

SN74LVC1G175

SCES560G -MARCH 2004-REVISED JUNE 2015

SN74LVC1G175 Single D-Type Flip-Flop With Asynchronous Clear

Features

- Available in the Texas Instruments NanoFree™ Package
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Supports Down Translation to V_{CC}
- Max t_{pd} of 4.3 ns at 3.3 V
- Low Power Consumption, 10-µA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- Ioff Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

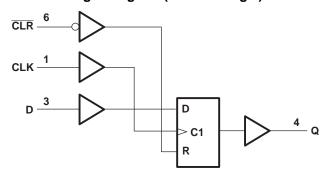
- TV/Set Top Box/Audio
- EPOS (Electronic Point-of-Sale)
- **Motor Drives**
- PC/Notebook
- Servers
- **Factory Automation and Control**
- Medical Healthcare and Fitness
- **Smart Grid**
- Telecom Infrastructure
- **Enterprise Switching**
- **Projectors**
- Storage

3 Description

This single D-type flip-flop is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC1G175 device has an asynchronous clear (CLR) input. When CLR is high, data from the input pin (D) is transferred to the output pin (Q) on the clock's (CLK) rising edge. When CLR is low, Q is forced into the low state, regardless of the clock edge or data on D.

NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.


This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
SN74LVC1G175DBV	SOT-23 (6)	2.90 mm × 1.60 mm		
SN74LVC1G175DCK	SC70 (6)	2.00 mm × 1.25 mm		
SN74LVC1G175DRY	SON (6)	1.45 mm × 1.00 mm		
SN74LVC1G175YZP	DSBGA (6)	1.41 mm × 0.91 mm		

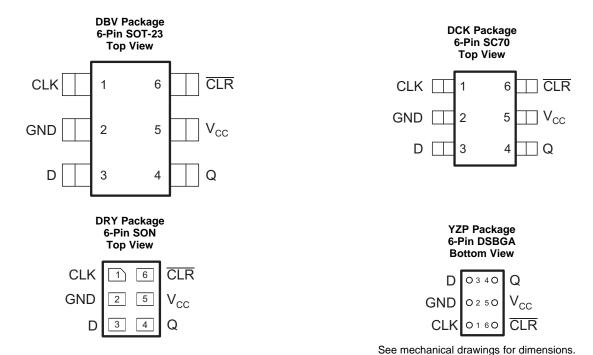
(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

Table of Contents

1	Features 1	8	Detailed Description	10
2	Applications 1		8.1 Overview	10
3	Description 1		8.2 Functional Block Diagram	10
4	Revision History2		8.3 Feature Description	10
5	Pin Configuration and Functions		8.4 Device Functional Modes	10
6	Specifications4	9	Application and Implementation	11
U	6.1 Absolute Maximum Ratings		9.1 Application Information	11
	6.2 ESD Ratings		9.2 Typical Application	
	6.3 Recommended Operating Conditions	10	Power Supply Recommendations	12
	6.4 Thermal Information	11	Layout	12
	6.5 Electrical Characteristics		11.1 Layout Guidelines	12
	6.6 Timing Requirements, –40°C to 85°C		11.2 Layout Example	
	6.7 Timing Requirements, –40°C to 125°C	12	Device and Documentation Support	
	6.8 Switching Characteristics, –40°C to 85°C		12.1 Documentation Support	
	6.9 Switching Characteristics, –40°C to 85°C6		12.2 Community Resources	
	6.10 Switching Characteristics, –40°C to 125°C		12.3 Trademarks	
	6.11 Operating Characteristics7		12.4 Electrostatic Discharge Caution	14
	6.12 Typical Characteristics		12.5 Glossary	14
7	Parameter Measurement Information 8	13	Mechanical, Packaging, and Orderable Information	14

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision F (December 2013) to Revision G				
•	Added Applications	1		
•	Added Device Information table	1		
•	Added ESD Ratingss table	4		
•	Added Thermal Information table	5		
•	Added Typical Characteristics.	7		
_				

CI	Changes from Revision E (June 2008) to Revision F	
•	Updated document to new TI data sheet format	······································
•	Deleted Ordering Information table.	······································
•	Updated Features.	······································

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION				
NAME	NO.	1/0	DESCRIPTION				
CLK	1	I	Clock Input				
CLR	6	I	Clear Data Input				
D	3	I	Data Input				
GND	2	_	Ground				
Q	4	0	Output				
V _{CC}	5	_	Power				

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT	
V_{CC}	Supply voltage	pply voltage				
V_{I}	Input voltage		-0.5	6.5	V	
Vo	Voltage applied to any outp	Voltage applied to any output in the high-impedance or power-off state ⁽²⁾				
Vo	Voltageapplied to any outp	ut in the high or low state (2)(3)	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA	
I _{OK}	Output clamp current	V _O < 0		-50	mA	
Io	Continuous output current			±50	mA	
	Continuous current through	Continuous current through V _{CC} or GND			mA	
T _{stg}	Storage temperature		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	2000	\/
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	1000	٧

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V	Supply voltage	Supply valters Operating		5.5	V
V _{CC}	Supply voltage	Data retention only	1.5		V
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}		
V	High lovel input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
V _{IH}	High-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	2		V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	0.7 × V _{CC}		
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	
V	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
V _{IL}		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		0.8	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		$0.3 \times V_{CC}$	
V_{I}	Input voltage		0	5.5	V
Vo	Output voltage		0	V_{CC}	V
		V _{CC} = 1.65 V		-4	
		V _{CC} = 2.3 V		-8	
I _{OH}	High-level output current	V 2.V		-16	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 4.5 V		-32	

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Recommended Operating Conditions (continued)

