

SCLS696-JANUARY 2006

FEATURES

- Controlled Baseline
 - One Assembly/Test Site, One Fabrication Site
- Extended Temperature Performance of 55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree (1)
- 2-V to 5.5-V V_{CC} Operation
- Max t_{nd} of 13 ns at 5 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2.3 V at V_{CC} = 3.3 V, T_A = 25°C
- Supports Mixed-Mode Voltage Operation on All Ports
- I_{off} Supports Partial-Power-Down Mode Operation
- (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

These dual positive-edge-triggered D-type flip-flops are designed for 2-V to 5.5-V V_{CC} operation.

A low level at the preset (\overline{PRE}) or clear (\overline{CLR}) inputs sets or resets the outputs, regardless of the levels of the other inputs. When \overline{PRE} and \overline{CLR} are inactive (high), data at the data (D) inputs meeting the setup-time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs.

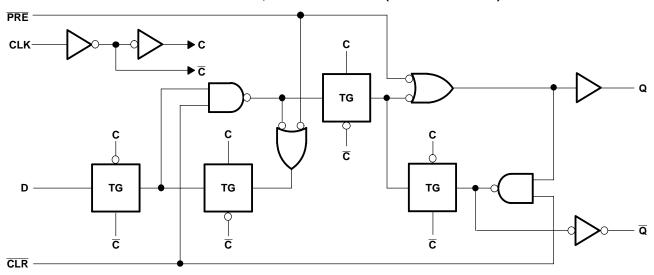
This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-55°C to 125°C	TSSOP - PW	Reel of 2000	SN74LV74AMPWREP	LV74AEP

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



FUNCTION TABLE

	INP	UTS		OUTI	PUTS
PRE	CLR	CLK	D	Q	Q
L	Н	Χ	Χ	Н	L
Н	L	Χ	Χ	L	Н
L	L	X	Χ	H ⁽¹⁾	H ⁽¹⁾
Н	Н	\uparrow	Н	Н	L
Н	Н	\uparrow	L	L	Н
Н	Н	L	Χ	Q_0	\overline{Q}_0

(1) This configuration is nonstable; that is, it does not persist when PRE or CLR returns to its inactive (high) level.

LOGIC DIAGRAM, EACH FLIP-FLOP (POSITIVE LOGIC)

SCLS696-JANUARY 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
VI	Input voltage range ⁽²⁾		-0.5	7	V
Vo	Voltage range applied to any output in the high-impedance or power-off state (2)		-0.5	7	V
Vo	Output voltage range ⁽²⁾⁽³⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-20	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current	$V_O = 0$ to V_{CC}		±25	mA
	Continuous current through V _{CC} or GND			±50	mA
θ_{JA}	Package thermal impedance (4)			113	°C/W
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ This value is limited to 5.5 V maximum.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V_{CC}	Supply voltage		2	5.5	V
		V _{CC} = 2 V	1.5		
\/	High level input voltage	V _{CC} = 2.3 V to 2.7 V	$V_{CC} \times 0.7$		V
V_{IH}	High-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	$V_{CC} \times 0.7$		V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	$V_{CC} \times 0.7$		
		V _{CC} = 2 V		0.5	
\/	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		$V_{CC} \times 0.3$	V
V_{IL}	Low-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		$V_{CC} \times 0.3$	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		$V_{CC} \times 0.3$	
V_{I}	Input voltage		0	5.5	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 2 V		-50	μΑ
	High lovel output ourrent	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-2	
I _{OH}	High-level output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		-6	mA
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-12	
		V _{CC} = 2 V		50	μΑ
	Low-level output current	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2	
I _{OL}	Low-level output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		6	mA
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		12	
		V _{CC} = 2.3 V to 2.7 V		200	
$\Delta t/\Delta v$	Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V		100	ns/V
		V _{CC} = 4.5 V to 5.5 V		20	
T _A	Operating free-air temperature		-55	125	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
	I _{OH} = -50 μA	2 V to 5.5 V	V _{CC} - 0.1			
V	$I_{OH} = -2 \text{ mA}$	2.3 V	2			V
V _{OH}	$I_{OH} = -6 \text{ mA}$	3 V	2.48			V
	I _{OH} = −12 mA	4.5 V	3.8			
	$I_{OL} = 50 \mu A$	2 V to 5.5 V			0.1	
V	$I_{OL} = 2 \text{ mA}$	2.3 V			0.4	V
V _{OL}	I _{OL} = 6 mA	3 V			0.44	V
	I _{OL} = 12 mA	4.5 V			0.55	
I _I	V _I = 5.5 V or GND	0 to 5.5 V			±1	μΑ
I _{CC}	$V_1 = V_{CC}$ or GND, $I_0 = 0$	5.5 V			20	μΑ
I _{off}	V_I or $V_O = 0$ to 5.5 V	0			5	μΑ
0	V V or CND	3.3 V		2		~F
C _i	$V_{I} = V_{CC}$ or GND	5 V		2		pF

