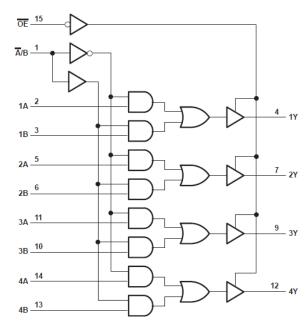


Quadruple 2-Line to 1-Line Data Select RS/Multiplexers With 3-State Outputs

1 Features


- Operating voltage range of 4.5 V to 5.5 V
- High-current3-state outputs interface directly with system bus
- Typical $t_{pd} = 17 \text{ ns}$
- Low power consumption, 80-µA max I_{CC}
- ±6-mA output drive at 5 V
- Low input current of 1 µA max
- Inputs are TTL-voltage compatible
- Provide bus interface from multiple sources in high-performance systems
- Buffered inputs and outputs

2 Description

The 'HCT257 devices are designed to multiplex signals from 4-bit data sources to 4-output data lines in bus-organized systems.

Device Information

ORDERABLE PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74HCT257	N (PDIP, 16)	19.31 mm × 6.35 mm
311/4/10/23/	D (SOIC, 16)	9.90 mm × 3.90 mm
SNJ54HCT257	J (CDIP, 16)	24.38 mm × 6.92 mm

Pin numbers shown are for the D, J, and N packages.

Logic Diagram (Positive Logic)

Table of Contents

1 Features	1	8 Device Functional Modes	9
2 Description	1	9 Power Supply Recommendations	10
3 Revision History		10 Layout	
4 Pin Configuration and Functions	3	10.1 Layout Guidelines	
5 Specifications		11 Device and Documentation Support	11
5.1 Absolute Maximum Ratings	4	11.1 Documentation Support	
5.2 Recommended Operating Conditions ⁽¹⁾	4	11.2 Receiving Notification of Documentation Updates	11
5.3 Thermal Information	4	11.3 Support Resources	11
5.4 Electrical Characteristics	4	11.4 Trademarks	
5.5 Switching Characteristics	5	11.5 Electrostatic Discharge Caution	11
5.6 Switching Characteristics		11.6 Glossary	
5.7 Operating Characteristics	6	12 Mechanical, Packaging, and Orderable	
6 Parameter Measurement Information	7	Information	11
7 Detailed Description	8	12.1 Tape and Reel Information	12
7.1 Overview	8	12.2 Mechanical Data	13
7.2 Functional Block Diagram			

3 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision D (September 2003) to Revision E (July 2022)

Page

 Updated the numbering, formatting, tables, figures, and cross-references throughout the document to reflect modern data sheet standards......

4 Pin Configuration and Functions

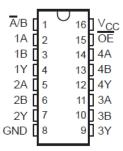


Figure 4-1. J, N and D Package 16-Pin CDIP, PDIP or SOIC Top View

Pin Functions

PI	PIN			
SOIC or TSSOP NO.	NAME	I/O ⁽¹⁾	DESCRIPTION	
1	Ā/B	I	Address select	
2	1A	I	Channel 1, data input A	
3	1B	I	Channel 1, data input B	
4	1Y	I	Channel 1, data output	
5	2A	0	Channel 2, data input A	
6	2B	0	Channel 2, data input B	
7	2Y	I	Channel 2, data output	
8	GND	_	Ground	
9	3Y	I	Channel 3, data output	
10	3B	I	Channel 3, data input B	
11	3A	I	Channel 3, data input A	
12	4Y	I	Channel 4, data output	
13	4B	I	Channel 4, data input B	
14	4A	I	Channel 4, data input A	
15	G	I	Output strobe, active low	
16	V _{CC}	_	Positive supply	

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
I _{IK}	Input clamp current ⁽²⁾	$V_I < 0$ or $V_I > V_{CC}$		±20	mA
I _{OK}	Output clamp current ⁽²⁾	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
Io	Continuous output current	$V_O = 0$ to V_{CC}		±35	mA
	Continuous current through V _{CC} or GND	·		±70	mA
TJ	Junction Temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 Recommended Operating Conditions(1)

