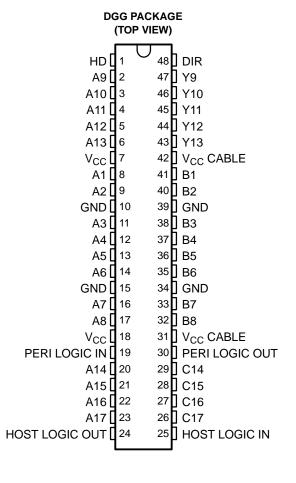
www.ti.com

## SN74LVCZ161284A 19-BIT IEEE STD 1284 TRANSLATION TRANSCEIVER WITH ERROR-FREE POWER UP


SCES358B-SEPTEMBER 2001-REVISED MAY 2005

#### **FEATURES**

- Power-On Reset (POR) Prevents Printer Errors When Printer Is Turned On, But No Valid Signal Is at Pins A9–A13
- Operates From 3 V to 3.6 V
- 1.4-kΩ Pullup Resistors Integrated on All Open-Drain Outputs Eliminate the Need for Discrete Resistors
- Designed for IEEE Std 1284-I (Level-1 Type) and IEEE Std 1284-II (Level-2 Type) Electrical Specifications
- Flow-Through Architecture Optimizes PCB Layout
- I<sub>off</sub> and Power-Up 3-State Support Hot Insertion
- Latch-Up Performance Exceeds 100 mA Per JESD 78. Class II
- ESD Protection Exceeds JESD 22
  - 4000-V Human-Body Model (A114-A)
  - 350-V Machine Model (A115-A)
  - 1500-V Charged-Device Model (C101)

### **DESCRIPTION/ORDERING INFORMATION**

The SN74LVCZ161284A is designed for 3-V to 3.6-V  $V_{CC}$  operation. This device provides asynchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.



This device has eight bidirectional bits; data can flow in the A-to-B direction when the direction-control (DIR) input is high and in the B-to-A direction when DIR is low. This device also has five drivers that drive the cable side and four receivers. The SN74LVCZ161284A has one receiver dedicated to the HOST LOGIC line and a driver to drive the PERI LOGIC line.

The output drive mode is determined by the high-drive (HD) control pin. When HD is high, the outputs are in a totem-pole configuration and in an open-drain configuration when HD is low. This meets the drive requirements as specified in the IEEE Std 1284-I (level-1 type) and IEEE Std 1284-II (level-2 type) parallel peripheral-interface specifications. Except for HOST LOGIC IN and peripheral logic out (PERI LOGIC OUT), all cable-side pins have a 1.4-k $\Omega$  integrated pullup resistor. The pullup resistor is switched off if the associated output driver is in the low state or if the output voltage is above  $V_{CC}$  CABLE. If  $V_{CC}$  CABLE is off, PERI LOGIC OUT is set to low.

The device has two supply voltages.  $V_{CC}$  is designed for 3-V to 3.6-V operation.  $V_{CC}$  CABLE supplies the inputs and output buffers of the cable side only and is designed for 3-V to 3.6-V and for 4.7-V to 5.5-V operation. Even when  $V_{CC}$  CABLE is 3 V to 3.6 V, the cable-side I/O pins are 5-V tolerant.

#### **ORDERING INFORMATION**

| T <sub>A</sub> | PACKAG      | E(1)          | ORDERABLE PART NUMBER | TOP-SIDE MARKING |
|----------------|-------------|---------------|-----------------------|------------------|
| 0°C to 70°C    | TSSOP - DGG | Tape and reel | SN74LVCZ161284AGR     | LVCZ161284A      |

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

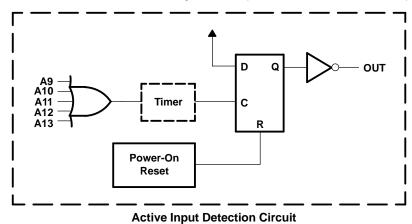
# SN74LVCZ161284A 19-BIT IEEE STD 1284 TRANSLATION TRANSCEIVER WITH ERROR-FREE POWER UP

SCES358B-SEPTEMBER 2001-REVISED MAY 2005



# **DESCRIPTION/ORDERING INFORMATION (CONTINUED)**

The power-on reset (POR) ensures that the Y outputs (Y9–Y13) stay in the high state after power on until an associated input (A9–A13) goes high. When an associated input goes high, all Y outputs are activated, and noninverting signals of the associated inputs are driven through Y outputs. This special feature prevents printer system errors caused by deasserting the BUSY signal in the cable at power on.