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
I _{OL}		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		8	
	Low-level output current	.ow-level output current		16	mA
	$V_{CC} = 3 \text{ V}$ $V_{CC} = 4.5 \text{ V}$		24		
		V _{CC} = 4.5 V		32	
		$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$		20	
Δt/Δν	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V
		$V_{CC} = 5 V \pm 0.5 V$		10	
T _A	Operating free-air temperature		-40	125	°C

6.4 Thermal Information

			SN74LV	C1G175		
THERMAL METRIC ⁽¹⁾		DBV (SOT-23)	DCK (SC70)	DRY (SON)	YZP (DSBGA)	UNIT
			6 PINS	6 PINS	6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	165	259	234	123	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS	-40°C to 85°C		-40°	-40°C to 125°C			
PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP ⁽¹⁾ M	XX MIN	TYP ⁽¹⁾	MAX	UNIT
	I _{OH} = -100 μA	1.65 V to 5.5 V	V _{CC} - 0.1		V _{CC} - 0.1			
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2		1.2			
N/	$I_{OH} = -8 \text{ mA}$	2.3 V	1.9		1.9			V
V _{OH}	$I_{OH} = -16 \text{ mA}$	3 V	2.4		2.4			V
	$I_{OH} = -24 \text{ mA}$	3 V	2.3		2.3			
	$I_{OH} = -32 \text{ mA}$	4.5 V	3.8		3.8			
	I _{OL} = 100 μA	1.65 V to 5.5 V		().1		0.1	
	I _{OL} = 4 mA	1.65 V		0.	45		0.45	
V	I _{OL} = 8 mA	2.3 V		(0.3		0.3	V
V _{OL}	I _{OL} = 16 mA	3 V		().4		0.4	V
	I _{OL} = 24 mA	3 V		0.	55		0.55	
	I _{OL} = 32 mA	4.5 V		0.	55		0.55	
I _I	$V_I = 5.5 \text{ V or GND}$	0 to 5.5 V			±1		±1	μΑ
I _{off}	V_I or $V_O = 5.5 \text{ V}$	0		±	10		±10	μΑ
I _{cc}	V _I = 5.5 V or GND, I _O = 0	1.65 V to 5.5 V			10		10	μΑ
ΔI _{CC}	One input at $V_{CC} - 0.6 V$, Other inputs at V_{CC} or GND	3 V to 5.5 V		5	00		500	μΑ
C _i	$V_I = V_{CC}$ or GND	3.3 V		3		3		pF

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

6.6 Timing Requirements, -40°C to 85°C

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

			<u> </u>		, , , , , , , , , , , , , , , , , , , ,							
					-40°C to 85°C							
			V _{CC} = 1.8 V V _{CC} = 2.5 V ± 0.15 V ± 0.2 V		V _{CC} = 3.3 V V _{CC} = ± 0.3 V ± 0.5		5 V 5 V	UNIT				
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency	Clock frequency			100		125		150		175	MHz
	Pulse duration	CLR	Low	5.6		3		2.8		2.5		
t _w		CLK	High or low	3.5		3		2.8		2.5		ns
			·	3		2.5		2		1.5		
t _{su} S	Setup time, before CLK↑	CLR in:	active	0		0		0.5		0.5		ns
t _h	Hold time, data after CLK↑			0		0		0.5		0.5		ns

6.7 Timing Requirements, -40°C to 125°C

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

							−40°C to	125°C				
				V _{CC} = 1 ± 0.1		V _{CC} = 2 ± 0.2		V _{CC} = 3 ± 0.3		V _{CC} = ± 0.5	5 V 5 V	UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency				100		125		150		175	MHz
	Pulse duration	CLR	Low	5.6		3		2.8		2.5		20
t _w	ruise duration	CLK	High or low	3.5		3		2.8		2.5		ns
	Setup time, before CLK↑	Data		3		2.5		2		1.5		20
t _{su}	CLR inactive		0.5		0.5		0.7		0.7		ns	
t _h	Hold time, data after CLK↑					0.5		0.7		0.7		ns

6.8 Switching Characteristics, -40°C to 85°C

over recommended operating free-air temperature range, C_L = 15 pF (unless otherwise noted) (see Figure 2)

			-40°C to 85°C								
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			100		125		150		175		MHz
	CLK	0	2.5	12.9	2	6.5	1.4	4.6	1	3	
T _{pd}	CLR	Q	2.5	12.4	2	6	1.2	4.3	1	3.2	ns

6.9 Switching Characteristics, -40°C to 85°C

over recommended operating free-air temperature range, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 3)

			-40°C to 85°C									
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
f _{max}			100		125		150		175		MHz	
	CLK	0	2.7	13.4	2.2	7.1	1.6	5.7	1.5	4		
^L pd	CLR	Q	2.7	12.9	2.2	7	1.5	5.8	1.3	4.1	ns	

6.10 Switching Characteristics, -40°C to 125°C

over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 3)

						–40°C to	125°C					
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
f _{max}			100		125		150		175		MHz	
	CLK	0	2.7	15.4	2.2	8.1	1.6	6.7	1.5	5		
t _{pd}	CLR	Q	2.7	14.9	2.2	8	1.5	6.8	1.3	5.1	ns	

6.11 Operating Characteristics

 $T_A = 25$ °C

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	$V_{CC} = 5 V$	UNIT	
		TEST CONDITIONS	TYP	TYP TYP		TYP	UNII	
C_{pd}	Power dissipation capacitance	f = 10 MHz	18	19	19	21	pF	