			SN	54HCT257		SN74HCT257			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNII
V _{CC}	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
V _{IH}	High-level input voltage	V _{CC} = 4.5 V to 5.5 V	2			2			V
V _{IL}	Low-level input voltage	V _{CC} = 4.5 V to 5.5 V			0.8			0.8	V
VI	Input voltage		0		V _{CC}	0		V _{CC}	V
Vo	Output voltage		0		V _{CC}	0		V _{CC}	V
t _t	Input transition (rise and fall			500			500	ns	
T _A	Operating free-air temperatu	-55		125	-40		85	°C	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

5.3 Thermal Information

		D (SOIC)	N (PDIP)	
THERMAL METRI	С	16 PINS	16 PINS	UNIT
$R_{\theta JA}$	Package thermal impedance	73	67	°C/W

5.4 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		T _A = 25°C		SN54HCT25 7		SN74HCT25 7		UNIT	
	CONDIT			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Va High level output voltage		I _{OH} = -20 μΑ	4.5 V	4.4	4.499		4.4		4.4		V
V _{OH} High level output voltage	V _{IL}	I _{OH} = -6 mA	= 4.5 v	3.98	4.3		3.7		3.84		
V _{OL} L Low level output voltage	V _I = V _{IH} or	I _{OL} = 20 μA	4.5 V		0.001	0.1		0.1		0.1	V
VOL 2 20W 16V61 Sulput Voltage	V _{IL}	I _{OL} = 6 mA	7.5 V		0.17	0.26		0.4		0.33	

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

5.4 Electrical Characteristics (continued)

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		AMETER TEST CONDITIONS		V _{cc}	T _A = 25°C			SN54HCT25 7		SN74HCT25 7		UNIT
			IONS		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
I _I	Input leakage current	V _I = V _{CC} or	0 0	5.5 V		±0.1	±100		±1000		±1000	nA
I _{OZ}	Off-State (High-Impedance State) Output Current	V _O = V _{CC} or 0,	V _I = V _{IH} or V _{IL}	5.5 V		±0.01	±0.5		±10		±5	μА
I _{CC}	Supply current	$V_I = V_{CC}$ or 0,	I _O = 0	5.5 V			8		160		80	μΑ
ΔI _{CC} ⁽²⁾	Supply-Current Change	One input a V or 2.4 V, Other input or V _{CC}		5.5 V		1.4	2.4		3		2.9	mA
C _i	Input Capacitance			4.5 V to 5.5 V		3	10		10 ⁽¹⁾		10	pF

⁽¹⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.

5.5 Switching Characteristics

over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 6-1)

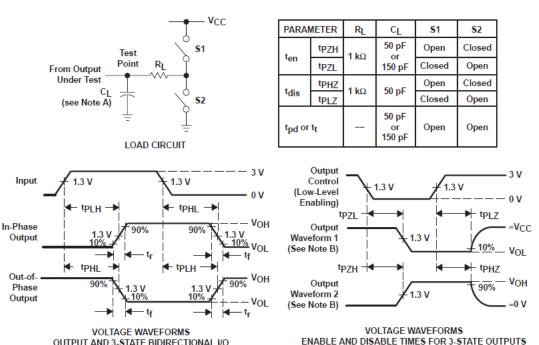
DADAMETED	PARAMETER FROM		V	TA	= 25°C		SN54HCT25	7	SN74HCT257	UNIT
(INP	(INPUT)	(OUTPUT)	V _{CC}	MIN	TYP	MAX	MIN N	IAX	MIN MAX	UNII
A or I	A or B	Υ	4.5 V		20	30		45	38	
	AOID	'	5.5 V		17	27		40	34	ns
t _{pd}	Δ/R	Ā/B Y	4.5 V		20	30		45	38	113
	AD		5.5 V		17	27		40	34	
	ŌĒ	Y	4.5 V		20	30		45	38	ns
en	<u> </u>	'	5.5 V		17	27		40	34	113
t _{dis}	ŌĒ	Y	4.5 V		20	30		45	38	ns
dis	idis OL	OL 1	5.5 V		17	27		40	34	110
t _t		Any	4.5 V		8	15		22	19	ns
प्		, ary	5.5 V		7	14		21	17	113

