omega$	-0.15	0	0.15	-0.15	0	0.15	dB
Peak-to-peak clock feedthrough voltage	T _A = 25°C			7			7		mV

[†] All typical values are at $T_A = 25$ °C.

NOTES: 2. Above 250 kHz, the input clock duty cycle should be 50% to allow the operational amplifiers the maximum time to settle while processing analog samples.

- 5. The frequency responses at f are referenced to a dc gain of 0 dB.
- 6. The dynamic range is referenced to 2.82 V rms (4 V peak) where the wideband noise over a 30-kHz bandwidth is typically 142 μ V rms for the TLC04/MF4A-50 and 178 μ V rms for the TLC14/MF4A-100.

TYPICAL CHARACTERISTICS

FILTER OUTPUT vs $\label{eq:vcc} \text{SUPPLY VOLTAGE V}_{\text{CC+}} \text{ RIPPLE FREQUENCY}$

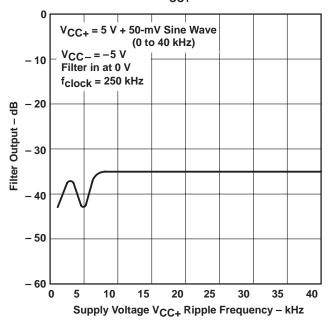
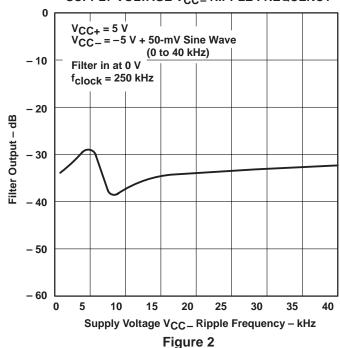



