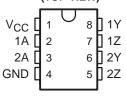

- Meets or Exceeds the Requirements of ANSI TIA/EIA-644 Standard
- Low-Voltage Differential Signaling With Typical Output Voltage of 350 mV and a 100- Ω Load
- Signaling Rates up to 155 Mbps
- Operates From a Single 3.3-V Supply
- Driver at High Impedance When Disabled or With V_{CC} = 0
- Low-Voltage TTL (LVTTL) Logic Input Levels
- Characterized For Operation From 0°C to 70°C


description

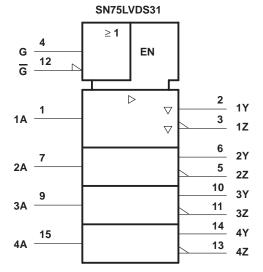
The SN75LVDS31 and SN75LVDS9638 are differential line drivers that implement the electrical characteristics of low-voltage differential signaling (LVDS). This signaling technique lowers the output voltage levels of 5-V differential standard levels (such as TIA/EIA-422B) to reduce

SN75LVDS31D (Marked as 75LVDS31) SN75LVDS31PW (Marked as DS31)

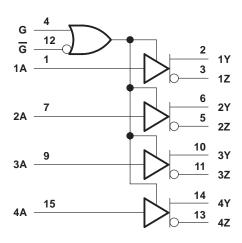
SN75LVDS9638D (Marked as DF638 or 7L9638) SN75LVDS9638DGK (Marked as AXK) (TOP VIEW)

the power, increase the switching speeds, and allow operation with a 3.3-V supply rail. Any of the four current-mode drivers will deliver a minimum differential output voltage magnitude of 247 mV into a $100-\Omega$ load when enabled.

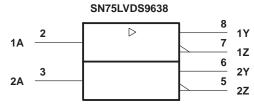
The intended application of these devices and signaling technique is for point-to-point baseband data transmission over controlled impedance media of approximately 100 Ω . The transmission media may be printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.


The SN75LVDS31 and SN75LVDS9638 are characterized for operation from 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

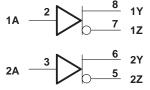


logic symbol†



† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

'LVDS31 logic diagram (positive logic)



logic symbol†

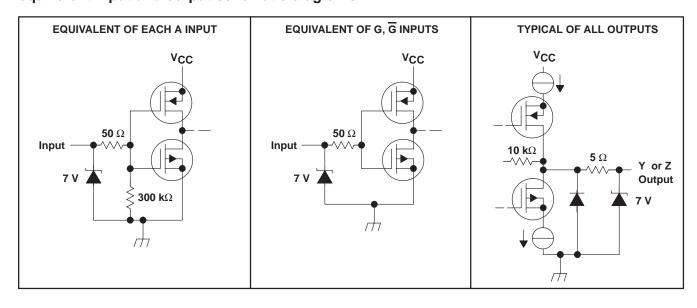
[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

'LVDS9638 logic diagram (positive logic)

Function Tables

SN75LVDS31

INPUT	ENA	BLES	OUTF	PUTS
Α	G	G	Υ	Z
Н	Н	Х	Н	L
L	Н	Х	L	Н
Н	Х	L	Н	L
L	Х	L	L	Н
Х	L	Н	Z	z
Open	Н	Х	L	Н
Open	X	L	L	Н


H = high level, L = low level, X = irrelevant, Z = high impedance (off)

SN75LVDS9638

INPUT	OUTPUTS					
Α	Υ	Z				
Н	Н	L				
L	L	Н				
OPEN	L	н				

H = high level, L = low level

equivalent input and output schematic diagrams

SN75LVDS31, SN75LVDS9638 HIGH-SPEED DIFFERENTIAL LINE DRIVERS

SLLS359C - JUNE 1999 - REVISED JUNE 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC} (see Note 1)	0.5 V to 4 V
Input voltage range: Inputs	0.5 V to V _{CC} + 0.5 V
Y or Z	
Continuous total power dissipation	See Dissipation Rating Table
Storage temperature range, T _{stg}	65°C to 150°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	