#### **FUNCTION TABLE**

| INP            | JTS | OUTDUT     | MODE                                                                                      |
|----------------|-----|------------|-------------------------------------------------------------------------------------------|
| DIR            | HD  | OUTPUT     | MODE                                                                                      |
| Open drain     |     | Open drain | A9-A13 to Y9-Y13 and PERI LOGIC IN to PERI LOGIC OUT                                      |
| L              | L   | Totem pole | B1-B8 to A1-A8 and C14-C17 to A14-A17                                                     |
| L              | Н   | Totem pole | B1-B8 to A1-A8, A9-A13 to Y9-Y13, PERI LOGIC IN to PERI LOGIC OUT, and C14-C17 to A14-A17 |
| ы              |     | Open drain | A1-A8 to B1-B8, A9-A13 to Y9-Y13, and PERI LOGIC IN to PERI LOGIC OUT                     |
| H L Totem pole |     | Totem pole | C14-C17 to A14-A17                                                                        |
| Н              | Н   | Totem pole | A1-A8 to B1-B8, A9-A13 to Y9-Y13, C14-C17 to A14-A17, and PERI LOGIC IN to PERI LOGIC OUT |



# **LOGIC DIAGRAM** V<sub>CC</sub> CABLE 42 See Note A 48 DIR See Note A HD See Note B A1-A8 B1-B8 A9-A13 -Y9-Y13 See Note C **PERI LOGIC IN** PERI LOGIC OUT C14-C17 A14-A17 HOST LOGIC IN HOST LOGIC OUT

- NOTES: A. The PMOS transistors prevent backdriving current from the signal pins to V<sub>CC</sub> CABLE when V<sub>CC</sub> CABLE is open or at GND. The PMOS transistor is turned off when the associated driver is in the low state.
  - B. The PMOS transistor prevents backdriving current from the signal pins to  $V_{CC}$  CABLE when  $V_{CC}$  CABLE is open or at GND.
  - C. Active input detection circuit forces Y9-Y13 to the high state after power on, until one of the A9-A13 pins goes high (see below).



3

# SN74LVCZ161284A 19-BIT IEEE STD 1284 TRANSLATION TRANSCEIVER WITH ERROR-FREE POWER UP

SCES358B-SEPTEMBER 2001-REVISED MAY 2005



### **Absolute Maximum Ratings**(1)

over operating free-air temperature range (unless otherwise noted)

|                       |                                                        |                                                        | MIN  | MAX                   | UNIT |
|-----------------------|--------------------------------------------------------|--------------------------------------------------------|------|-----------------------|------|
| V <sub>CC</sub> CABLE | Supply voltage range                                   |                                                        | -0.5 | 7                     | V    |
| V <sub>CC</sub>       | Supply voltage range                                   |                                                        | -0.5 | 4.6                   | V    |
| VI                    | lanut and autout voltage range                         | Cable side <sup>(2)(3)</sup>                           | -2   | 7                     | V    |
| V <sub>O</sub>        | Input and output voltage range                         | Peripheral side <sup>(2)</sup>                         | -0.5 | V <sub>CC</sub> + 0.5 | V    |
| I <sub>IK</sub>       | Input clamp current                                    | V <sub>I</sub> < 0                                     |      | -20                   | mA   |
| I <sub>OK</sub>       | Output clamp current                                   | V <sub>O</sub> < 0                                     |      | -50                   | mA   |
|                       | Continuous sutnut surrent                              | Except PERI LOGIC OUT                                  |      | ±50                   | A    |
| IO                    | Continuous output current                              | PERI LOGIC OUT                                         |      | ±100                  | mA   |
|                       | Continuous current through each V <sub>CC</sub> or GND |                                                        |      | ±200                  | mA   |
| I <sub>SK</sub>       | Output high sink current                               | V <sub>O</sub> = 5.5 V and V <sub>CC</sub> CABLE = 3 V |      | 65                    | mA   |
| $\theta_{JA}$         | Package thermal impedance <sup>(4)</sup>               |                                                        |      | 70                    | °C/W |
| T <sub>stg</sub>      | Storage temperature range                              |                                                        | -65  | 150                   | °C   |

