

SN74HC4852 SCLS573A - MARCH 2004 - REVISED JUNE 2024

SN74HC4852 Dual 4-to-1 Channel Analog Multiplexer/Demultiplexer With Injection-**Current Effect Control**

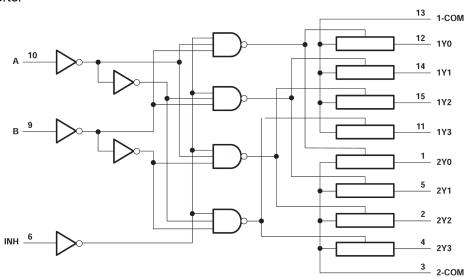
1 Features

- Injection current cross-coupling <1mV/mA (see Figure 8-1)
- Low crosstalk between switches
- Pin compatible with SN74HC4052, SN74LV4052A, and CD4052B
- 2V to 5.5V V _{CC} operation
- Latch-up performance exceeds 100mA per JESD 78, Class II

2 Applications

- Analog signal switching or multiplexing:
 - Signal gating, modulator, squelch control, demodulator, chopper, commutating switch
- Digital signal switching and multiplexing
 - Audio and video signal routing
- Transmission-gate logic implementation
- Analog-to-digital and digital-to-analog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain
- Motor speed control
- Battery chargers
- DC-DC converter

3 Description


dual 4-to-1 CMOS multiplexer/ analog demultiplexer is pin compatible with the 4052 function and also features injection-current effect control. This feature has excellent value in automotive applications where voltages in excess of normal supply voltages are common.

The injection-current effect control allows signals at disabled analog input channels to exceed the supply voltage without affecting the signal of the enabled analog channel. This eliminates the need for external diode/resistor networks typically used to keep the analog channel signals within the supply voltage range.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
SN74HC4852	PW (TSSOP, 16)	5mm × 6.4mm

- For more information, see Section 11. (1)
- The package size (length × width) is a nominal value and includes pins, where applicable.

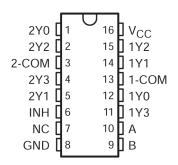

Functional Diagram

Table of Contents

1 Features	7 Detailed Description	. 11
2 Applications	7.1 Functional Block Diagram	
3 Description	8 Application and Implementation	. 12
4 Pin Configuration and Functions2	8.1 Application Information	. 12
5 Specifications3	9 Device and Documentation Support	14
5.1 Absolute Maximum Ratings3	9.1 Receiving Notification of Documentation Updates	.14
5.2 ESD Ratings3	9.2 Support Resources	. 14
5.3 Thermal Information: SN74HC485x3	9.3 Trademarks	. 14
5.4 Recommended Operating Conditions4	9.4 Electrostatic Discharge Caution	.14
5.5 Electrical Characteristics5	9.5 Glossary	14
5.6 Timing Characteristics6	10 Revision History	
5.7 Injection Current Coupling6	11 Mechanical, Packaging, and Orderable	
6 Parameter Measurement Information7		. 14

4 Pin Configuration and Functions

NC - No internal connection

Figure 4-1. PW Package, 16-Pin TSSOP (Top View)

Table 4-1. Function Table

	INPUTS	ON CHANNEL	
INH	В	Α	ON CHANNEL
L	L	L	1Y0, 2Y0
L	L	Н	1Y1, 2Y1
L	Н	L	1Y2, 2Y2
L	Н	Н	1Y3, 2Y3
Н	X	X	None

Product Folder Links: SN74HC4852

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1) (2)

		MIN	MAX	UNIT
V _{CC}	Supply voltage	-0.5	6	V
V _{SEL} or V _{EN}	Logic control input pin voltage (EN, A0, A1, A2)	-0.5	V _{CC} +0.5V	V
V _S or V _D	Source or drain voltage (Sx, D)	-0.5	V _{CC} +0.5V	V
I _{IK}	Input clamp current (V _I < 0 or V _I > V _{CC})	-20	20	mA
I _{IOK}	I/O diode current (V _{IO} < 0 or V _{IO} > V _{CC})	-20	20	mA
I _T	Switch through current (V _{IO} = 0 to V _{CC})	-25	25	mA
I _{GND}	Continuous current through V _{CC} or GND	-50	50	mA
T _{stg}	Storage temperature	-65	150	°C
TJ	Junction temperature		150	O

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

5.2 ESD Ratings

				VALUE	UNIT
V		Human body model (HBM), per AEC Q100-002 ⁽¹⁾	All pins	±2000	V
V _(ESD)	Liectrostatic discharge	Charged device model (CDM), per AEC Q100-011	All pins	±750	

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

5.3 Thermal Information: SN74HC485x

		SN74HC485x	
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	UNIT
		PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	139.6	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

5.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN NOM	MAX	UNIT	
V _{CC}	Supply voltage		2	5.5	V	
		2V	1.5			
		2.5V	2.1			
V_{IH}	Input logic high	3.3V	2.3		V	
		4.5V	3.15			
		5.5V	4.2			
		2V	0	0.5		
V_{IL}		2.5V	0	0.7	V	
	Input logic low	3.3V	0	0.8		
		4.5V	0	0.95		
		5.5V	0	1.05		
V _{SEL} or V _{EN}	Logic control input pin voltage (EN, A0, A1, A2)		0	V _{CC}	V	
V _S or V _D	Signal path input/output voltage (source or drain pin) (Sx, D)		0	V _{CC}	V	
		V _{CC} = 2V		1000		
		V _{CC} = 3V		800	ns	
Δt/Δv	Input transition rise or fall time	V _{CC} = 3.3V		700		
		V _{CC} = 4.5V		500		
		V _{CC} = 5.5V		400		
T _A	Ambient temperature		-40	125	°C	

5.5 Electrical Characteristics

At specified $V_{CC} \pm 10\%$

Typical values measured at nominal V_{CC} .

				Operating free-air temperature (T _A)									
PARAMETER		TEST CONDITIONS	Vcc	25°C			-40°	°C to 85	°C	-40°	C to 12	5°C	UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
R _{ON}	On-state switch resistance	$V_S = 0V \text{ to } V_{CC}$ $I_{SD} = 0.5\text{mA}$	2V 3V 3.3V		500 215 210	650 280 270			670 320 305			700 360 345	Ω
	resistance		4.5V		160	210			240			270	
	On-state switch		2V		4	18			22			24	
Δ_{RON}	resistance matching between	$V_S = V_{CC} / 2$ $I_{SD} = 0.5 \text{mA}$	3V 3.3V		2	12			14			16 16	Ω
I _I	inputs Control input current	V _I = V _{CC} or GND	4.5V 5V		2	8 ±0.1			12 ±0.1			16 ±1	μA
	Off-state switch leakage current (any one channel)	Off-state switch leakage current (any one channel) Switch Off				±0.1			±0.5			±1	μА
I _{S(OFF)}	Off-state switch leakage current (common channel)	$V_{\text{INH}} = V_{\text{IH}}$ $V_{\text{D}} = V_{\text{CC}} / \text{GND}$ $V_{\text{S}} = \text{GND} / V_{\text{CC}}$	5V			±0.2			±2			±4	μΑ
I _{S(ON)}	Channel on- state leakage current	Switch Off $V_{INH}=V_{IL}$ $V_{D}=V_{CC} / GND$ $V_{S}=GND / V_{CC}$	5V			±0.1			±0.5			±1	μA
I _{DD}	V _{CC} supply current	Logic inputs = 0V or V _{CC}	5V			2			5			10	μA
C _{IC}	Control input capacitance	A, B, C, INH			3.5	10			10			10	pF
C _{IS}	Common terminal capacitance	Switch off			22	40			40			40	pF
Cos	Switch terminal capacitance	Switch off			6.7	15			15			15	pF
C _{PD}	Power Dissipation Capacitance	No Load $t_r = t_f = 1$ ns f = 1MHz	3.3V 5V		32 37								pF

5.6 Timing Characteristics

At specified $V_{CC}\,\pm 10\%$

Typical values measured at nominal V_{CC}.