Figure 1

FILTER OUTPUT

vs SUPPLY VOLTAGE V_{CC}_ RIPPLE FREQUENCY

APPLICATION INFORMATION

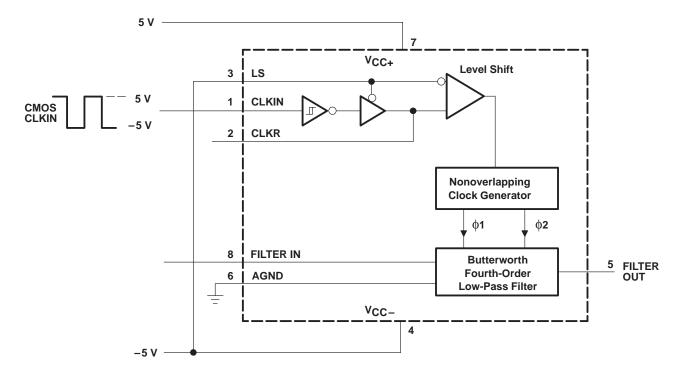


Figure 3. CMOS-Clock-Driven Dual-Supply Operation

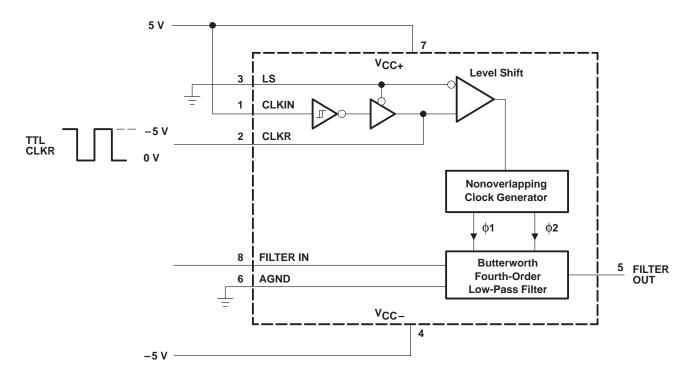


Figure 4. TTL-Clock-Driven Dual-Supply Operation

APPLICATION INFORMATION

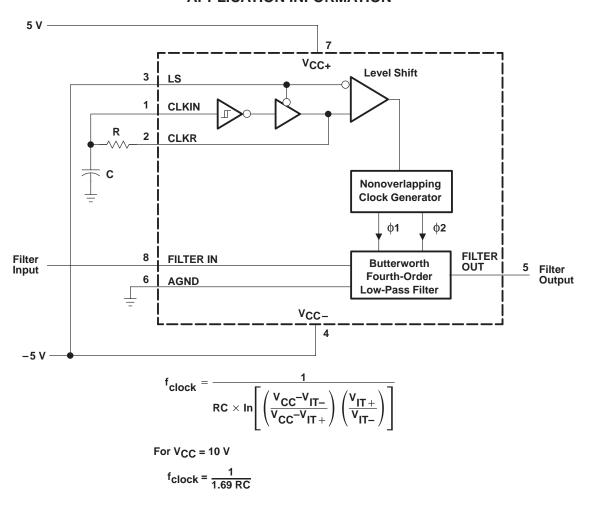
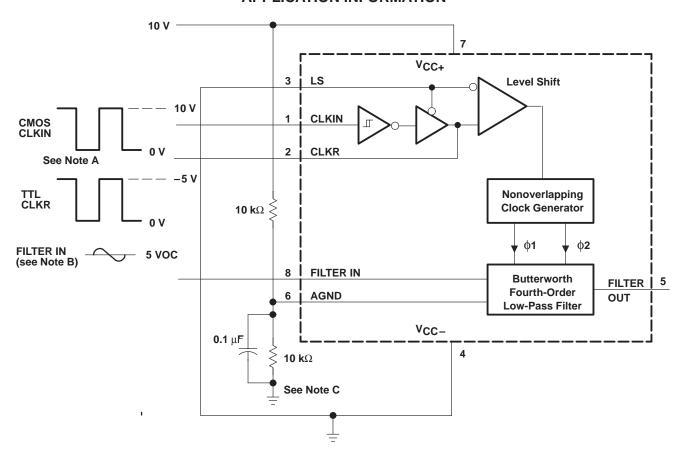
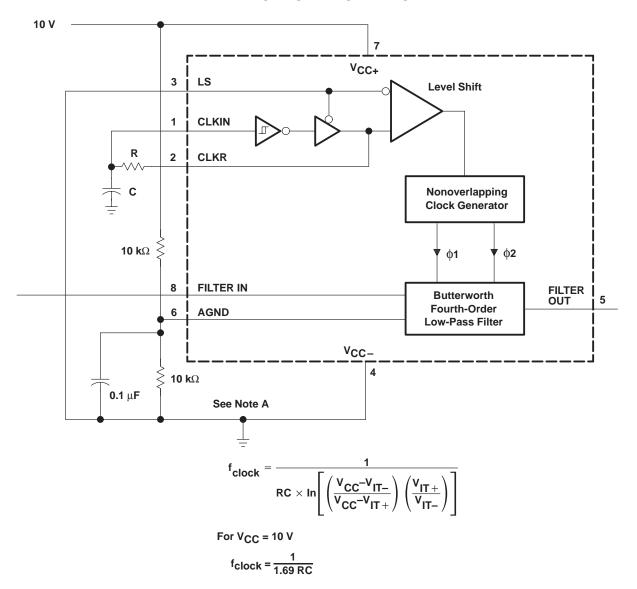



Figure 5. Self-Clocking Through Schmitt-Trigger Oscillator Dual-Supply Operation

APPLICATION INFORMATION



NOTES: A. The external clock used must be of CMOS level because the clock is input to a CMOS Schmitt trigger.

- B. The filter input signal should be dc-biased to midsupply or ac-coupled to the terminal.
- C. AGND must be biased to midsupply.

Figure 6. External-Clock-Driven Single-Supply Operation

APPLICATION INFORMATION

NOTE A: AGND must be biased to midsupply.

Figure 7. Self Clocking Through Schmitt-Trigger Oscillator Single-Supply Operation

APPLICATION INFORMATION

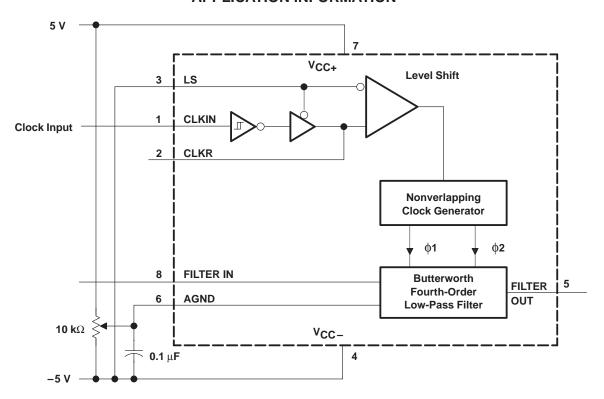


Figure 8. DC Offset Adjustment

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TLC04CD	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC04C
TLC04CD.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC04C
TLC04ID	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC04I
TLC04ID.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC04I
TLC04IDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC04I
TLC04IDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC04I
TLC14CD	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC14C
TLC14CD.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TLC14C
TLC14ID	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC14I
TLC14ID.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC14I
TLC14IDG4	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLC14I

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

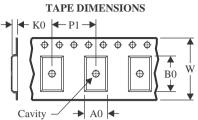
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TAPE AND REEL INFORMATION

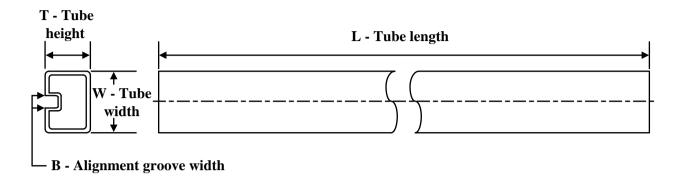
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC04IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 23-May-2025


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC04IDR	SOIC	D	8	2500	350.0	350.0	43.0

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
TLC04CD	D	SOIC	8	75	505.46	6.76	3810	4
TLC04CD.A	D	SOIC	8	75	505.46	6.76	3810	4
TLC04ID	D	SOIC	8	75	505.46	6.76	3810	4
TLC04ID.A	D	SOIC	8	75	505.46	6.76	3810	4
TLC14CD	D	SOIC	8	75	505.46	6.76	3810	4
TLC14CD.A	D	SOIC	8	75	505.46	6.76	3810	4
TLC14ID	D	SOIC	8	75	505.46	6.76	3810	4
TLC14ID.A	D	SOIC	8	75	505.46	6.76	3810	4
TLC14IDG4	D	SOIC	8	75	505.46	6.76	3810	4

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025