NOTE 1: All voltages, except differential I/O bus voltages, are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR‡ ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D (8)	725 mW	5.8 mW/°C	464 mW
D (16)	950 mW	7.6 mW/°C	608 mW
PW	774 mW	6.2 mW/°C	496 mW
DGK	425 mW	3.4 mW/°C	272 mW

[‡] This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	3	3.3	3.6	V
High-level input voltage, VIH	2			V
Low-level input voltage, V _{IL}			0.8	V
Operating free-air temperature, T _A	0		70	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONI	DITIONS		75LVDS: 5LVDS9		UNIT
					MIN	TYP [†]	MAX	
V _{OD}	Differential output voltage magnitud	de			247	340	454	mV
ΔV _{OD}	Change in differential output voltage between logic states	e magnitude	$R_L = 100 \Omega$,	See Figure 2	-50		50	mV
ΔVOC(SS)	Change in steady-state common-months between logic states	ode output voltage			1.125	1.2	1.375	V
Voc(ss)	Steady-state common-mode output	voltage	See Figure 3		-50		50	mV
VOC(PP)	Peak-to-peak common-mode outpu	t voltage]			50	150	mV
	Supply current		V _I = 0.8 V or 2 V, No load	Enabled,		9	20	mA
ICC		SN75LVDS31	V _I = 0.8 or 2 V, Enabled	$R_L = 100 \Omega$,		25	35	mA
			$V_I = 0$ or V_{CC} ,	Disabled		0.25	1	mA
	Supply current	SN75LVDS9638	V1 = 0.8 V or 2 V	No load		4.7	8	mA
		3N75LVD39030	$V_{I} = 0.8 \text{ V or } 2 \text{ V}$	$R_L = 100 \Omega$		9	13	mA
ΙΗ	High-level input current		V _{IH} = 2			4	20	μΑ
I _{IL}	Low-level input current		V _{IL} = 0.8 V			0.1	10	μΑ
la a	Chart aireasit autout aurrent		$V_{O(Y)}$ or $V_{O(Z)} =$	0		-4	-24	mA
los	Short-circuit output current		$V_{OD} = 0$				±12	mA
loz	High-impedance output current	·	V _O = 0 or 2.4 V				±1	μΑ
I _{O(OFF)}	Power-off output current		$V_{CC} = 0$,	V _O = 2.4 V			±1	μΑ
Cl	Input capacitance					3		pF

 $[\]overline{\dagger}$ All typical values are at T_A = 25°C and with V_{CC} = 3.3 V.

switching characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	SN ¹ SN7	UNIT		
			MIN	TYP	MAX	
^t pLH	Propagation delay time, low-to-high-level output				6	ns
^t pHL	Propagation delay time, high-to-low-level output				6	ns
t _r	Differential output signal rise time (20% to 80%)]		0.5	1.2	ns
tf	Differential output signal fall time (80% to 20%)	$R_L = 100 \Omega$, $C_L = 10 pF$, See Figure 2		0.5	1.2	ns
t _{sk(p)}	Pulse skew (tpHL - tpLH) [‡]	Occ 1 Iguilo 2			0.6	ns
t _{sk(o)}	Channel-to-channel output skew§				0.6	ns
t _{sk(pp)}	Part-to-part skew¶				1	ps
^t pZH	Propagation delay time, high-impedance-to-high-level output				25	ns
^t pZL	Propagation delay time, high-impedance-to-low-level output	See Figure 4			25	ns
^t pHZ	Propagation delay time, high-level-to-high-impedance output	See rigule 4			25	ns
^t pLZ	Propagation delay time, low-level-to-high-impedance output				25	ns

[†] All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3 \text{ V}$. ‡ $t_{sk(p)}$ is the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output. § $t_{sk(o)}$ is the magnitude of the time difference between the outputs of a single device with all of their inputs connected together.

^{\$\\ \}text{tsk(pp)}\$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, same temperature, and have identical packages and test circuits.