<sup>(1)</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

# Recommended Operating Conditions<sup>(1)</sup>

|                       |                                                                 |                              | MIN  | MAX      | UNIT |  |
|-----------------------|-----------------------------------------------------------------|------------------------------|------|----------|------|--|
| V <sub>CC</sub> CABLE | Supply voltage for the cable side, $V_{CC}$ CABLE $\geq V_{CC}$ |                              | 3    | 5.5      | V    |  |
| V <sub>CC</sub>       | Supply voltage                                                  | 3                            | 3.6  | V        |      |  |
|                       |                                                                 | A, B, DIR, and HD            | 2    |          |      |  |
| V <sub>IH</sub>       | High-level input voltage                                        | C14-C17                      | 2.3  |          | V    |  |
|                       |                                                                 | HOST LOGIC IN                | 2.6  |          |      |  |
|                       |                                                                 | PERI LOGIC IN                | 2    |          |      |  |
| V <sub>IL</sub>       |                                                                 | A, B, DIR, and HD            |      | 0.8      |      |  |
|                       | C14–C17                                                         | C14-C17                      |      | 0.8      | V    |  |
|                       | Low-level input voltage                                         | HOST LOGIC IN                |      | 1.6      | V    |  |
|                       |                                                                 | PERI LOGIC IN                |      | 0.8      |      |  |
| .,                    | Peripheral side                                                 |                              | 0    | $V_{CC}$ |      |  |
| V <sub>I</sub>        | Input voltage                                                   | Cable side                   | 0    | 5.5      | V    |  |
| Vo                    | Open-drain output voltage                                       | HD low                       | 0    | 5.5      | V    |  |
|                       |                                                                 | HD high, B and Y outputs     |      | -14      |      |  |
| I <sub>OH</sub>       | High-level output current                                       | A outputs and HOST LOGIC OUT |      | -4       | mA   |  |
|                       |                                                                 | PERI LOGIC OUT               | -0.5 |          | Í    |  |
|                       |                                                                 | B and Y outputs              |      | 14       |      |  |
| I <sub>OL</sub>       | Low-level output current                                        | A outputs and HOST LOGIC OUT |      | 4        | mA   |  |
|                       |                                                                 | PERI LOGIC OUT               |      | 84       |      |  |
| T <sub>A</sub>        | Operating free-air temperature                                  |                              | 0    | 70       | °C   |  |

<sup>(1)</sup> All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

<sup>(3)</sup> The ac input voltage pulse duration is limited to 40 ns if the amplitude is greater than -0.5 V.

<sup>(4)</sup> The package thermal impedance is calculated in accordance with JESD 51-7.

# SN74LVCZ161284A 19-BIT IEEE STD 1284 TRANSLATION TRANSCEIVER WITH ERROR-FREE POWER UP

SCES358B-SEPTEMBER 2001-REVISED MAY 2005

### **Electrical Characteristics**

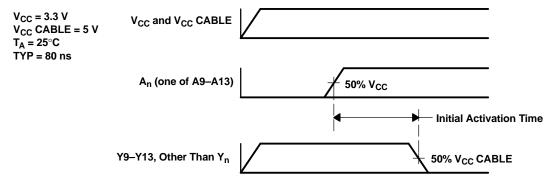
over recommended operating free-air temperature range,  $V_{CC}$  CABLE = 5 V (unless otherwise noted)