5.6 Switching Characteristics

over recommended operating free-air temperature range, C₁ = 150 pF (unless otherwise noted) (see Figure 6-1)

PARAMETER	FROM	то	Vc	T _A	λ = 25°C		SN54HCT	257	SN74HC	T257	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	v C	MIN	TYP	MAX	MIN	MAX	MIN	MAX	ONII	
	A or B	Υ	4.5 V		22	38		57		48		
	AOID	ĭ	5.5 V		19	35		53		44	no	
t _{pd}	Ā/B	В Ү	4.5 V		22	38		57		48	ns	
	A/D		5.5 V		19	35		53		44		
+	ŌĒ	V	4.5 V		23	40		60		50	ns	
^L en	t _{en} OE	OE Y	ı	5.5 V		20	38		57		48	115
4		Any	4.5 V		17	42		63	-	53	ns	
t _t		Any	5.5 V		14	38		57		48	115	

⁽²⁾ This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or V_{CC}.


5.7 Operating Characteristics

T_A 25°C

PARAMETER		TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load	13	pF

6 Parameter Measurement Information

- C_L includes probe and test-fixture capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_0 = 50 \Omega$, $t_r = 6 \text{ ns}$, $t_f = 6 \text{ ns}$.
- D. The outputs are measured one at a time with one input transition per measurement.

OUTPUT AND 3-STATE BIDIRECTIONAL I/O PROPAGATION DELAY TIME

- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 6-1. Load Circuit and Voltage Waveforms

7 Detailed Description

7.1 Overview

The 'HCT257 devices are designed to multiplex signals from 4-bit data sources to 4-output data lines in busorganized systems. The 3-state outputs do not load the data lines when the output-enable (\overline{OE}) input is at the high logic level.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

7.2 Functional Block Diagram

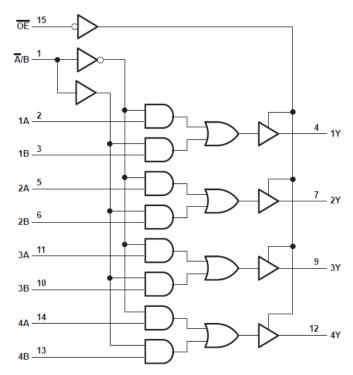


Figure 7-1. Function Diagram

8 Device Functional Modes

Table 8-1. Function Table

	INPUTS (1)									
ŌĒ	SELECT	DA	TA	OUTPUT ⁽²⁾ Y						
OE.	Ā/B	A	В	·						
Н	X	X	X	Z						
L	L	L	X	L						
L	L	Н	X	Н						
L	Н	X	L	L						
L	Н	X	Н	Н						

⁽¹⁾ H = High Voltage Level, L = Low Voltage Level, X = Don't Care

⁽²⁾ H = Driving High, L = Driving Low, Z = High Impedance State

9 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1- μ F capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

10 Layout

10.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC} , whichever makes more sense for the logic function or is more convenient.

11 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

11.1 Documentation Support

11.1.1 Related Documentation

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

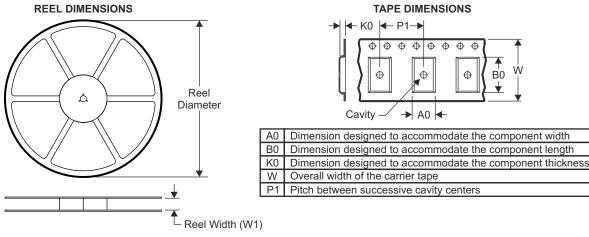
11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

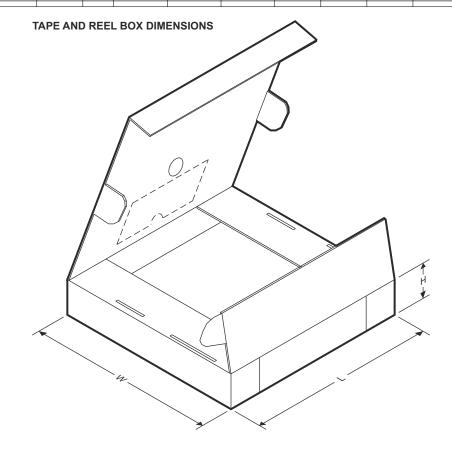
11.6 Glossary

TI Glossary


This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information


The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.