PARAMETER MEASUREMENT INFORMATION

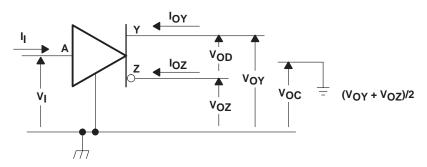
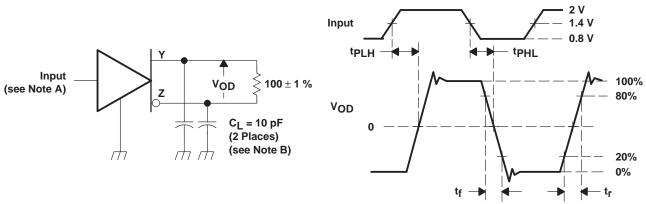
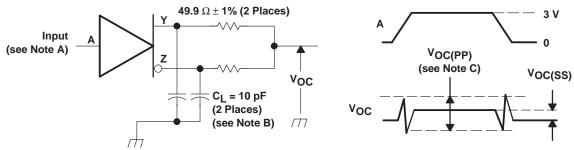
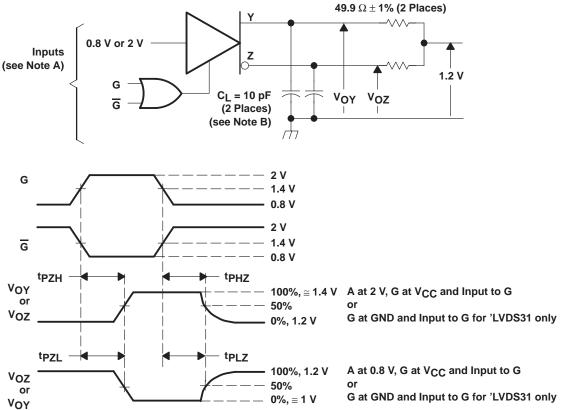




Figure 1. Voltage and Current Definitions

- NOTES: A. All input pulses are supplied by a generator having the following characteristics: t_f or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns.
 - B. C₁ includes instrumentation and fixture capacitance within 6 mm of the D.U.T.

Figure 2. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal



- NOTES: A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns.
 - B. C_L includes instrumentation and fixture capacitance within 6 mm of the D.U.T.
 - C. The measurement of VOC(PP) is made on test equipment with a -3 dB bandwidth of at least 300 MHz.

Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

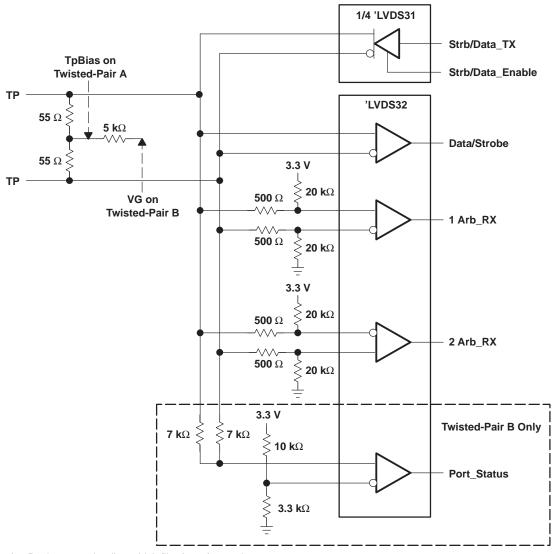
PARAMETER MEASUREMENT INFORMATION

NOTES: A. All input pulses are supplied by a generator having the following characteristics: t_f or $t_f < 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns.

B. C_L includes instrumentation and fixture capacitance within 6 mm of the D.U.T.

Figure 4. Enable and Disable Time Circuit and Definitions

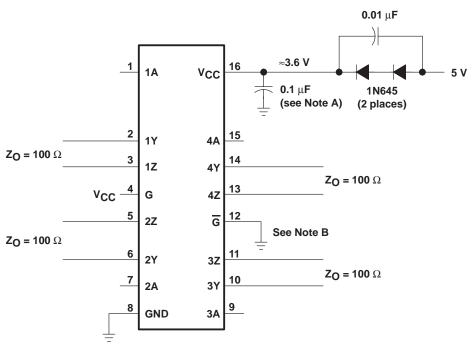
APPLICATIONS INFORMATION



- NOTES: A. Place a $0.1 \,\mu\text{F}$ and a $0.001 \,\mu\text{F}$ Z5U ceramic, mica or polystyrene dielectric, 0805 size, chip capacitor between V_{CC} and the ground plane. The capacitors should be located as close as possible to the device terminals.
 - B. Unused enable inputs should be tied to $V_{\hbox{\scriptsize CC}}$ or GND as appropriate.

Figure 5. Typical Application Circuit Schematic

APPLICATIONS INFORMATION



NOTES: A. Resistors are leadless thick-film (0603) 5% tolerance.

- B. Decoupling capacitance is not shown but recommended.
- C. V_{CC} is 3 V to 3.6 V.
- D. The differential output voltage of the 'LVDS31 can exceed that specified by IEEE1394.

Figure 6. 100 Mbps IEEE1394 Transceiver

APPLICATIONS INFORMATION

NOTE A: Place a 0.1 µF Z5U ceramic, mica or polystyrene dielectric, 0805 size, chip capacitor between V_{CC} and the ground plane. The capacitor should be located as close as possible to the device terminals.

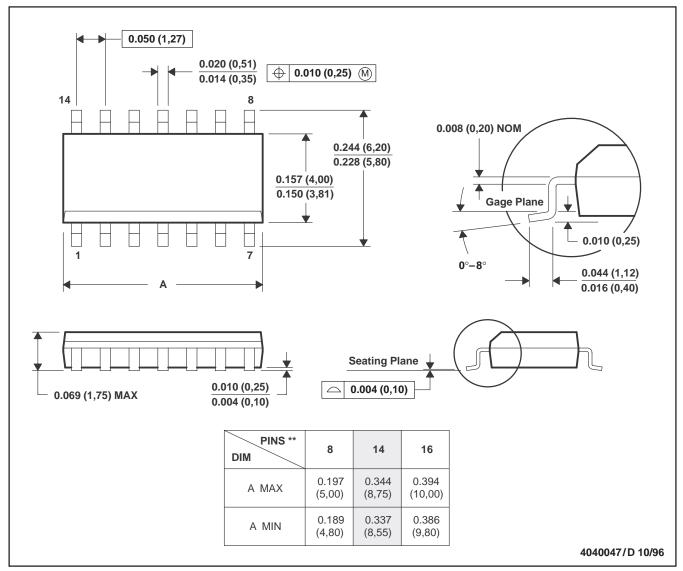
Figure 7. Operation With a 5-V Supply

related information

IBIS modeling is available for this device. Please contact the local TI sales office or the TI Web site at www.ti.com for more information.

For more application guidelines, please see the following documents:

- Low-Voltage Differential Signalling Design Notes (TI literature number SLLA014)
- Interface Circuits for TIA/EIA-644 (LVDS) (TI literature number SLLA038)
- Reducing EMI With LVDS (TI literature number SLLA030)
- Slew Rate Control of LVDS Circuits (TI literature number SLLA034)
- Using an LVDS Receiver With RS-422 Data (TI literature number SLLA031)
- Evaluating the LVDS EVM (TI literature number SLLA033)



MECHANICAL INFORMATION

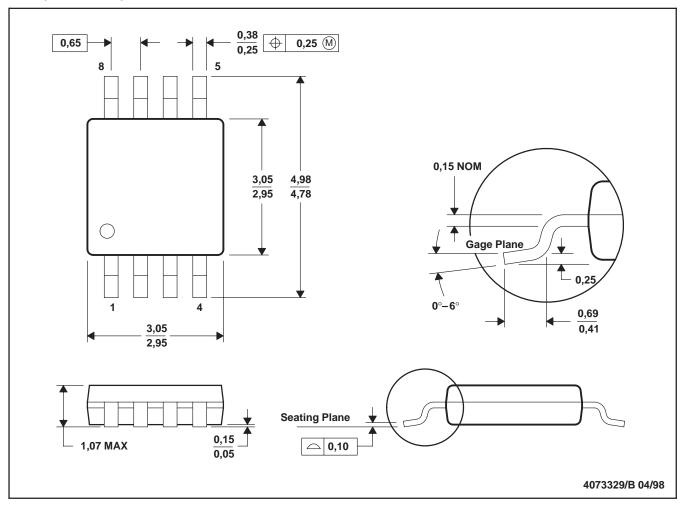
D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