|                                                    | PARAMETER                                              | TEST CONDITIONS                                | V <sub>cc</sub>           | MIN TYP(1) | MAX  | UNIT |
|----------------------------------------------------|--------------------------------------------------------|------------------------------------------------|---------------------------|------------|------|------|
| $\Delta V_t$                                       | All inputs except C inputs and HOST LOGIC IN           |                                                |                           | 0.4        |      |      |
| Hysteresis<br>(V <sub>T+</sub> – V <sub>T-</sub> ) | HOST LOGIC IN                                          |                                                | 3.3 V                     | 0.2        |      | V    |
| ( V   + V   -)                                     | C inputs                                               |                                                |                           | 0.8        |      |      |
|                                                    | LID high D and V sytuate                               | 1                                              | 3 V                       | 2.23       |      |      |
|                                                    | HD high, B and Y outputs                               | $I_{OH} = -14 \text{ mA}$                      | 3.3 V <sup>(2)</sup>      | 2.4        |      |      |
| V                                                  | HD high, A outputs, and                                | $I_{OH} = -4 \text{ mA}$                       | 3 V                       | 2.4        |      | V    |
| V <sub>OH</sub>                                    | HOST LOGIC OUT                                         | $I_{OH} = -50 \mu A$                           | 3 V                       | 2.8        |      | V    |
|                                                    | PERI LOGIC OUT                                         | $I_{OH} = -0.5 \text{ mA}$                     | 3.15 V                    | 3.1        |      |      |
|                                                    | PERI LOGIC OUT                                         | I <sub>OH</sub> = -0.5 IIIA                    | 3.3 V <sup>(2)</sup>      | 4.5        |      |      |
|                                                    | B and Y outputs                                        | I <sub>OL</sub> = 14 mA                        |                           |            | 0.77 |      |
| V                                                  | A outputs and HOST LOGIC OUT                           | $I_{OL} = 50 \mu A$                            | 3 V                       |            | 0.2  | V    |
| V <sub>OL</sub>                                    | A outputs and HOST LOGIC OUT                           | $I_{OL} = 4 \text{ mA}$                        | 3 V                       |            | 0 4  | V    |
|                                                    | PERI LOGIC OUT                                         | I <sub>OL</sub> = 84 mA                        |                           |            | 0.9  |      |
|                                                    | C inputs                                               | $V_I = V_{CC}$                                 | 3.6 V <sup>(3)</sup>      |            | 50   | μΑ   |
| I <sub>I</sub>                                     | Ciriputs                                               | V <sub>I</sub> = GND (pullup resistors)        | 3.0 V (*)                 |            | -3.5 | mA   |
|                                                    | All inputs except B or C inputs                        | $V_I = V_{CC}$ or GND                          | 3.6 V                     |            | ±1   | μΑ   |
|                                                    | A1–A8                                                  | $V_O = V_{CC}$ or GND                          | 3.6 V                     |            | ±20  | μΑ   |
| 1                                                  | B outputs                                              | $V_O = V_{CC}$ CABLE                           | 3.6 V                     |            | 50   | μΑ   |
| l <sub>OZ</sub>                                    | Boulpuis                                               | $V_O = GND$ (pullup resistors)                 | 3.6 V <sup>(3)</sup>      |            | -3.5 | mA   |
|                                                    | Open-drain Y outputs                                   | V <sub>O</sub> = GND (pullup resistors)        | 3.6 V <sup>(3)</sup>      |            | -3.5 | mA   |
|                                                    | R and V outputs                                        | V <sub>O</sub> = 5.5 V                         | 0 to 1.5 V <sup>(4)</sup> |            | 350  | μΑ   |
| I <sub>OZPU</sub>                                  | B and Y outputs                                        | V <sub>O</sub> = GND                           | 0 10 1.5 0 1.5            |            | -5   | mA   |
| 1                                                  | R and V autouta                                        | V <sub>O</sub> = 5.5 V                         | 0 to 1.5 V <sup>(4)</sup> |            | 350  | μΑ   |
| I <sub>OZPD</sub>                                  | B and Y outputs                                        | V <sub>O</sub> = GND                           | 0 10 1.5 0 1.5            |            | -5   | mA   |
|                                                    | Power-down input leakage, except A1–A8 or B1–B8 inputs | $V_I$ or $V_O = 0$ to 3.6 V                    | 0(3)                      |            | 100  | 4    |
| I <sub>off</sub>                                   | Power-down output leakage,<br>B1–B8 and Y9–Y13 outputs | $V_1$ or $V_0 = 0$ to 5.5 V                    |                           | 100        |      | μΑ   |
|                                                    |                                                        | V 0ND (40 II )                                 | 3.6 V <sup>(5)</sup>      |            | 45   |      |
| I <sub>cc</sub>                                    |                                                        | $V_I = GND (12 \times pullup)$                 | 3.6 V                     | 70         |      | mA   |
|                                                    |                                                        | $V_I = V_{CC},$ $I_O = 0$                      | 3.6 V                     |            | 0.8  |      |
| C <sub>i</sub>                                     | All inputs                                             | V <sub>I</sub> = V <sub>CC</sub> or GND        | 3.3 V                     | 3          |      | pF   |
| C <sub>io</sub>                                    | I/O ports                                              | V <sub>O</sub> = V <sub>CC</sub> or GND        | 3.3 V                     | 7          |      | pF   |
| Z <sub>O</sub>                                     | Cable side                                             | I <sub>OH</sub> = -35 mA                       | 3.3 V                     | 45         |      | Ω    |
| R pullup                                           | Cable side                                             | V <sub>O</sub> = 0 V (in high-impedance state) | 3.3 V                     | 1.15       | 1.65 | kΩ   |