12.1 Tape and Reel Information

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

	Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant	
--	--------	-----------------	--------------------	------	-----	--------------------------	--------------------------	------------	------------	------------	------------	-----------	------------------	--

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
			1				

12.2 Mechanical Data

www.ti.com 7-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
	(1)	(2)			(0)	(4)	(5)		(0)
SN74HCT257D	Obsolete	Production	SOIC (D) 16	-	-	Call TI	Call TI	-40 to 85	HCT257
SN74HCT257DR	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	HCT257
SN74HCT257DR.A	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT257
SN74HCT257N	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74HCT257N
SN74HCT257N.A	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74HCT257N

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

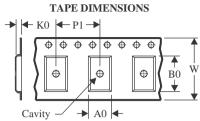
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

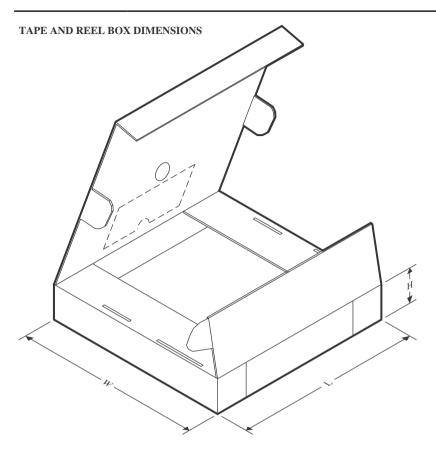
PACKAGE MATERIALS INFORMATION

www.ti.com 23-Jul-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

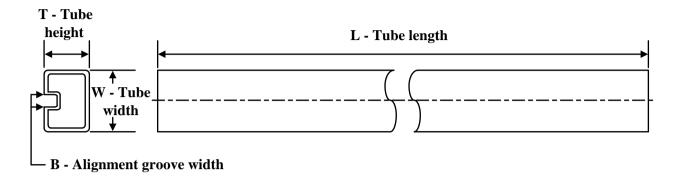


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HCT257DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 23-Jul-2025


*All dimensions are nominal

	Device	Package Type Package Drawing		Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
I	SN74HCT257DR	SOIC	D	16	2500	353.0	353.0	32.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 23-Jul-2025

TUBE

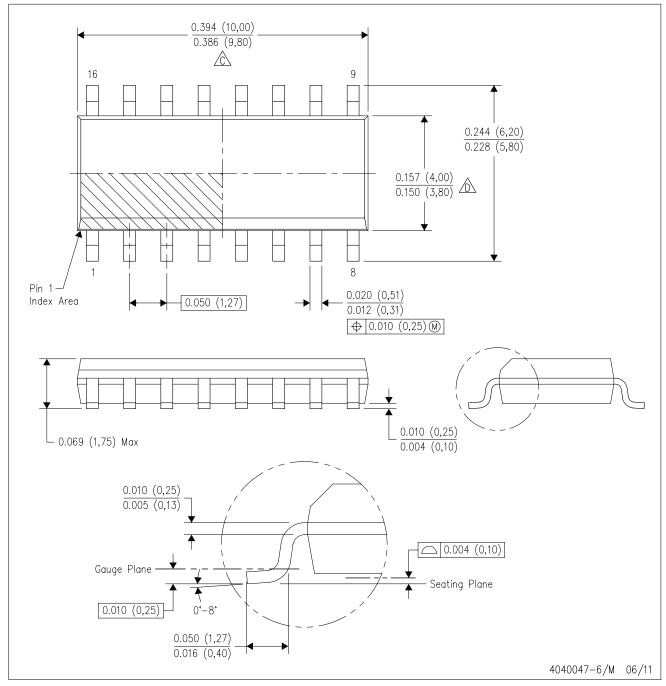
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74HCT257N	N	PDIP	16	25	506	13.97	11230	4.32
SN74HCT257N	N	PDIP	16	25	506	13.97	11230	4.32
SN74HCT257N.A	N	PDIP	16	25	506	13.97	11230	4.32
SN74HCT257N.A	N	PDIP	16	25	506	13.97	11230	4.32

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated