


FEATURES

- Operate From 1.65 V to 3.6 V
- Specified From -40°C to 85°C, -40°C to 125°C, and -55°C to 125°C
- Inputs and Open-Drain Outputs Accept Voltages up to 5.5 V
- Max t_{pd} of 3.7 ns at 3.3 V
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 250 mA Per JESD 17

SN74LVC06A...RGY PACKAGE

SN54LVC06A...FK PACKAGE

NC - No internal connection

DESCRIPTION/ORDERING INFORMATION

These hex inverter buffers/drivers are designed for 1.65-V to 3.6-V V_{CC} operation.

The outputs of the 'LVC06A devices are open drain and can be connected to other open-drain outputs to implement active-low wired-OR or active-high wired-AND functions. The maximum sink current is 24 mA.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

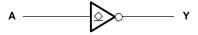
ORDERING INFORMATION

T _A	PAC	CKAGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
-40°C to 85°C	QFN – RGY	Reel of 1000	SN74LVC06ARGYR	LC06A	
		Tube of 50	SN74LVC06AD		
	SOIC - D	Reel of 2500	SN74LVC06ADR	LVC06A	
		Reel of 250	SN74LVC06ADT		
	SOP – NS Reel of 2000		SN74LVC06ANSR	LVC06A	
-40°C to 125°C	SSOP - DB	Reel of 2000	SN74LVC06ADBR	LC06A	
		Tube of 90	SN74LVC06APW		
	TSSOP - PW	Reel of 2000	SN74LVC06APWR	LC06A	
		Reel of 250	SN74LVC06APWT		
	TVSOP - DGV	Reel of 2000	SN74LVC06ADGVR	LC06A	
	CDIP – J	Tube of 25	SNJ54LVC06AJ	SNJ54LVC06AJ	
–55°C to 125°C	CFP – W	Tube of 150	SNJ54LVC06AW	SNJ54LVC06AW	
	LCCC – FK	Tube of 55	SNJ54LVC06AFK	SNJ54LVC06AFK	

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCAS596N-OCTOBER 1997-REVISED JULY 2005


DESCRIPTION/ORDERING INFORMATION (CONTINUED)

These devices are fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

FUNCTION TABLE (EACH INVERTER)

INPUT A	OUTPUT Y
Н	L
L	Н

LOGIC DIAGRAM, EACH INVERTER (POSITIVE LOGIC)

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V_{CC}	Supply voltage range		-0.5	6.5	V	
V_{I}	Input voltage range ⁽²⁾		-0.5	6.5	V	
Vo	Output voltage range		-0.5	6.5	V	
I _{IK}	Input clamp current	V _I < 0		-50	mA	
I _{OK}	Output clamp current	V _O < 0		-50	mA	
Io	Continuous output current			±50	mA	
	Continuous current through V _{CC} or GND			±100	mA	
		D package ⁽³⁾		86		
		DB package ⁽³⁾		96		
0	Deal and the modified adapta	DGV package ⁽³⁾		127	0000	
θ_{JA}	Package thermal impedance	NS package ⁽³⁾		76	°C/W	
		PW package ⁽³⁾		113		
		RGY package (4)	47			
T _{stg}	Storage temperature range		-65	150	°C	
P _{tot}	Power dissipation ⁽⁵⁾⁽⁶⁾	$T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$		500	mW	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-5.

⁽⁵⁾ For the D package: above 70°C the value of Ptot derates linearly with 8 mW/K.

⁽⁶⁾ For the DB, DGV, NS, and PW packages: above 60°C the value of P_{tot} derates linearly with 5.5 mW/K.

SCAS596N-OCTOBER 1997-REVISED JULY 2005

Recommended Operating Conditions⁽¹⁾

			SN54LVC0	6A ⁽²⁾		
			–55°C to 1	25°C	UNIT	
			MIN	MAX		
\/	Supply voltogo	Operating	1.65	3.6	V	
V_{CC}	Supply voltage	Data retention only	1.5		V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
V _{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2			
		V _{CC} = 1.65 V to 1.95 V	($0.35 \times V_{CC}$		
V_{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		
V_{I}	Input voltage	,	0	5.5	V	
Vo	Output voltage		0	5.5	V	
		V _{CC} = 1.65 V		4		
	Law law law and a comment	V _{CC} = 2.3 V		8	A	
I _{OL}	Low-level output current	V _{CC} = 2.7 V		12	mA	
		V _{CC} = 3 V		24		

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Recommended Operating Conditions⁽¹⁾

					SN74LV	C06A				
			$T_A = 2$	25°C	-40°C to 85°C		-40°C to ′	125°C	UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX		
\ /	Complement	Operating	1.65	3.6	1.65	3.6	1.65	3.6	V	
V _{CC}	Supply voltage	Data retention only	1.5		1.5		1.5		V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		$0.65 \times V_{CC}$		$0.65 \times V_{CC}$			
V_{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		1.7		1.7		V	
		V _{CC} = 2.7 V to 3.6 V	2		2		2			
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	0	$.35 \times V_{CC}$	0	$.35 \times V_{CC}$		
V_{IL}	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7		0.7		0.7	V	
	input voltago	V _{CC} = 2.7 V to 3.6 V		0.8		0.8		8.0		
VI	Input voltage		0	5.5	0	5.5	0	5.5	V	
Vo	Output voltage		0	5.5	0	5.5	0	5.5	V	
		V _{CC} = 1.65 V		4		4		4		
	Low-level	V _{CC} = 2.3 V		8		8		8		
l _{OL}	output current	V _{CC} = 2.7 V		12		12		12	mA	
		V _{CC} = 3 V		24		24		24		

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

⁽²⁾ Product preview

SN54LVC06A, SN74LVC06A HEX INVERTER BUFFERS/DRIVERS WITH OPEN-DRAIN OUTPUTS

SCAS596N-OCTOBER 1997-REVISED JULY 2005

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

			SN54LVC06A ⁽¹⁾	
PARAMETER	TEST CONDITIONS	V _{cc}	–55°C to 125°C	UNIT
			MIN TYP(2) MAX	
	I _{OL} = 100 μA	1.65 V to 3.6 V	0.2	
	I _{OL} = 4 mA	1.65 V	0.45	
V_{OL}	I _{OL} = 8 mA	2.3 V	0.7	V
	I _{OL} = 12 mA	2.7 V	0.4	
	I _{OL} = 24 mA	3 V	0.55	
I _I	V _I = 5.5 V or GND	3.6 V	±5	μΑ
I _{CC}	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V	10	μΑ
ΔI_{CC}	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	2.7 V to 3.6 V	500	μΑ
C _i	$V_I = V_{CC}$ or GND	3.3 V	5	pF

⁽¹⁾ Product preview

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

				SN74LVC06A		UNIT
PARAMETER	TEST CONDITIONS	V _{cc}	T _A = 25°C	–40°C to 85°C	–40°C to 125°C	
			MIN TYP MAX	MIN MAX	MIN MAX	
	I _{OL} = 100 μA	1.65 V to 3.6 V	0.1	0.2	0.3	
V _{OL}	I _{OL} = 4 mA	1.65 V	0.24	0.45	0.6	
	I _{OL} = 8 mA	2.3 V	0.3	0.7	0.75	V
	I _{OL} = 12 mA	2.7 V	0.4	0.4	0.6	
	I _{OL} = 24 mA	3 V	0.55	0.55	0.8	
l _l	V _I = 5.5 V or GND	3.6 V	±1	±5	±20	μΑ
I _{off}	V_I or $V_O = 5.5 \text{ V}$	0	±1	±10	±20	μΑ
I _{CC}	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V	1	10	40	μΑ
ΔI_{CC}	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	2.7 V to 3.6 V	500	500	5000	μА
C _i	$V_I = V_{CC}$ or GND	3.3 V	5			pF

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

	EDOM TO				SN54LVC	06A ⁽¹⁾	
	PARAMETER FROM TO (OUTPUT)	V _{cc}	–55°C to ′	125°C	UNIT		
		(30.10.1)	(6611.61)		MIN	MAX	
			Y	1.8 V ± 0.15 V	1.4	5.6	
		۸		2.5 V \pm 0.2 V	1	3.1	no
	t _{pd}	A		2.7 V		3.9	ns
				3.3 V \pm 0.3 V	1	3.7	