<sup>(1)</sup> Typical values are measured at  $V_{CC} = 3.3 \text{ V}$ ,  $V_{CC} \text{ CABLE} = 5 \text{ V}$ , and  $T_A = 25^{\circ}\text{C}$ . (2)  $V_{CC} \text{ CABLE} = 4.7 \text{ V}$  (3)  $V_{CC} \text{ CABLE} = 3.6 \text{ V}$  (4) Connect the  $V_{CC}$  pin and the  $V_{CC}$  CABLE pin. (5)  $V_{CC} \text{ CABLE} = 4.7 \text{ V}$ 



### **Switching Characteristics**

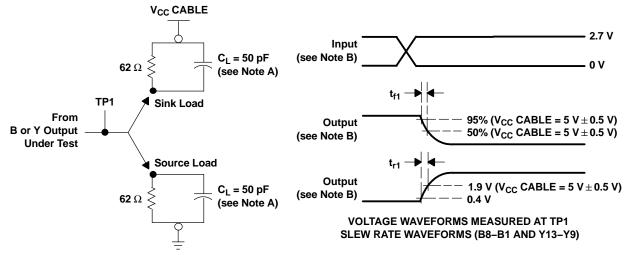

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2 and Figure 3)

| P                                 | ARAMETER                                          | FROM<br>(INPUT) | TO<br>(OUTPUT)     | MIN  | TYP <sup>(1)</sup> MAX | UNIT |
|-----------------------------------|---------------------------------------------------|-----------------|--------------------|------|------------------------|------|
| t <sub>PLH</sub>                  | Totom nole                                        | A1–A8           | B1–B8              | 1    | 22                     | 20   |
| t <sub>PHL</sub>                  | Totem pole                                        | A1-A8           | B I – B0           | 1    | 22                     | ns   |
| t <sub>PLH</sub>                  | Totem pole                                        | A9–A13          | Y9–Y13             | 1    | 20                     | ns   |
| t <sub>PHL</sub>                  | rotem pole                                        | A9-A13          | 19-113             | 1    | 20                     | 115  |
| t <sub>PLH</sub>                  | Totem pole                                        | B1–B8           | A1–A8              | 1    | 10                     | ns   |
| t <sub>PHL</sub>                  | rotem pole                                        | D I – D0        | A I–Ao             | 1    | 10                     | 115  |
| t <sub>PLH</sub>                  | Totem pole                                        | C14-C17         | A14-A17            | 1    | 11                     | ns   |
| t <sub>PHL</sub>                  | rotem pole                                        | 614–617         | A14-A17            | 1    | 11                     | 115  |
| t <sub>PLH</sub>                  | Totem pole                                        | PERI LOGIC IN   | PERI LOGIC OUT     | 1    | 13                     | ns   |
| t <sub>PHL</sub>                  | rotem pole                                        | PERI LOGIC IN   | PERI LOGIC OUT     | 1    | 13                     | 115  |
| t <sub>PLH</sub>                  | Totom polo                                        | HOST LOGIC IN   | HOST LOGIC OUT     | 1    | 13                     | ns   |
| t <sub>PHL</sub>                  | Totem pole                                        | HOST LOGIC IN   | HOST LOGIC OUT     | 1    | 13                     | 115  |
| t <sub>slew</sub>                 | Totem pole                                        | B1-B8 and Ys    | 9–Y13 outputs      | 0.05 | 0.4                    | V/ns |
| t <sub>PZH</sub>                  |                                                   | HD              | B1-B8, Y9-Y13, and | 1    | 20                     |      |
| t <sub>PHZ</sub>                  |                                                   | ПО              | PERI LOGIC OUT     | 1    | 15                     | ns   |
| t <sub>en</sub> -t <sub>dis</sub> |                                                   | DIR             | A1–A8              | 1    | 15                     | ns   |
| t <sub>PHZ</sub>                  |                                                   | DIR             | D1 D0              | 1    | 15                     |      |
|                                   |                                                   | DIK             | B1–B8              | 1    | 15                     | ns   |
| t <sub>r</sub> , t <sub>f</sub>   | t <sub>r</sub> , t <sub>f</sub> Open drain A1–A13 |                 | B1-B8 or Y9-Y13    | 1    | 120                    | ns   |
| t <sub>sk(0)</sub> (2)            |                                                   | A1-A8 or B1-B8  | B1-B8 or A1-A8     |      | 2.5 10                 | ns   |

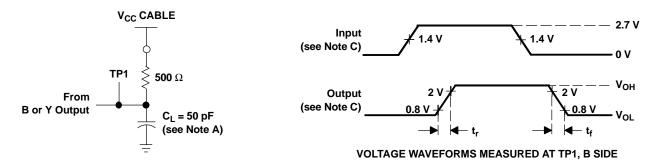
### **Operating Characteristics**

 $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$ 

|                 | PARAMETER                     | TEST C          | ONDITIONS     | TYP        | UNIT |    |
|-----------------|-------------------------------|-----------------|---------------|------------|------|----|
| C <sub>pd</sub> | Power dissipation capacitance | Outputs enabled | $C_{L} = 0$ , | f = 10 MHz | 45   | pF |




One of pins A9-A13 is switched as shown above, and the other four inputs are forced at low state.


Figure 1. Error-Free Circuit Timing

Typical values are measured at V<sub>CC</sub> = 3.3 V, V<sub>CC</sub> CABLE = 5 V, and T<sub>A</sub> = 25°C. Skew is measured at 1/2 (V<sub>OH</sub> + V<sub>OL</sub>) for signals switching in the same direction.

#### PARAMETER MEASUREMENT INFORMATION



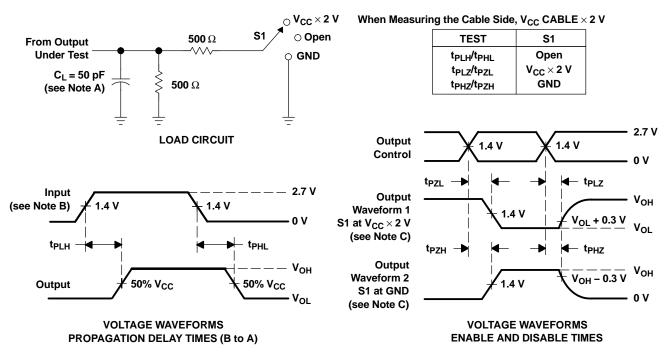
SLEW RATE A-TO-B OR A-TO-Y LOAD (TOTEM POLE)



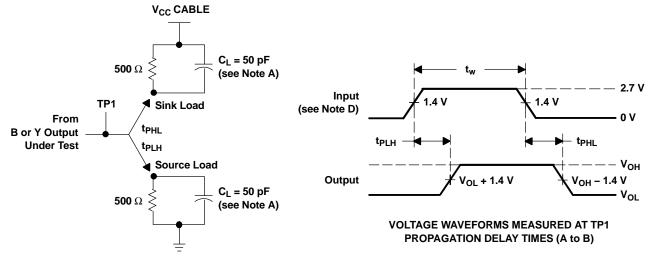
### A-TO-B LOAD OR A-TO-Y LOAD (OPEN DRAIN)

NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

B. When  $V_{CC}$  CABLE is 3.3 V  $\pm$  0.3 V, slew rate is measured between 0.4 V and 0.9 V for the rising edge and between 2.4 V and 1.9 V for the falling edge. When  $V_{CC}$  CABLE is 5 V  $\pm$  0.5 V, slew rate is measured between 0.4 V and 1.9 V for the rising edge and between 95%  $V_{CC}$  CABLE and 50%  $V_{CC}$  CABLE for the falling edge.


$$t_{\text{slew}} \, \text{fall} \, = \, V_{\text{CC}} \left( \frac{95\% \, - \, 50\%}{t_{\text{f1}}} \right) \qquad t_{\text{slew}} \, \text{rise} \, = \, \left( \frac{1.9 \, \text{V} - 0.4 \, \text{V}}{t_{\text{r1}}} \right)$$

- C. Input rise  $(t_{\rm f})$  and fall  $(t_{\rm f})$  times are 3 ns. Rise and fall times (open drain) are <120 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t<sub>PLZ</sub> and t<sub>PHZ</sub> are the same as t<sub>dis</sub>.
- F. t<sub>PZL</sub> and t<sub>PZH</sub> are the same as t<sub>en</sub>.
- G. t<sub>PLH</sub> and t<sub>PHL</sub> are the same as t<sub>pd</sub>.


Figure 2. Load Circuits and Voltage Waveforms



#### PARAMETER MEASUREMENT INFORMATION



**B-TO-A LOAD (TOTEM POLE)** 



A-TO-B LOAD OR A-TO-Y LOAD (TOTEM POLE)

NOTES: A.  $C_L$  includes probe and jig capacitance.