SCLS696-JANUARY 2006

Timing Requirements

over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

	PARAMETER	T _A = 25°C		MIN	MAX	UNIT		
	FARAIVIETER	S	MIN	MAX	IVIIIN	WAA	UNII	
	Dulas duration	PRE or CLR low	8		9		20	
L _W	t _w Pulse duration	CLK	8		9		ns	
	Setup time before CLK↑	Data	8		9			
ı _{su}	Setup time before CEK	PRE or CLR inactive	7		7		ns	
t _h	Hold time, data after CLK↑		0.5		0.5		ns	

Timing Requirements

over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

	PARAMET	T _A = 2	T _A = 25°C		MAY	UNIT		
	PARAMEI	MIN	MAX	MIN	MAX	UNIT		
t., Pulse duration		PRE or CLR low	6		7		no	
'W	Pulse duration	CLK	6		7		ns	
	Setup time hefere CLK [↑]	Data	6		7			
t _{su} Setup time t	Setup time before CLK↑	PRE or CLR inactive	5		5		ns	
t _h	Hold time, data after CLK↑		1.45		2.15		ns	

Timing Requirements

over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

	~~						
DAE	AMETER	T _A = 2	T _A = 25°C		MAY	UNIT	
FAR	MIN	MAX	IVIIIV	WAX	UNIT		
t _w Pulse duration	PRE or CLR low	5		5			
	CLK	5		5		ns	
Setup time before CLIV [↑]	Data	5		5		ns	
t _{su} Setup time before CEK1	PRE or CLR inactive	3		3			
Hold time, data after CLK↑		1.45		2.15		ns	
	Pulse duration Setup time before CLK↑	Pulse duration CLK Data PRE or CLR inactive	PARAMETER MIN Pulse duration PRE or CLR low 5 CLK 5 Setup time before CLK↑ Data 5 PRE or CLR inactive 3	PARAMETER MIN MAX Pulse duration PRE or CLR low 5 CLK 5 Setup time before CLK↑ Data 5 PRE or CLR inactive 3	PARAMETER MIN MAX Pulse duration PRE or CLR low 5 5 CLK 5 5 Setup time before CLK↑ Data 5 5 PRE or CLR inactive 3 3	PARAMETER MIN MAX MIN MAX Pulse duration PRE or CLR low 5 5 5 CLK 5 5 5 Setup time before CLK↑ Data 5 5 PRE or CLR inactive 3 3	

Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	LOAD	T _A = 25°C			MIN MAX		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	IVIIIN	IVIAA	ONIT
f _{max}			$C_L = 50 pF$	30	70		25		MHz
4	PRE or CLR	Q or Q	0 50 -5		13	17.4	1	20	2
^L pd	CLK	QuiQ	$C_L = 50 pF$		14.2	20	1	23	ns

Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	LOAD	T _A = 25°C			MIN MAX		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	IVIIIN	WAA	ONIT
f _{max}			C _L = 50 pF	50	90		45		MHz
	PRE or CLR	Q or Q	C - 50 pF		9.2	15.8	1	18	no
^L pd	CLK	QUIQ	$C_L = 50 \text{ pF}$		10.2	15.4	1	18	ns

Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

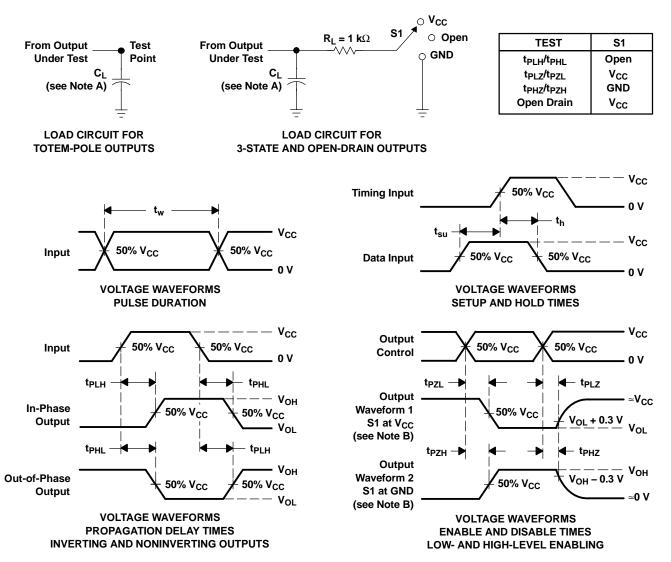
PARAMETER	FROM	то	LOAD CAPACITANCE	T _A = 25°C			MIN MAX		UNIT
PARAMETER	(INPUT)	(OUTPUT)		MIN	TYP	MAX	IVIIIN	IVIAA	UNIT
f _{max}			C _L = 50 pF	90	140		75		MHz
	PRE or CLR	Q or Q	C - 50 25		6.6	9.7	1	12	no
^L pd	CLK	QUIQ	$C_L = 50 \text{ pF}$		7.2	9.9	1	13	ns

Noise Characteristics⁽¹⁾

 V_{CC} = 3.3 V, C_L = 50 pF, T_A = 25°C

	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.1	0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		0	-0.8	V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		3.2		V
V _{IH(D)}	High-level dynamic input voltage	2.31			V
$V_{IL(D)}$	Low-level dynamic input voltage			0.99	V

⁽¹⁾ Characteristics are for surface-mount packages only.


Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CO	V _{CC}	TYP	UNIT	
0	Dower dissination conscitones	C	f = 10 MHz	3.3 V	21	۲
C_{pd}	Power dissipation capacitance	$C_{L} = 50 \text{ pF},$	I = IU MINZ	5 V	23	p⊦

SCLS696-JANUARY 2006

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PHL} and t_{PLH} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuits and Voltage Waveforms

11-Nov-2025 www.ti.com

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN74LV74AMPWREP	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	LV74AEP
SN74LV74AMPWREP.A	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	LV74AEP
V62/06605-01XE	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	LV74AEP

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LV74A-EP:

Catalog: SN74LV74A

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

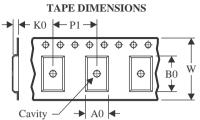
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

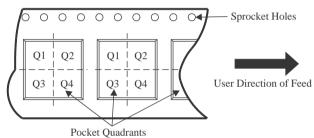
• Automotive : SN74LV74A-Q1

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

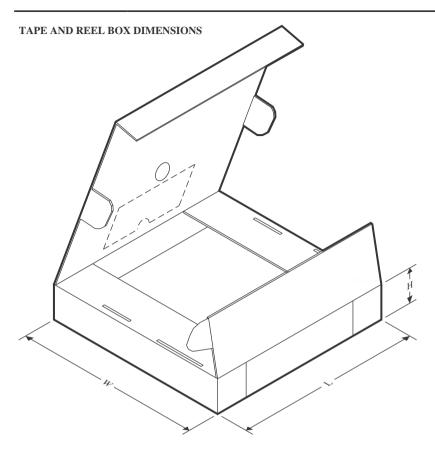
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
S	N74LV74AMPWREP	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

*All dimensions are nominal

Ì	Device Package Typ		Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
ı	SN74LV74AMPWREP	TSSOP	PW	14	2000	353.0	353.0	32.0	

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025