⁽¹⁾ Product preview

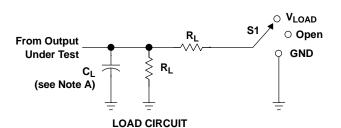
⁽²⁾ $T_A = 25^{\circ}C$

SCAS596N-OCTOBER 1997-REVISED JULY 2005

Switching Characteristics

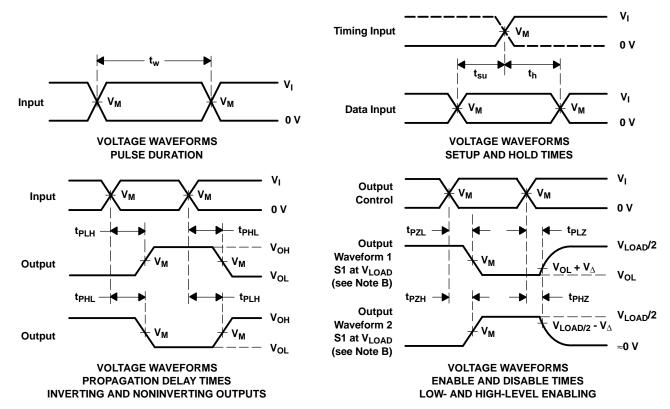
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

							SN74LVC	06A			
PARAMETER	FROM (INPUT)	TO (OUTPUT)	$T_A = 25^{\circ}C$ $-40^{\circ}C$ to $85^{\circ}C$ $-40^{\circ}C$		V_{CC} $T_A = 25^{\circ}C$ $-40^{\circ}C$ to	–40°C to	125°C	UNIT			
	(01)	(33.1.3.)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
			1.8 V ± 0.15 V	1.4	3	5.1	1.4	5.6	1.4	7.6	
	Α	V	$2.5~V\pm0.2~V$	1	1.9	2.8	1	3.1	1	4	no
t _{pd}	A	r	2.7 V	1	2.4	3.7	1	3.9	1	5	ns
			3.3 V \pm 0.3 V	1	2.2	3.5	1	3.7	1	5	


Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{cc}	TYP	UNIT
			1.8 V	2.1	
C _{pd}	Power dissipation capacitance per buffer/driver f =	f = 10 MHz	z 2.5 V	2.3	pF
			3.3 V	2.5	



PARAMETER MEASUREMENT INFORMATION (OPEN DRAIN)

TEST	S 1
t _{PZL} (see Notes E and F)	V _{LOAD}
t _{PLZ} (see Notes E and G)	V _{LOAD}
t _{PHZ} /t _{PZH}	V_{LOAD}

	IN	IPUT			_		
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	R _L	$oldsymbol{V}_\Delta$
1.8 V ± 0.15 V	V _{CC}	≤ 2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{CC}	≤ 2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤ 2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤ 2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. Since this device has open-drain outputs, t_{PLZ} and t_{PZL} are the same as t_{pd} .
- F. t_{PZL} is measured at V_{M} .
- G. t_{PLZ} is measured at $V_{OL} + V_{\Delta}$.
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com

11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN74LVC06AD	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC06A
SN74LVC06AD.B	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC06A
SN74LVC06ADBR	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC06A
SN74LVC06ADBR.B	Active	Production	SSOP (DB) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC06A
SN74LVC06ADE4	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC06A
SN74LVC06ADGVR	Active	Production	TVSOP (DGV) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC06A
SN74LVC06ADGVR.B	Active	Production	TVSOP (DGV) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC06A
SN74LVC06ADR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC06A
SN74LVC06ADR.B	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC06A
SN74LVC06ADRE4	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC06A
SN74LVC06ADT	Active	Production	SOIC (D) 14	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC06A
SN74LVC06ADT.B	Active	Production	SOIC (D) 14	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC06A
SN74LVC06ANSR	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC06A
SN74LVC06ANSR.B	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC06A
SN74LVC06APW	Active	Production	TSSOP (PW) 14	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC06A
SN74LVC06APW.B	Active	Production	TSSOP (PW) 14	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC06A
SN74LVC06APWG4	Active	Production	TSSOP (PW) 14	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC06A
SN74LVC06APWR	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC06A
SN74LVC06APWR.B	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC06A
SN74LVC06APWRE4	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC06A
SN74LVC06APWRG4	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC06A
SN74LVC06APWT	Active	Production	TSSOP (PW) 14	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC06A
SN74LVC06APWT.B	Active	Production	TSSOP (PW) 14	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC06A
SN74LVC06ARGYR	Active	Production	VQFN (RGY) 14	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	LC06A
SN74LVC06ARGYR.B	Active	Production	VQFN (RGY) 14	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	LC06A
SN74LVC06ARGYRG4	Active	Production	VQFN (RGY) 14	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	LC06A

⁽¹⁾ Status: For more details on status, see our product life cycle.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

(2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

(3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

(4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

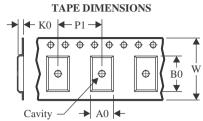
OTHER QUALIFIED VERSIONS OF SN74LVC06A:

Automotive: SN74LVC06A-Q1

Enhanced Product: SN74LVC06A-EP

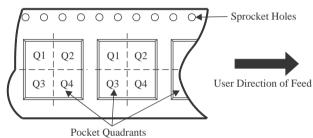
NOTE: Qualified Version Definitions:


Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


• Enhanced Product - Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

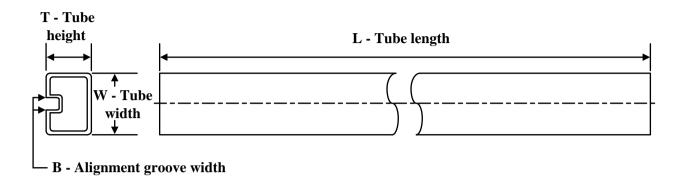
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC06ADBR	SSOP	DB	14	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74LVC06ADGVR	TVSOP	DGV	14	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
SN74LVC06ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LVC06ADT	SOIC	D	14	250	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LVC06ANSR	SOP	NS	14	2000	330.0	16.4	8.1	10.4	2.5	12.0	16.0	Q1
SN74LVC06APWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LVC06APWT	TSSOP	PW	14	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LVC06ARGYR	VQFN	RGY	14	3000	330.0	12.4	3.75	3.75	1.15	8.0	12.0	Q1

www.ti.com 24-Jul-2025

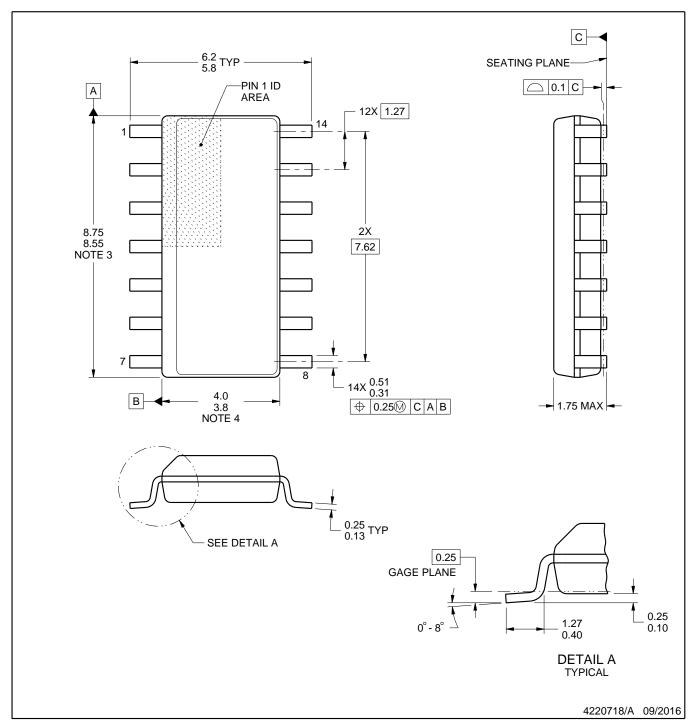

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)
SN74LVC06ADBR	SSOP	DB	14	2000	353.0	353.0	32.0
SN74LVC06ADGVR	TVSOP	DGV	14	2000	353.0	353.0	32.0
SN74LVC06ADR	SOIC	D	14	2500	353.0	353.0	32.0
SN74LVC06ADT	SOIC	D	14	250	213.0	191.0	35.0
SN74LVC06ANSR	SOP	NS	14	2000	353.0	353.0	32.0
SN74LVC06APWR	TSSOP	PW	14	2000	353.0	353.0	32.0
SN74LVC06APWT	TSSOP	PW	14	250	353.0	353.0	32.0
SN74LVC06ARGYR	VQFN	RGY	14	3000	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74LVC06AD	D	SOIC	14	50	506.6	8	3940	4.32
SN74LVC06AD.B	D	SOIC	14	50	506.6	8	3940	4.32
SN74LVC06ADE4	D	SOIC	14	50	506.6	8	3940	4.32
SN74LVC06APW	PW	TSSOP	14	90	530	10.2	3600	3.5
SN74LVC06APW.B	PW	TSSOP	14	90	530	10.2	3600	3.5
SN74LVC06APWG4	PW	TSSOP	14	90	530	10.2	3600	3.5