6.12 Typical Characteristics

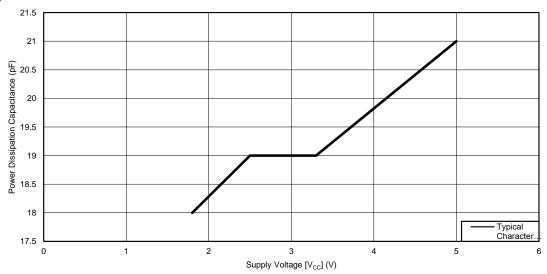
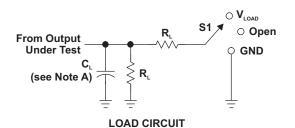
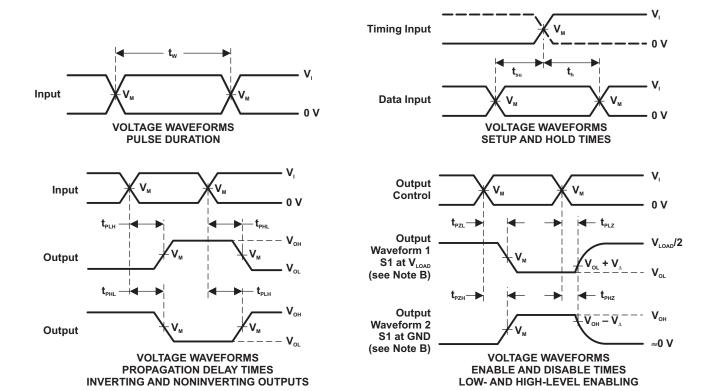



Figure 1. Voltage vs Capacitance

Copyright © 2004–2015, Texas Instruments Incorporated



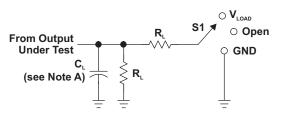
7 Parameter Measurement Information

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

,,	INI	INPUTS		V		-	.,
V _{cc}	V,	t,/t,	V _M	V _{LOAD}	C _L	R _⊾	V _A
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.15 V
$2.5~\textrm{V}~\pm~0.2~\textrm{V}$	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.15 V
$3.3~V~\pm~0.3~V$	3 V	≤2.5 ns	1.5 V	6 V	15 pF	1 M Ω	0.3 V
5 V ± 0.5 V	V _{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 M Ω	0.3 V

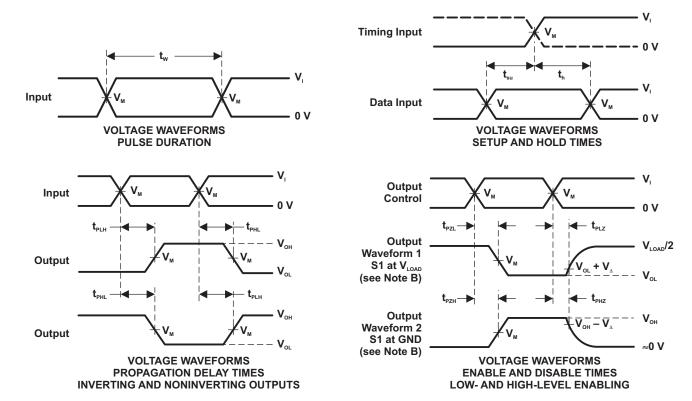
NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{\circ} = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. $t_{\mbox{\tiny PLZ}}$ and $t_{\mbox{\tiny PHZ}}$ are the same as $t_{\mbox{\tiny dis}}.$
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.


Figure 2. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

Copyright © 2004–2015, Texas Instruments Incorporated


Parameter Measurement Information (continued)

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

.,	INPUTS			V		-	.,
V _{cc}	V,	t,/t,	V _M	V _{LOAD}	C _L	$R_{\scriptscriptstyle L}$	V _A
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	1 k Ω	0.15 V
$2.5~V~\pm~0.2~V$	V_{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	500 Ω	0.15 V
$3.3~V\pm0.3~V$	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
5 V \pm 0.5 V	V_{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

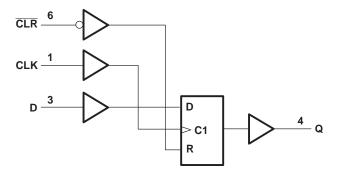
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

Product Folder Links: SN74LVC1G175

8 Detailed Description

8.1 Overview


This single D-type flip-flop is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC1G175 device has an asynchronous clear ($\overline{\text{CLR}}$) input. When $\overline{\text{CLR}}$ is high, data from the input pin (D) is transferred to the output pin (Q) on the clock's (CLK) rising edge. When $\overline{\text{CLR}}$ is low, Q is forced into the low state, regardless of the clock edge or data on D.

NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

8.2 Functional Block Diagram

8.3 Feature Description

The SN74LVC1G175 device has a wide operating V_{CC} range of 1.65 V to 5.5 V, which allows it to be used in a broad range of systems. The 5.5-V I/Os allow down translation and also allow voltages at the inputs when $V_{CC} = 0$.

8.4 Device Functional Modes

Table 1 lists the functional modes for SN74LVC1G175.

Table 1. Function Table

	INPUTS	OUTPUT	
CLR	CLK	D	Q
Н	1	L	L
Н	1	Н	Н
Н	H or L	Х	Q_0
L	Х	Х	L

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

Multiple SN74LVC1G175 devices can be used in tandem to create a shift register of arbitrary length. In this example, we use four SN74LVC1G175 devices to form a 4-bit serial shift register. By connecting all CLK inputs to a common clock pulse and tying each output of one device to the next, we can store and load 4-bit values on demand. We demonstrate loading the 4 bit value 1101 into memory by setting Serial Input Data to each desired memory bit, and by sending a clock pulse for each bit, we sequentially move all stored bits from left to right $(A \rightarrow B \rightarrow C \rightarrow D)$

9.2 Typical Application

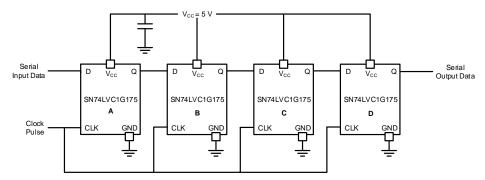


Figure 4. 4-Bit Serial Shift Register

Stored B **Serial Input Data** Stored A Stored C Stored D 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1

Table 2. Stored Data Values

9.2.1 Design Requirements

The SN74LVC1G175 device uses CMOS technology and has balanced output drive. Care must be taken to avoid bus contention because it can drive currents that would exceed maximum limits.

The SN74LVC1G175 allows storing digital signals with a digital control signal. All input signals should remain as close as possible to either 0 V or V_{CC} for optimal operation.

9.2.2 Detailed Design Procedure

- 1. Recommended input conditions:
 - For rise time and fall time specifications, see $\Delta t/\Delta v$ in the table.
 - For specified high and low levels, see V_{IH} and V_{IL} in the table.
 - Inputs and outputs are overvoltage tolerant and can therefore go as high as 5.5 V at any valid V_{CC}.
- 2. Recommended output conditions:
 - Load currents should not exceed ±50 mA.

- 3. Frequency selection criterion:
 - The effects of frequency upon the output current should be studied in Figure 5.
 - Added trace resistance and capacitance can reduce maximum frequency capability; follow the layout practices listed in the *Layout* section.

9.2.3 Application Curve

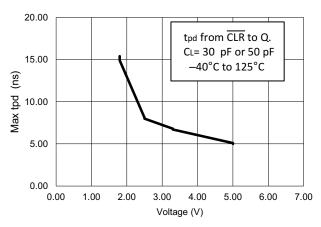


Figure 5. Max tpd vs Voltage of LVC Family

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating listed in the table.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F bypass capacitor is recommended. If multiple pins are labeled V_{CC} , then a 0.01- μ F or 0.022- μ F capacitor is recommended for each V_{CC} because the V_{CC} pins are tied together internally. For devices with dual supply pins operating at different voltages, for example V_{CC} and V_{DD} , a 0.1- μ F bypass capacitor is recommended for each supply pin. To reject different frequencies of noise, use multiple bypass capacitors in parallel. Capacitors with values of 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple-bit logic devices, inputs must never float.

In many cases, functions (or parts of functions) of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or when only 3 of the 4 buffer gates are used. Such input pins must not be left unconnected, because the undefined voltages at the outside connections result in undefined operational states. Figure 6 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally they are tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is generally acceptable to float outputs, unless the part is a transceiver. If the transceiver has an output enable pin, it disables the output section of the part when asserted, which does not disable the input section of the I/Os. Therefore, the I/Os cannot float when disabled.

11.2 Layout Example

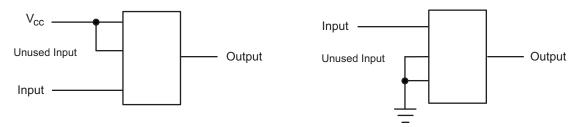


Figure 6. Layout Diagram

Copyright © 2004–2015, Texas Instruments Incorporated

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- Implications of Slow or Floating CMOS Inputs, SCBA004
- Selecting the Right Texas Instruments Signal Switch, SZZA030

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community T's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

NanoFree, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

www.ti.com

7-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
						(4)	(5)		
74LVC1G175DBVRE4	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C755, C75R)
74LVC1G175DBVRE4.B	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C755, C75R)
74LVC1G175DBVRG4	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C755, C75R)
74LVC1G175DBVRG4.B	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C755, C75R)
74LVC1G175DCKRG4	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	D65
74LVC1G175DCKRG4.B	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	D65
74LVC1G175DCKTG4	Active	Production	SC70 (DCK) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	D65
74LVC1G175DCKTG4.B	Active	Production	SC70 (DCK) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	D65
SN74LVC1G175DBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(C755, C75R)
SN74LVC1G175DBVR.B	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	(C755, C75R)
SN74LVC1G175DBVT	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C755, C75R)
SN74LVC1G175DBVT.B	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(C755, C75R)
SN74LVC1G175DBVTG4	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C75R
SN74LVC1G175DBVTG4.B	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	C75R
SN74LVC1G175DCKR	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(D65, D6J, D6R)
SN74LVC1G175DCKR.B	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	(D65, D6J, D6R)
SN74LVC1G175DCKT	Active	Production	SC70 (DCK) 6	250 SMALL T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	(D65, D6J, D6R)
SN74LVC1G175DCKT.B	Active	Production	SC70 (DCK) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(D65, D6J, D6R)
SN74LVC1G175DCKTG4.B	Active	Production	SC70 (DCK) 6	250 SMALL T&R	-	Call TI	Call TI	-40 to 125	
SN74LVC1G175DRYR	Active	Production	SON (DRY) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	D6
SN74LVC1G175DRYR.B	Active	Production	SON (DRY) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	D6
SN74LVC1G175DRYRG4.B	Active	Production	SON (DRY) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	D6
SN74LVC1G175YZPR	Active	Production	DSBGA (YZP) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	D6N
SN74LVC1G175YZPR.B	Active	Production	DSBGA (YZP) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	D6N

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

PACKAGE OPTION ADDENDUM

www.ti.com 7-Oct-2025

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

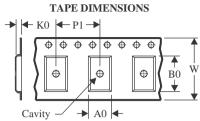
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

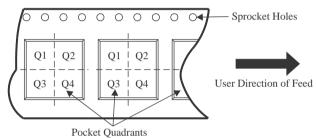
OTHER QUALIFIED VERSIONS OF SN74LVC1G175:

Enhanced Product: SN74LVC1G175-EP

NOTE: Qualified Version Definitions:

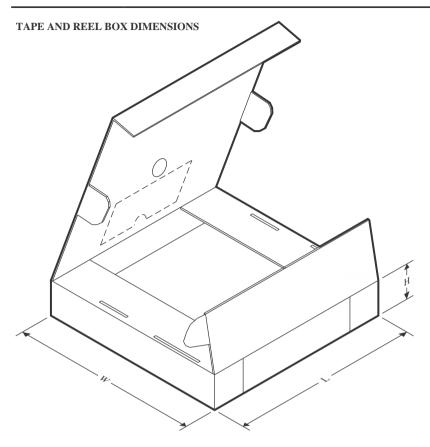

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

www.ti.com 6-Nov-2025


TAPE AND REEL INFORMATION

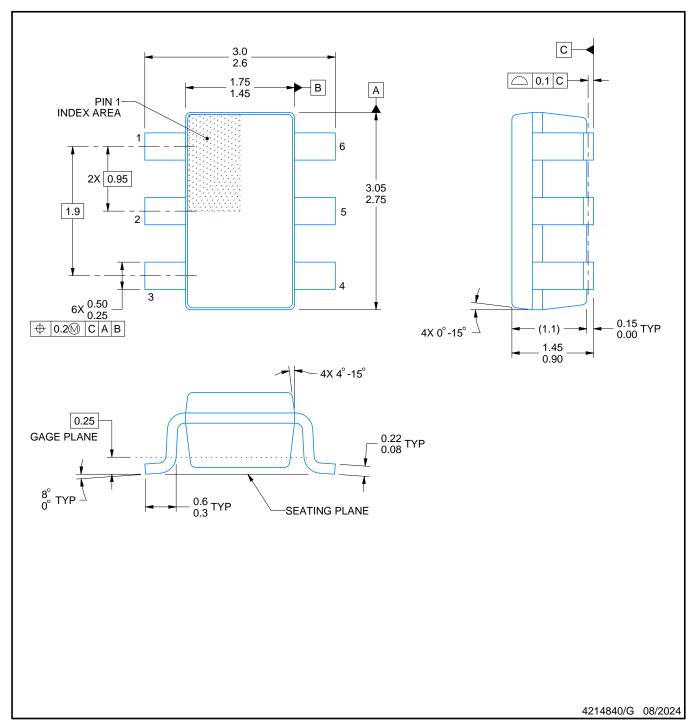
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

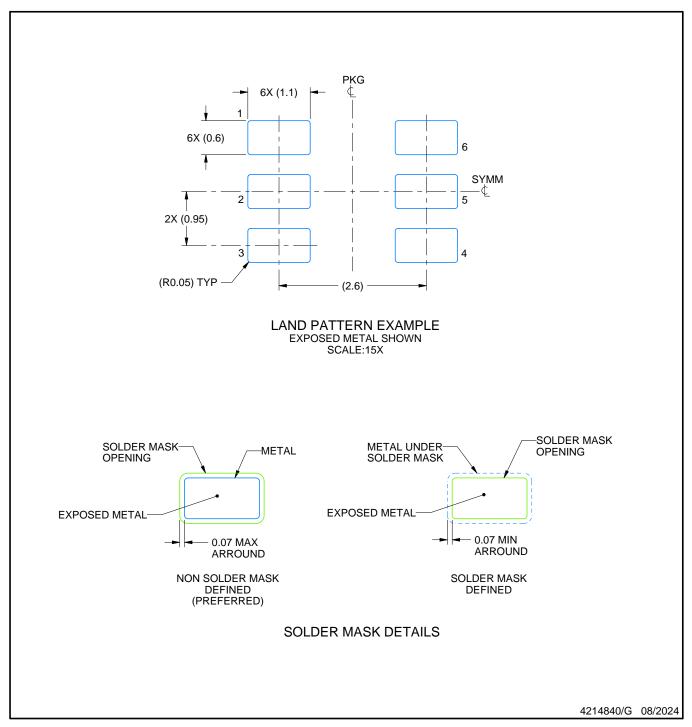
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74LVC1G175DBVRE4	SOT-23	DBV	6	3000	178.0	9.2	3.3	3.23	1.55	4.0	8.0	Q3
74LVC1G175DBVRG4	SOT-23	DBV	6	3000	178.0	9.2	3.3	3.23	1.55	4.0	8.0	Q3
74LVC1G175DCKRG4	SC70	DCK	6	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
74LVC1G175DCKTG4	SC70	DCK	6	250	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC1G175DBVR	SOT-23	DBV	6	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
SN74LVC1G175DBVT	SOT-23	DBV	6	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1G175DBVT	SOT-23	DBV	6	250	178.0	9.2	3.3	3.23	1.55	4.0	8.0	Q3
SN74LVC1G175DBVTG4	SOT-23	DBV	6	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1G175DCKR	SC70	DCK	6	3000	180.0	8.4	2.3	2.5	1.2	4.0	8.0	Q3
SN74LVC1G175DCKR	SC70	DCK	6	3000	178.0	8.4	2.25	2.45	1.2	4.0	8.0	Q3
SN74LVC1G175DCKT	SC70	DCK	6	250	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74LVC1G175DRYR	SON	DRY	6	5000	180.0	9.5	1.2	1.65	0.7	4.0	8.0	Q1
SN74LVC1G175YZPR	DSBGA	YZP	6	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1


www.ti.com 6-Nov-2025

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74LVC1G175DBVRE4	SOT-23	DBV	6	3000	180.0	180.0	18.0
74LVC1G175DBVRG4	SOT-23	DBV	6	3000	180.0	180.0	18.0
74LVC1G175DCKRG4	SC70	DCK	6	3000	180.0	180.0	18.0
74LVC1G175DCKTG4	SC70	DCK	6	250	180.0	180.0	18.0
SN74LVC1G175DBVR	SOT-23	DBV	6	3000	208.0	191.0	35.0
SN74LVC1G175DBVT	SOT-23	DBV	6	250	202.0	201.0	28.0
SN74LVC1G175DBVT	SOT-23	DBV	6	250	180.0	180.0	18.0
SN74LVC1G175DBVTG4	SOT-23	DBV	6	250	202.0	201.0	28.0
SN74LVC1G175DCKR	SC70	DCK	6	3000	210.0	185.0	35.0
SN74LVC1G175DCKR	SC70	DCK	6	3000	208.0	191.0	35.0
SN74LVC1G175DCKT	SC70	DCK	6	250	180.0	180.0	18.0
SN74LVC1G175DRYR	SON	DRY	6	5000	189.0	185.0	36.0
SN74LVC1G175YZPR	DSBGA	YZP	6	3000	220.0	220.0	35.0

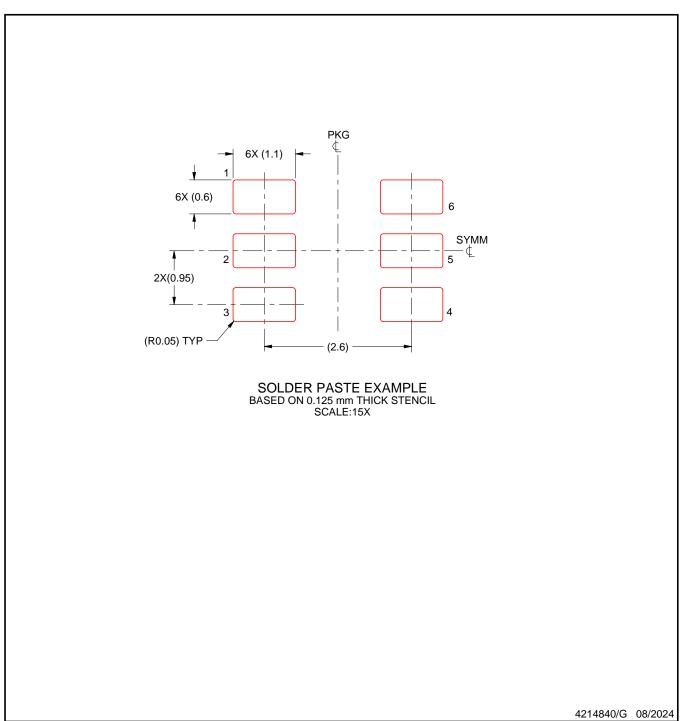
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

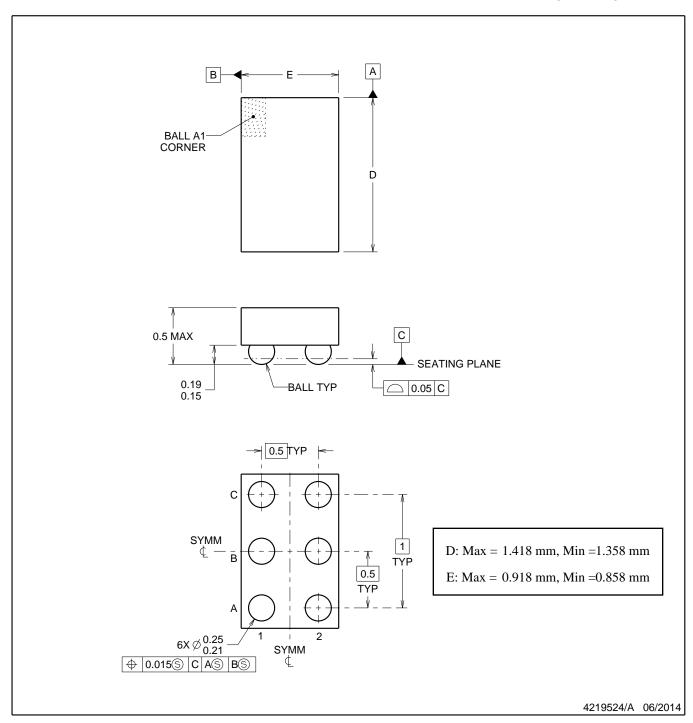
- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- 5. Refernce JEDEC MO-178.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

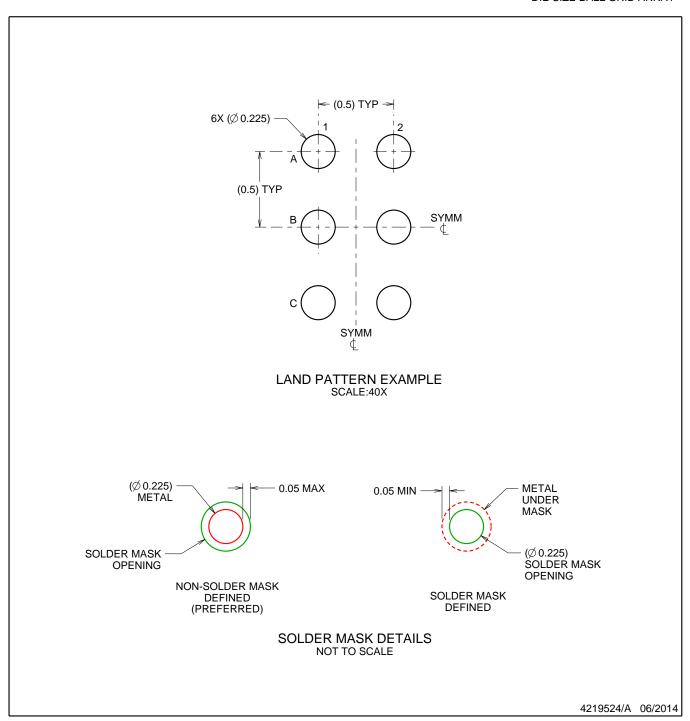
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