- B. Input rise and fall times are 3 ns.
- C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- D. Input rise and fall times are 3 ns. Pulse duration is 150 ns <  $t_w$  < 10  $\mu$ s.
- E. The outputs are measured one at a time, with one transition per measurement.
- F.  $t_{PLZ}$  and  $t_{PHZ}$  are the same as  $t_{dis}$ .
- G. t<sub>PZL</sub> and t<sub>PZH</sub> are the same as t<sub>en</sub>.
- H. t<sub>PLH</sub> and t<sub>PHL</sub> are the same as t<sub>pd</sub>.

Figure 3. Load Circuits and Voltage Waveforms

www.ti.com 11-Nov-2025

#### PACKAGING INFORMATION

| Orderable part number | Status | Material type | Package   Pins   | Package qty   Carrier | RoHS | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking (6) |
|-----------------------|--------|---------------|------------------|-----------------------|------|-------------------------------|----------------------------|--------------|------------------|
| SN74LVCZ161284AGR     | Active | Production    | TSSOP (DGG)   48 | 2000   LARGE T&R      | Yes  | NIPDAU                        | Level-1-260C-UNLIM         | 0 to 70      | LVCZ161284A      |
| SN74LVCZ161284AGR.A   | Active | Production    | TSSOP (DGG)   48 | 2000   LARGE T&R      | Yes  | NIPDAU                        | Level-1-260C-UNLIM         | 0 to 70      | LVCZ161284A      |

<sup>(1)</sup> Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

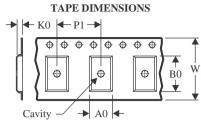
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

# **PACKAGE MATERIALS INFORMATION**

www.ti.com 24-Jul-2025

### TAPE AND REEL INFORMATION





| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

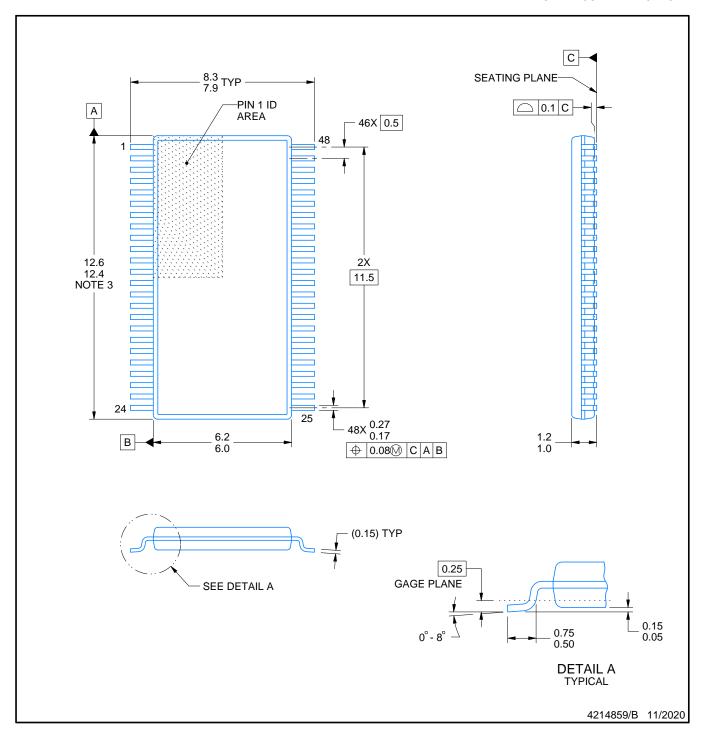


#### \*All dimensions are nominal

| Device            | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| SN74LVCZ161284AGR | TSSOP           | DGG                | 48 | 2000 | 330.0                    | 24.4                     | 8.6        | 13.0       | 1.8        | 12.0       | 24.0      | Q1               |

