
www.ti.com

SCAS307J-MARCH 1993-REVISED FEBRUARY 2005

FEATURES

- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 6.7 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2 V at V_{CC} = 3.3 V, T_A = 25°C
- I_{off} Supports Partial-Power-Down Mode Operation
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DB, DGV, DW, OR PW PACKAGE (TOP VIEW)

DESCRIPTION/ORDERING INFORMATION

This 10-bit bus-interface D-type latch is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVC841A is designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The ten latches are transparent D-type latches. The device has noninverting data (D) inputs and provides true data at its outputs.

A buffered output-enable (\overline{OE}) input can be used to place the ten outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SOIC - DW	Tube of 25 SN74LVC841ADW		LVC841A
SOIC - D	SOIC - DW	Reel of 2000	SN74LVC841ADWR	LVC04TA
	SSOP - DB	Reel of 2000	SN74LVC841ADBR	LC841A
–40°C to 85°C		Tube of 60	SN74LVC841APW	
	TSSOP - PW	Reel of 2000	SN74LVC841APWR	LC841A
		Reel of 250	SN74LVC841APWT	
	TVSOP - DGV	Reel of 2000	SN74LVC841ADGVR	LC841A

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

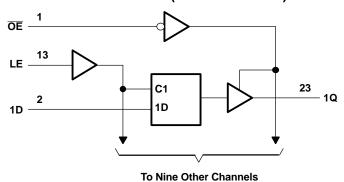
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCAS307J-MARCH 1993-REVISED FEBRUARY 2005

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

OE does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.


To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

FUNCTION TABLE

	INPUTS		OUTPUT
ŌĒ	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	X	Q_0
Н	X	X	Z

LOGIC DIAGRAM (POSITIVE LOGIC)

SCAS307J-MARCH 1993-REVISED FEBRUARY 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
V_{I}	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the high-im	pedance or power-off state(2)	-0.5	6.5	V
Vo	Voltage range applied to any output in the high or	low state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA
		DB package		63	
	Deckers thermal impedance (4)	DGV package		86	
θ_{JA}	Package thermal impedance (4)	DW package		46	°C/W
		PW package		88	
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT	
V	Complement	Operating	1.65	3.6	V	
V_{CC}	Supply voltage	Data retention only	1.5		V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
V_{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V	
		V _{CC} = 2.7 V to 3.6 V	2			
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		
V_{IL}	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V	
		V _{CC} = 2.7 V to 3.6 V		0.8		
V_{I}	Input voltage		0	5.5	V	
V	Output valtage	High or low state	0	V _{CC}	V	
Vo	Output voltage	3-state	0	5.5	v	
		V _{CC} = 1.65 V		-4		
	High lovel output outropt	$V_{CC} = 2.3 \text{ V}$		-8	A	
I _{OH}	High-level output current	$V_{CC} = 2.7 \text{ V}$		-12	mA	
		$V_{CC} = 3 V$		-24		
		V _{CC} = 1.65 V		4		
	Low lovel output ourrent	$V_{CC} = 2.3 \text{ V}$		8	mΛ	
l _{OL}	Low-level output current	$V_{CC} = 2.7 \text{ V}$		12	mA	
		V _{CC} = 3 V		24		
Δt/Δν	Input transition rise or fall rate			10	ns/V	
T _A	Operating free-air temperature		-40	85	°C	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the recommended operating conditions table.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