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

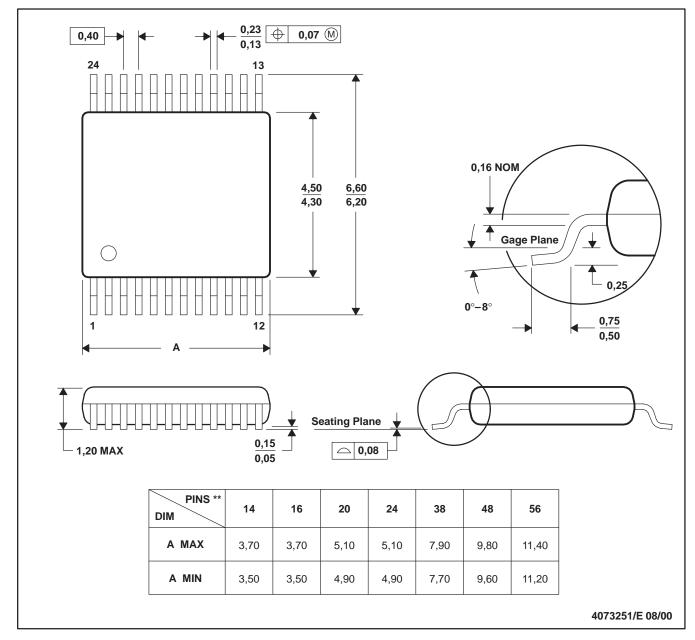
MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

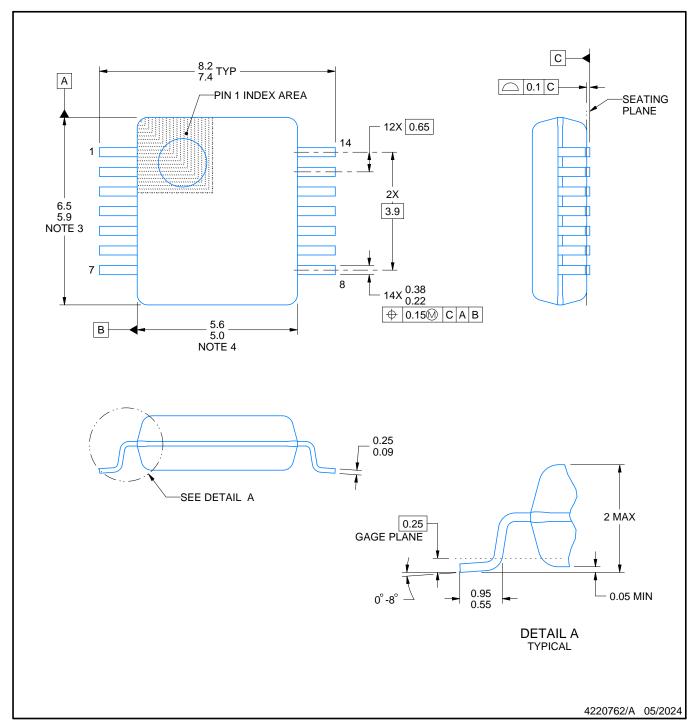
NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DGV (R-PDSO-G**)