DIE SIZE BALL GRID ARRAY

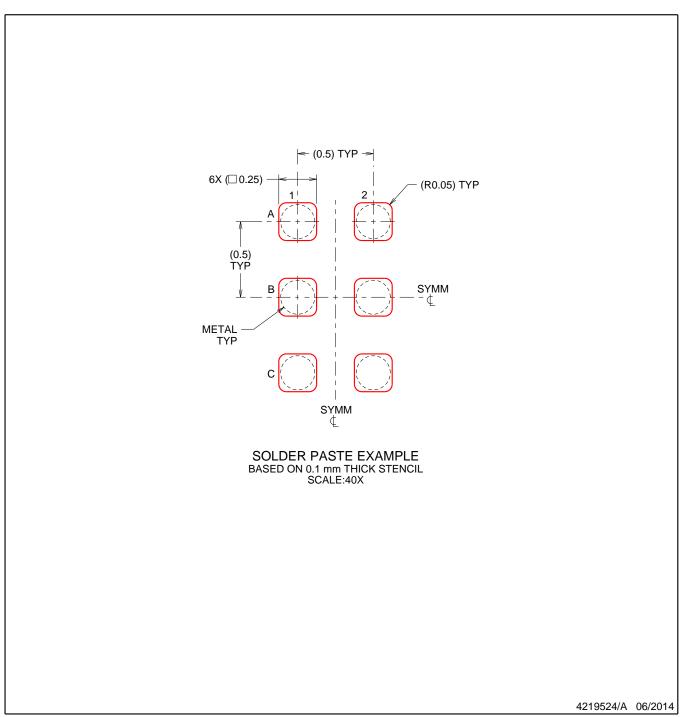
NOTES:


NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. NanoFree[™] package configuration.

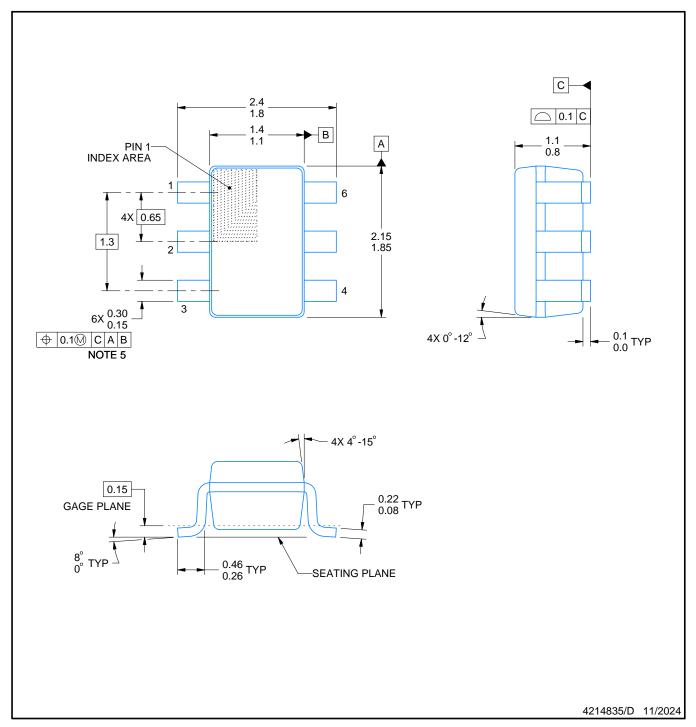
DIE SIZE BALL GRID ARRAY



NOTES: (continued)

Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.
 For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).

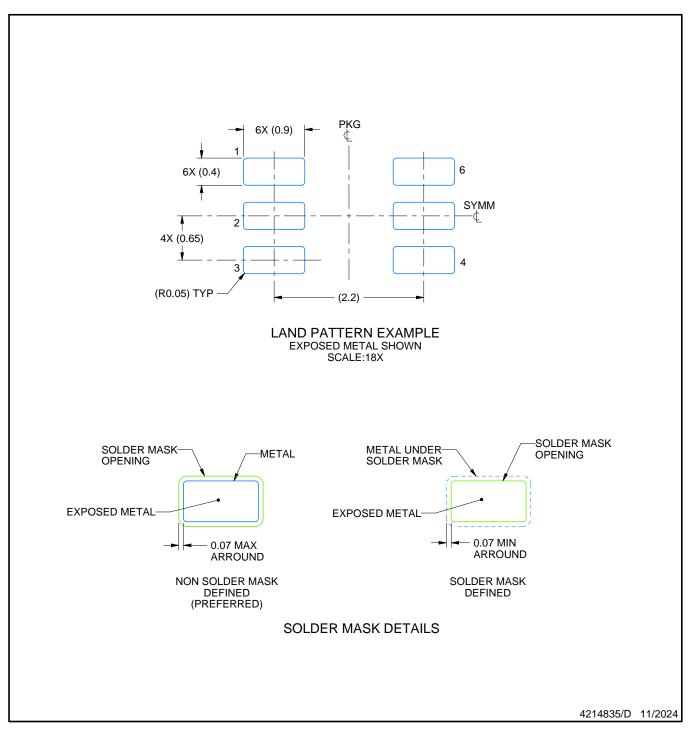
DIE SIZE BALL GRID ARRAY



NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

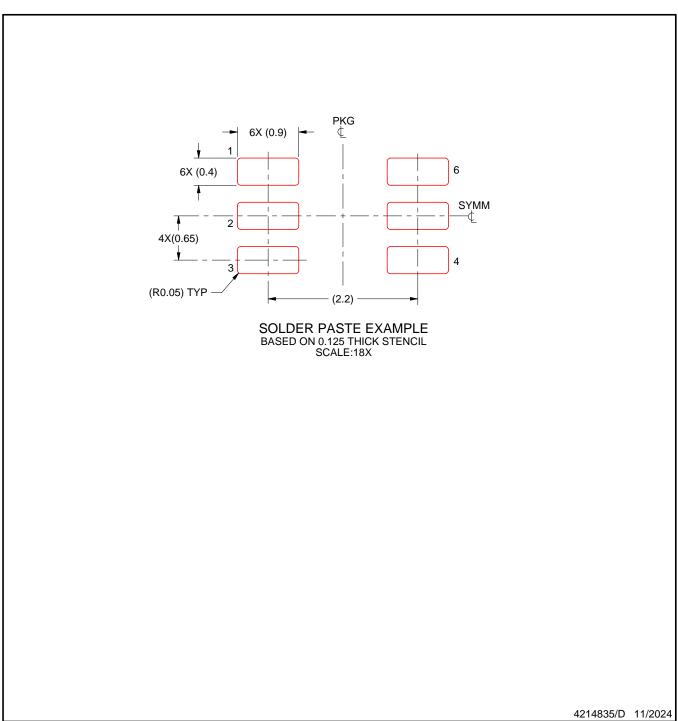
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