SN74LVC841A 10-BIT BUS-INTERFACE D-TYPE LATCH WITH 3-STATE OUTPUTS

SCAS307J-MARCH 1993-REVISED FEBRUARY 2005

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V _{cc}	MIN	TYP ⁽¹⁾ MAX	UNIT
	$I_{OH} = -100 \mu A$		1.65 V to 3.6 V	V _{CC} - 0.2		
	$I_{OH} = -4 \text{ mA}$		1.65 V	1.2		
\/	$I_{OH} = -8 \text{ mA}$		2.3 V	1.7		V
V _{OH}	1 12 m A		2.7 V	2.2		V
	$I_{OH} = -12 \text{ mA}$		3 V	2.4		
	$I_{OH} = -24 \text{ mA}$	3 V	2.2			
	I _{OL} = 100 μA		1.65 V to 3.6 V		0.2	
	I _{OL} = 4 mA		1.65 V		0.45	
V _{OL}	I _{OL} = 8 mA		2.3 V		0.7	V
	I _{OL} = 12 mA		2.7 V		0.4	
	I _{OL} = 24 mA		3 V		0.55	
I _I	V _I = 0 to 5.5 V		3.6 V		±5	μΑ
I _{off}	V_I or $V_O = 5.5 \text{ V}$		0		±10	μΑ
I _{OZ}	V _O = 0 to 5.5 V		3.6 V		±10	μΑ
	$V_I = V_{CC}$ or GND	1 0	2.6.1/		10	^
I _{cc}	$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{(2)}$	$I_{O} = 0$	3.6 V	10		μΑ
ΔI_{CC}	One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND		2.7 V to 3.6 V		500	μΑ
C _i	$V_I = V_{CC}$ or GND		3.3 V		5	pF
Co	$V_O = V_{CC}$ or GND		3.3 V		7	pF

All typical values are at V_{CC} = 3.3 V, T_A = 25°C. This applies in the disabled state only.

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V _{CC} = ± 0.1	V _{CC} = 1.8 V ± 0.15 V		V_{CC} = 2.5 V \pm 0.2 V		2.7 V	V _{CC} = 3.3 V ± 0.3 V		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _w	Pulse duration	(1)		(1)		3.3		3.3		ns
t _{su}	Setup time, data before LE↓	(1)		(1)		2.1		2.1		ns
t _h	Hold time, data after LE↓	(1)		(1)		1		1		ns

⁽¹⁾ This information was not available at the time of publication.

Switching Characteristics

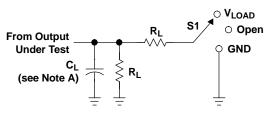
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER FROM (INPUT)		TO (OUTPUT)	V _{CC} = ± 0.2	V _{CC} = 1.8 V ± 0.2 V		V_{CC} = 2.5 V \pm 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V	
(INPOT)	(001F01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
	D	0	(1)	(1)	(1)	(1)		7.5	2.4	6.7	20
t _{pd}	LE	Q	(1)	(1)	(1)	(1)		8.6	2.7	7.6	ns
t _{en}	ŌĒ	Q	(1)	(1)	(1)	(1)		8.5	1.3	7.2	ns
t _{dis}	ŌĒ	Q	(1)	(1)	(1)	(1)		6.6	1.9	5.9	ns
t _{sk(o)}										1	ns

⁽¹⁾ This information was not available at the time of publication.

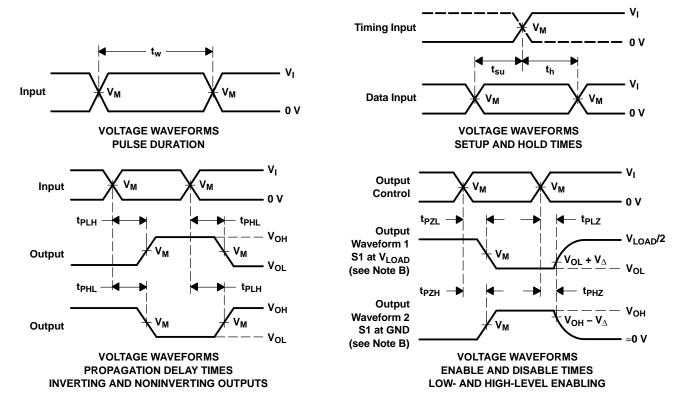
SCAS307J-MARCH 1993-REVISED FEBRUARY 2005

Operating Characteristics


 $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT	
_	Power dissipation capacitance Outputs e		f = 10 MHz	(1)	(1)	25	pF
C _{pd}	per latch	Outputs disabled	1 = 10 MHZ	(1)	(1)	6	ρг

⁽¹⁾ This information was not available at the time of publication.


PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V_{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

V	INF	PUTS	.,	V			.,
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	RL	$oldsymbol{V}_{\Delta}$
1.8 V \pm 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
SN74LVC841ADBR	Active	Production	SSOP (DB) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC841A
SN74LVC841ADBR.B	Active	Production	SSOP (DB) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC841A
SN74LVC841ADW	Active	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC841A
SN74LVC841ADW.B	Active	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC841A
SN74LVC841APW	Active	Production	TSSOP (PW) 24	60 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC841A
SN74LVC841APW.B	Active	Production	TSSOP (PW) 24	60 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC841A
SN74LVC841APWR	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC841A
SN74LVC841APWR.B	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC841A
SN74LVC841APWRG4	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC841A
SN74LVC841APWRG4.B	Active	Production	TSSOP (PW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC841A

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

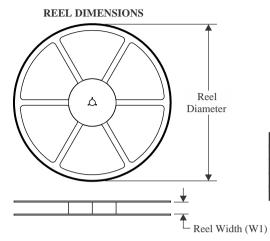
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

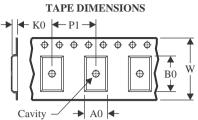
⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

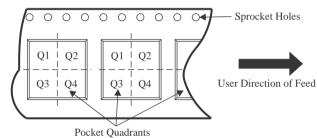
www.ti.com 11-Nov-2025


and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

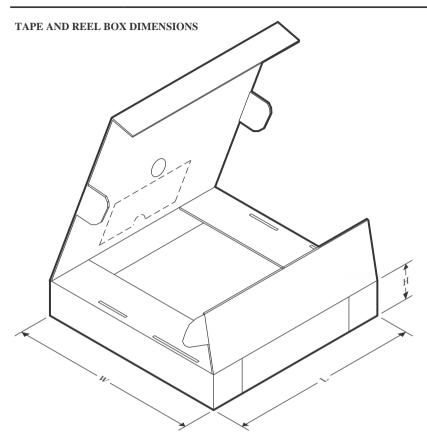

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Oct-2025


TAPE AND REEL INFORMATION

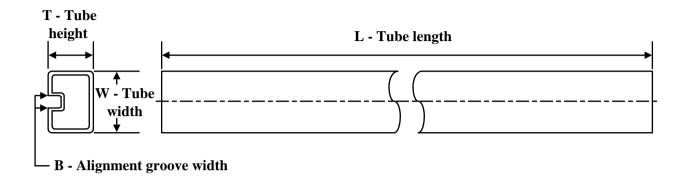
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC841ADBR	SSOP	DB	24	2000	330.0	16.4	8.2	8.8	2.5	12.0	16.0	Q1
SN74LVC841APWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
SN74LVC841APWRG4	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

www.ti.com 9-Oct-2025

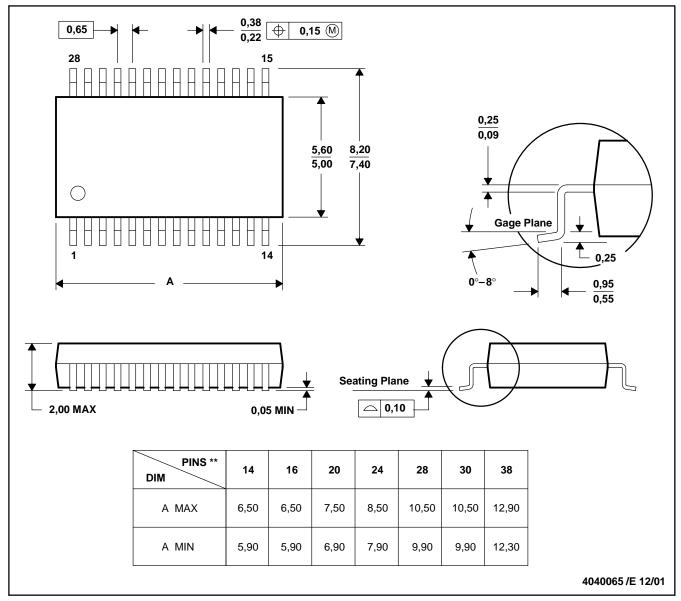

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74LVC841ADBR	SSOP	DB	24	2000	353.0	353.0	32.0	
SN74LVC841APWR	TSSOP	PW	24	2000	353.0	353.0	32.0	
SN74LVC841APWRG4	TSSOP	PW	24	2000	353.0	353.0	32.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Oct-2025

TUBE


*All dimensions are nominal

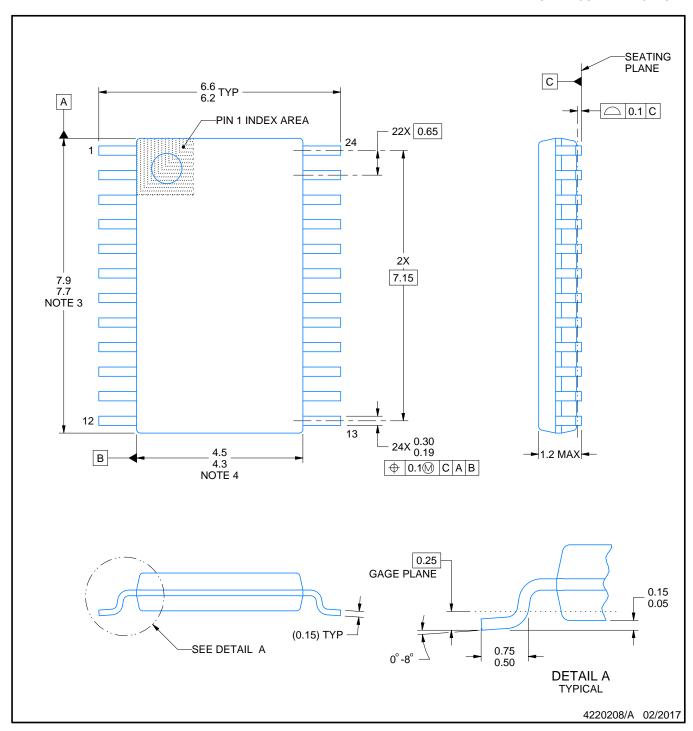
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74LVC841ADW	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74LVC841ADW.B	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74LVC841APW	PW	TSSOP	24	60	530	10.2	3600	3.5
SN74LVC841APW.B	PW	TSSOP	24	60	530	10.2	3600	3.5