# **PACKAGE MATERIALS INFORMATION**

www.ti.com 24-Jul-2025




#### \*All dimensions are nominal

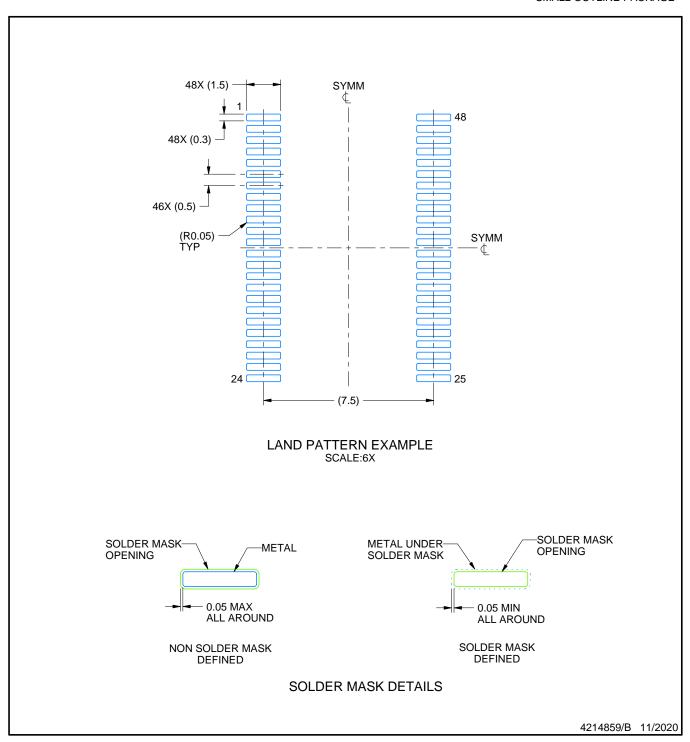
| Device            | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74LVCZ161284AGR | TSSOP        | DGG             | 48   | 2000 | 356.0       | 356.0      | 45.0        |



SMALL OUTLINE PACKAGE



### NOTES:

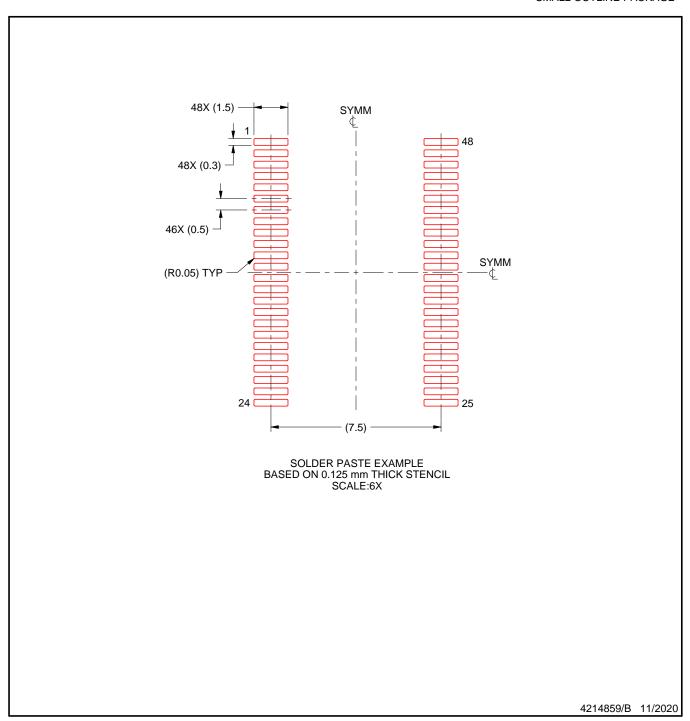

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

  2. This drawing is subject to change without notice.

  3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
  4. Reference JEDEC registration MO-153.



SMALL OUTLINE PACKAGE




NOTES: (continued)

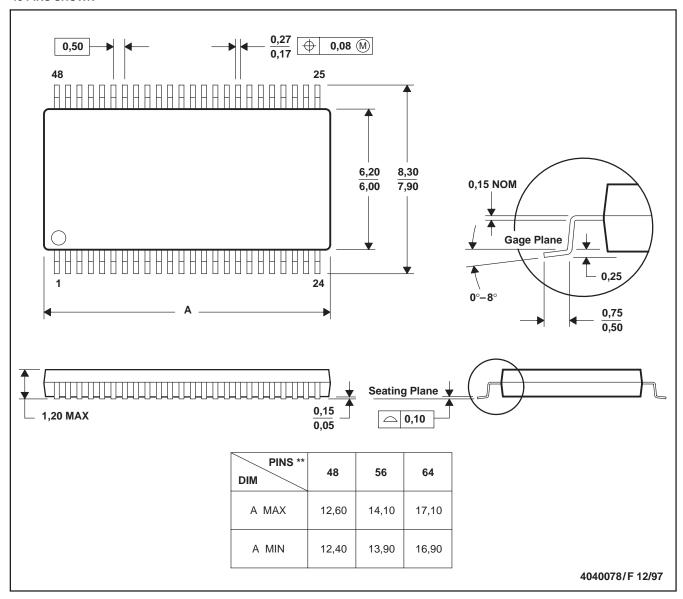
- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



SMALL OUTLINE PACKAGE



NOTES: (continued)


- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.



### DGG (R-PDSO-G\*\*)

### PLASTIC SMALL-OUTLINE PACKAGE

#### **48 PINS SHOWN**



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025