24 PINS SHOWN

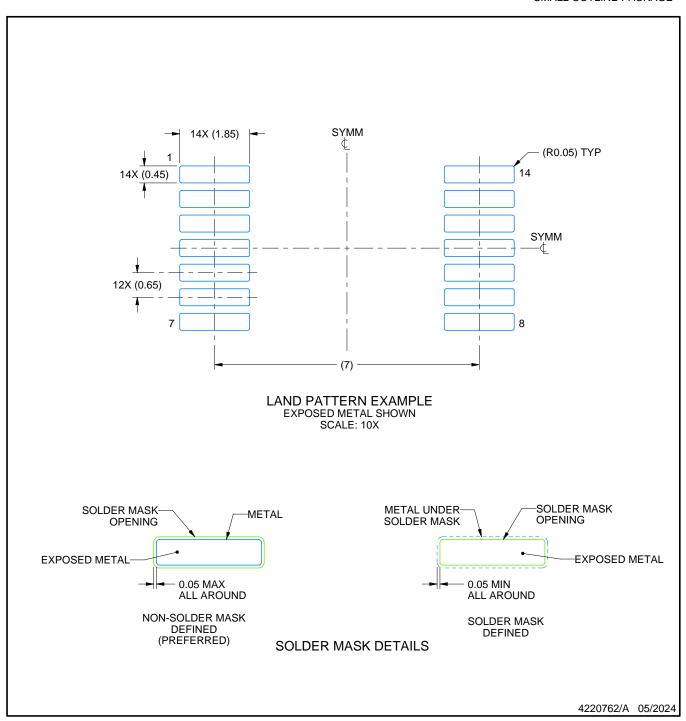
PLASTIC SMALL-OUTLINE


NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

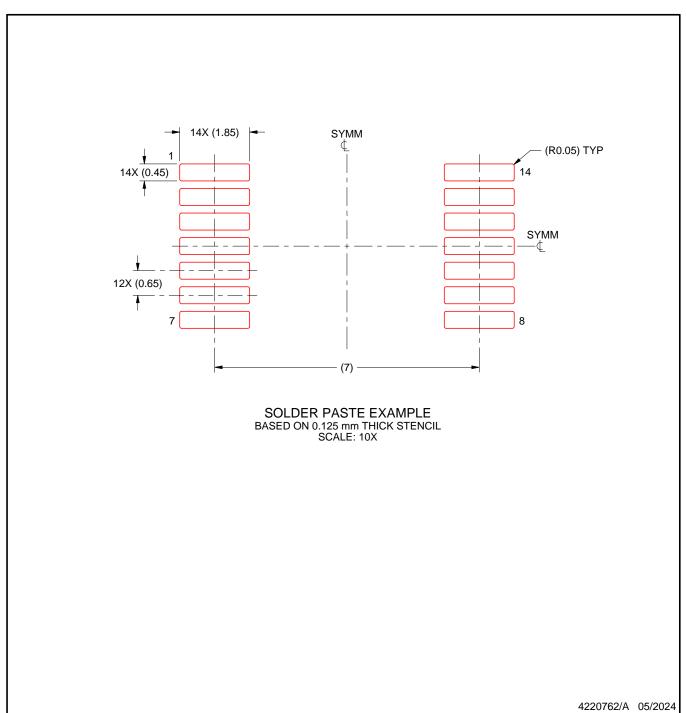
D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-150.



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

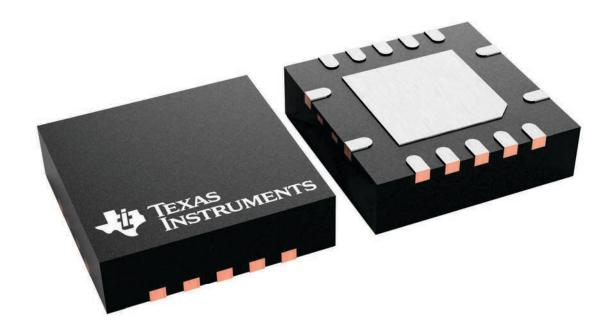
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

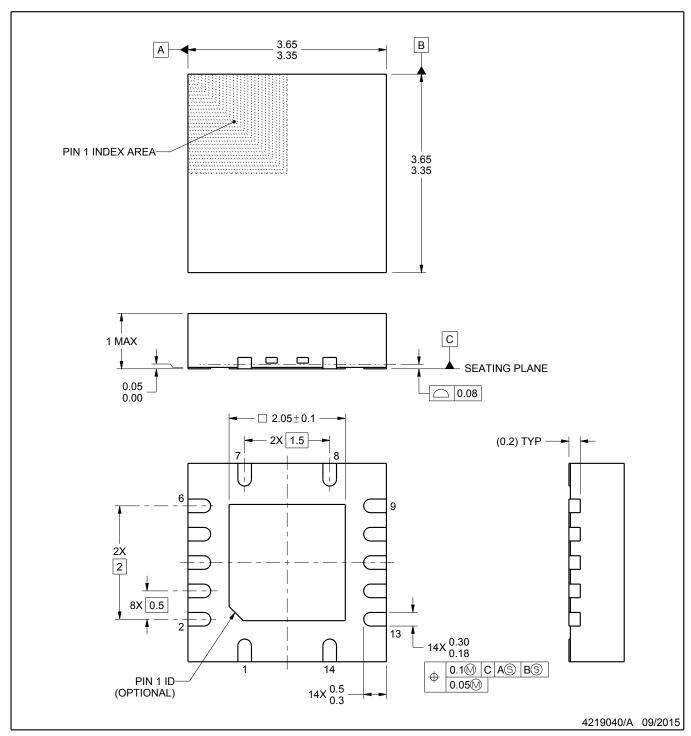
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