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

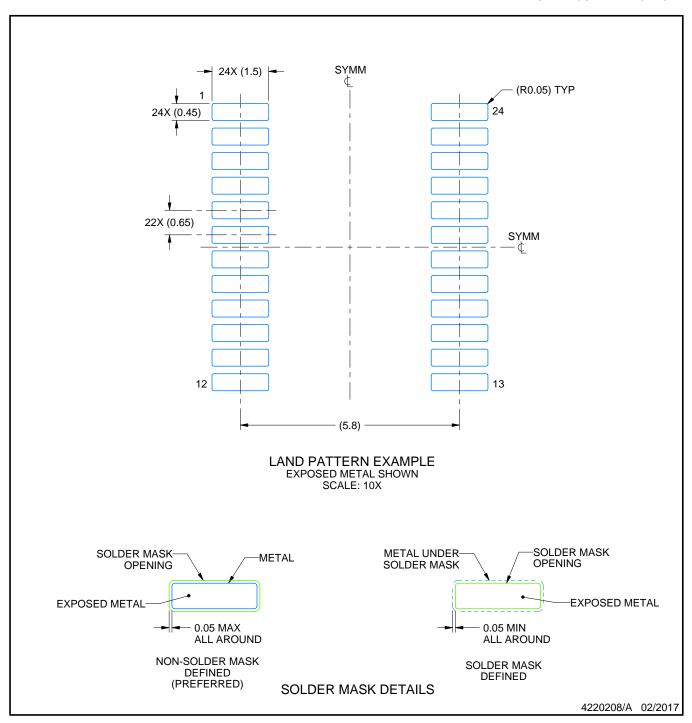

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

SMALL OUTLINE PACKAGE

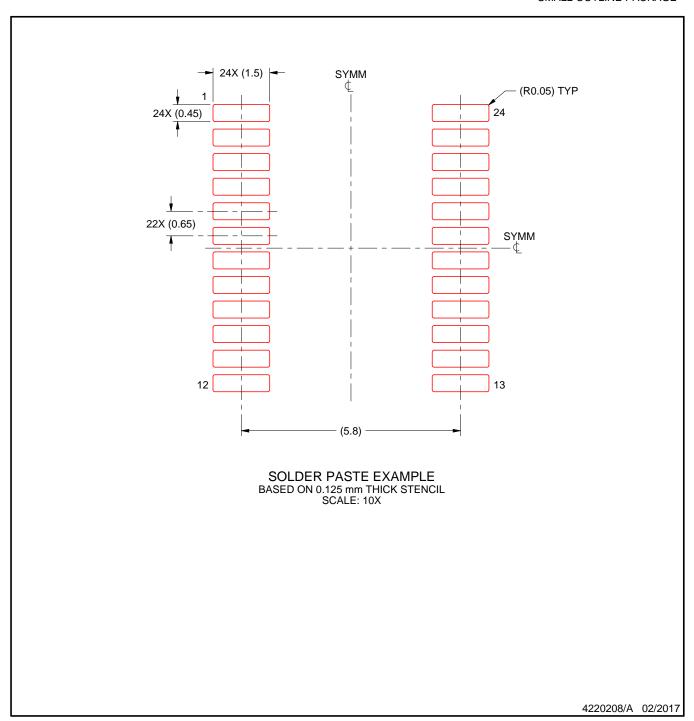
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

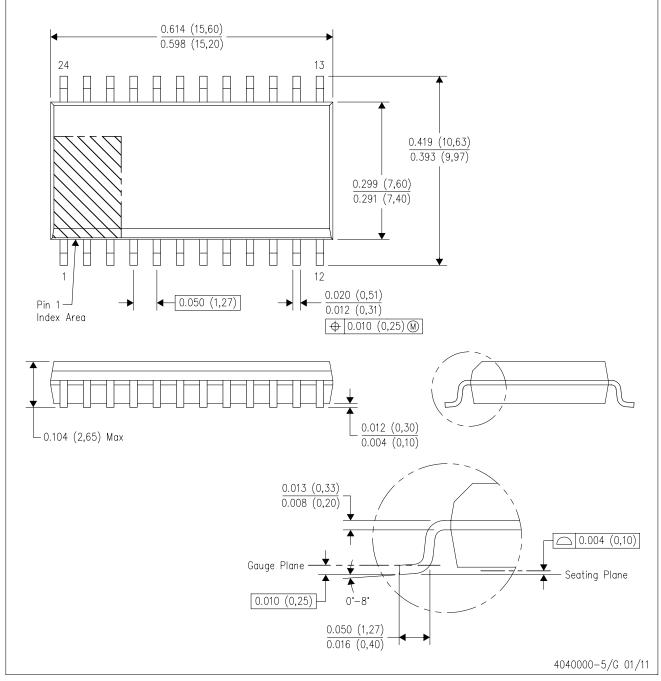
SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

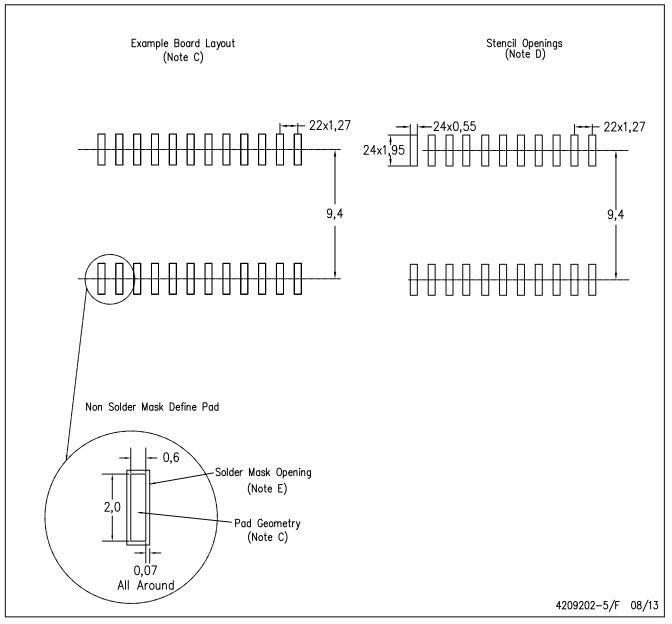
SMALL OUTLINE PACKAGE


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AD.

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025