MECHANICAL INFORMATION

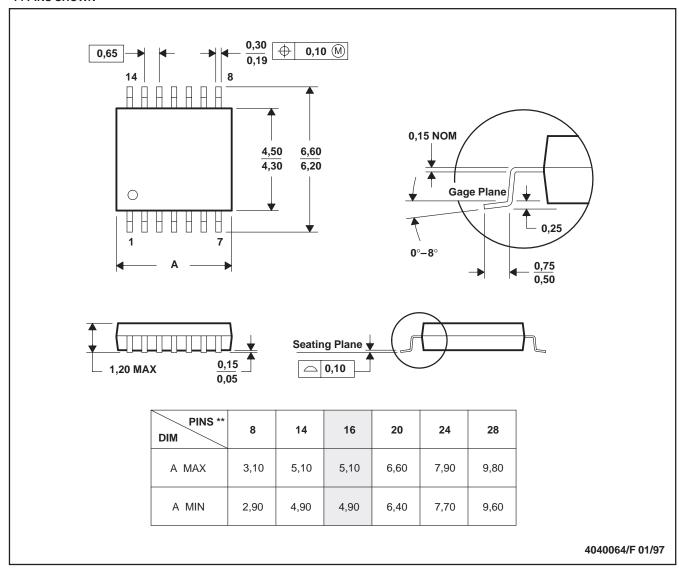
DGK (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion.


D. Falls within JEDEC MO-187

MECHANICAL INFORMATION

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
SN75LVDS31D	Active	Production	SOIC (D) 16	40 TUBE	Yes	(4) NIPDAU	Level-1-260C-UNLIM	0 to 70	75LVDS31
SN75LVDS31D.B	Active	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75LVDS31
SN75LVDS31DR	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75LVDS31
SN75LVDS31DR.B	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75LVDS31
SN75LVDS31PW	Active	Production	TSSOP (PW) 16	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	DS31
SN75LVDS31PW.B	Active	Production	TSSOP (PW) 16	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	DS31
SN75LVDS9638D	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	DF638
SN75LVDS9638D.B	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	DF638
SN75LVDS9638DGK	Active	Production	VSSOP (DGK) 8	80 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	AXK
SN75LVDS9638DGK.B	Active	Production	VSSOP (DGK) 8	80 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	AXK

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

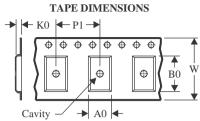
and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN75LVDS31:

Military: SN55LVDS31

NOTE: Qualified Version Definitions:

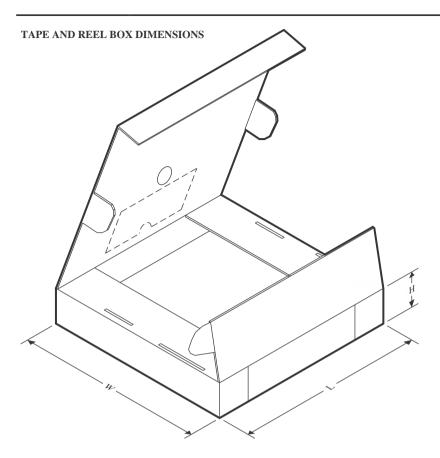

• Military - QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TAPE AND REEL INFORMATION

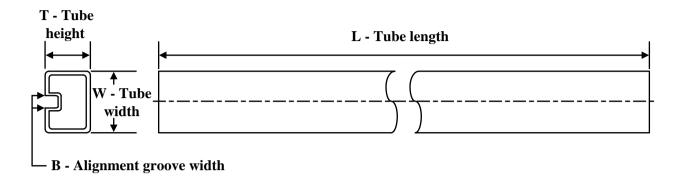
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75LVDS31DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

www.ti.com 23-May-2025


*All dimensions are nominal

Ì	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ı	SN75LVDS31DR	SOIC	D	16	2500	340.5	336.1	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN75LVDS31D	D	SOIC	16	40	507	8	3940	4.32
SN75LVDS31D.B	D	SOIC	16	40	507	8	3940	4.32
SN75LVDS31PW	PW	TSSOP	16	90	530	10.2	3600	3.5
SN75LVDS31PW.B	PW	TSSOP	16	90	530	10.2	3600	3.5
SN75LVDS9638D	D	SOIC	8	75	505.46	6.76	3810	4
SN75LVDS9638D.B	D	SOIC	8	75	505.46	6.76	3810	4

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025