 4. Falls within JEDEC MO-203 variation AB.



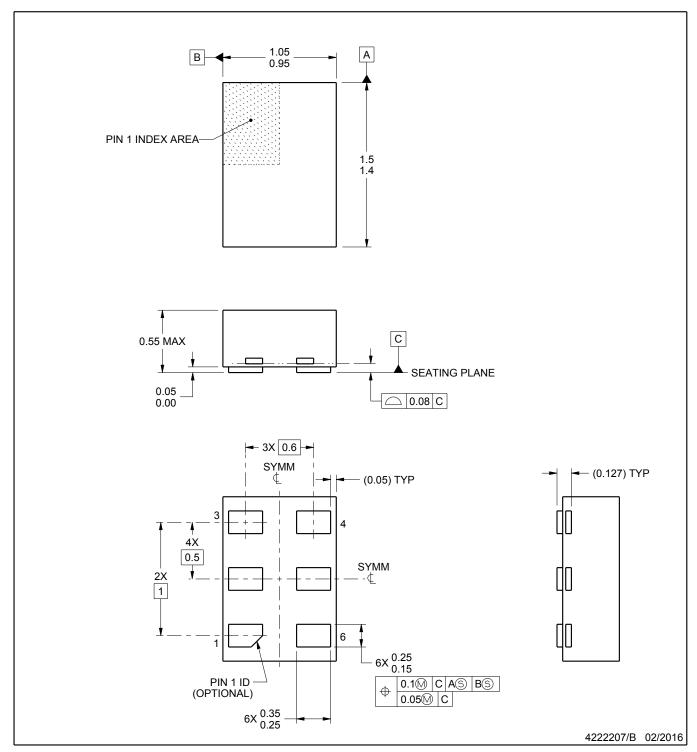
NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

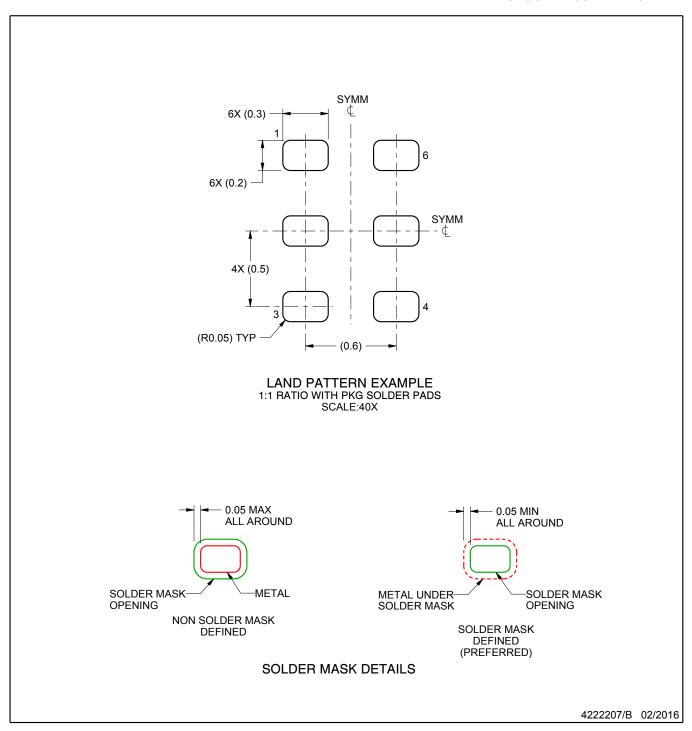
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

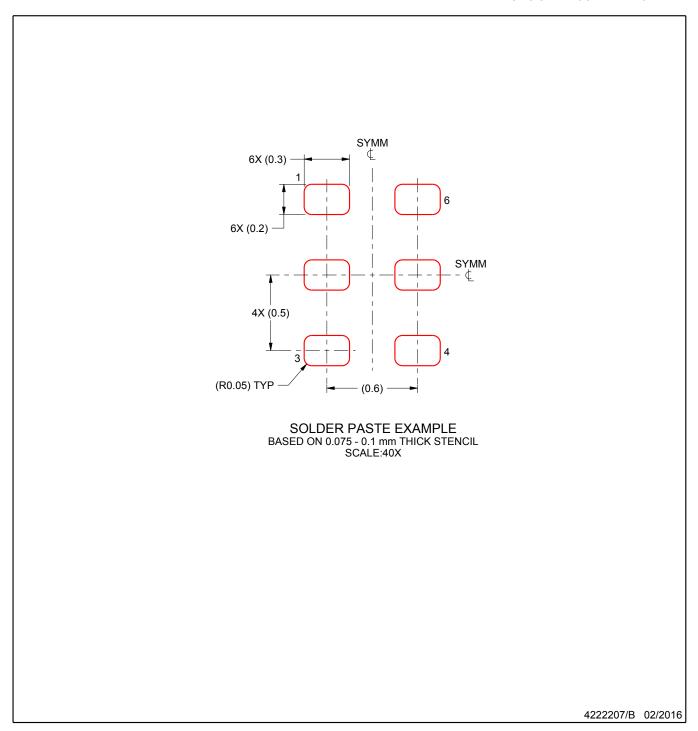
PLASTIC SMALL OUTLINE - NO LEAD


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025