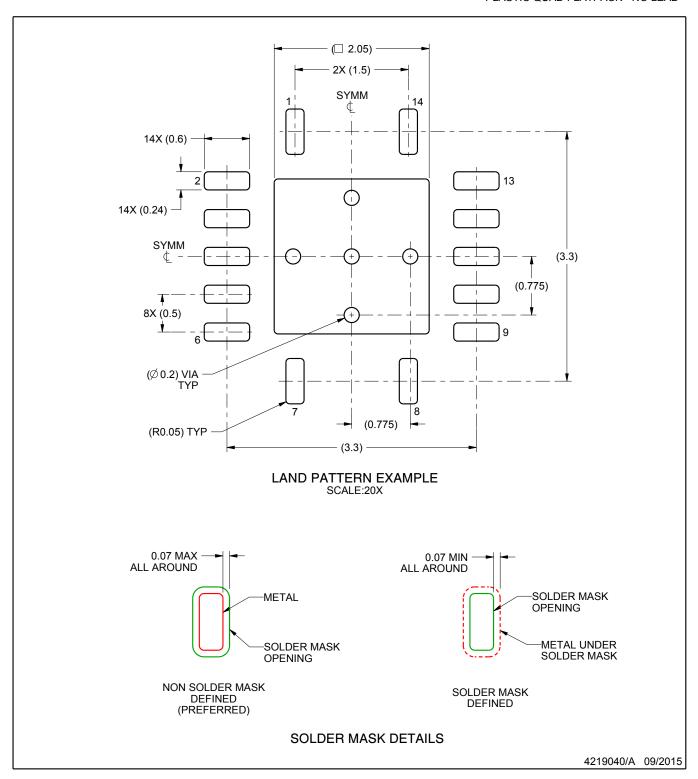
3.5 x 3.5, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

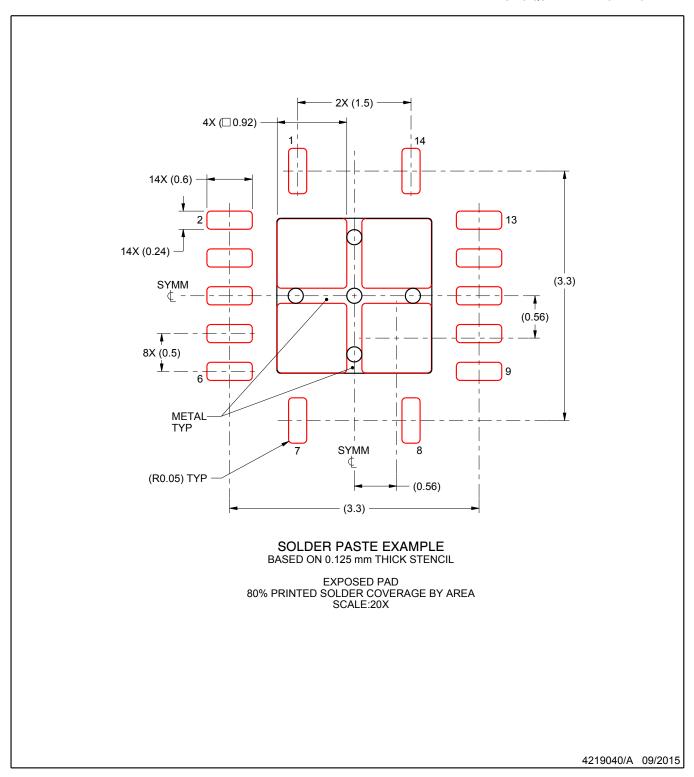
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025