						Operati	ing free	-air temperatu	re (T _A)		
	PARAMETER	TEST CONDITIONS	NS V _{CC}		25°C		-40°	°C to 85°C	-40°	C to 125°C	UNIT
				MIN	TYP	MAX	MIN	TYP MAX	MIN	TYP MAX	
SWITCH	HING CHARACTERIST	TCS ⁽¹⁾									
			2V	7	19.5	33	6	34	6	35	
	Dranagation dalay	C _L = 50pF	3V	3.6	12	16.5	2.5	18	2.5	19.5	
t _{PD}	Propagation delay	Sx to D, D to Sx	3.3V	3.9	11	15	2.5	16.5	2.5	18.5	ns
			5V	2.3	8.6	11.6	2.1	12.5	2	13.5	
	Transition-time between inputs	$R_L = 10k\Omega$, $C_L = 50pF$ Ax to D, Ax to Sx	2V	19.6	44	94	15.4	103	13.8	103	
			3V	12.4	30	63	9.3	67	8.2	67	ns
t _{TRAN}			3.3V	11.4	23	51	8.5	54	7.5	54	
			5V	9.3	18	43	6.5	46	5.6	46	
			2V	15	39	64	13.8	75	12.5	75	
	Turnon-time from	$R_L = 10k\Omega$, $C_L = 50pF$	3V	7.9	30	45	6.2	50	5.5	55	
t _{ON(EN)}	enable	EN to D, EN to Sx	3.3V	7	26.5	42.5	6.4	47.5	5.4	52.5	ns
			5V	4	24	40	4.3	45	3.4	50	
			2V	26	48.4	100	25	105	25	115	
t _{OFF(EN)}	Turnoff time from	$R_L = 10k\Omega$, $C_L = 50pF$	3V	15	21	90	14	100	14	110	
	enable	EN to D, EN to Sx	3.3V	12	15	85	11	95	11	105	ns
			5V	24.5	41.4	80	24.2	90	24	100	

⁽¹⁾ $t_{PLH}/t_{PHL} = t_{PD}$ propagation delay time, $t_{PZH}/t_{PZL} = t_{ON(EN)}$ enable delay time, $t_{PHZ}/t_{PLZ} = t_{OFF(EN)}$ disable delay time, t_{PLH}/t_{PHL} Channel select = t_{TRAN}

5.7 Injection Current Coupling

At specified $V_{CC} \pm 10\%$

Typical values measured at nominal V_{CC} and $T_A = 25$ °C.

	PARAMETER		PARAMETER V _{CC} TEST CONDITIONS		NDITIONS	-40°0		UNIT
FANAIVIETER		V _{CC}	IESI CO	- פאטוווטא	MIN	TYP	MAX	UNII
INJECTIO	N CURRENT COUPLING							
		3.3V		I < 1mA		0.05	1	
		5V	R _S ≤ 3.9kΩ	I _{INJ} ≤ 1mA		0.1	1	
		3.3V		1 < 10m A		0.345	5	
۸۱/	Maximum shift of output voltage	5V		I _{INJ} ≤ 10mA		0.067	5	mV
ΔV _{OUT}	of enabled analog input ⁽¹⁾	3.3V		I < 1mA		0.05	2	IIIV
		5V	R _S ≤ 20kΩ	I _{INJ} ≤ 1mA		0.11	2	
		3.3V	$I_{\text{INJ}} \le 1$	1 < 10m A		0.05	20	
		5V		IINJ = IUIIIA		0.024	20	

(1) I_{INJ} = total current injected into all disabled channels

6 Parameter Measurement Information

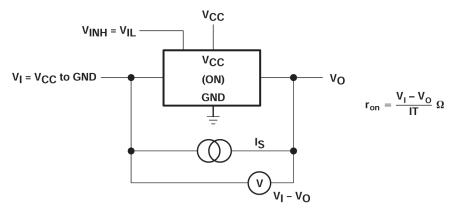


Figure 6-1. On-State Resistance Test Circuit

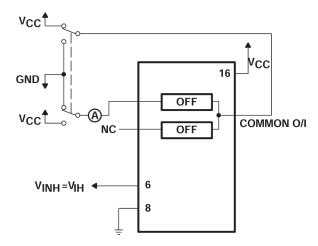


Figure 6-2. Maximum Off-Channel Leakage Current, Any One Channel, Test Setup

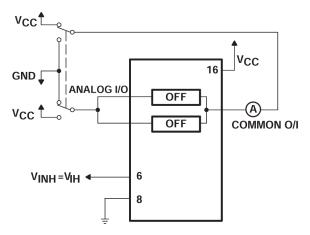


Figure 6-3. Maximum Off-Channel Leakage Current, Common Channel, Test Setup

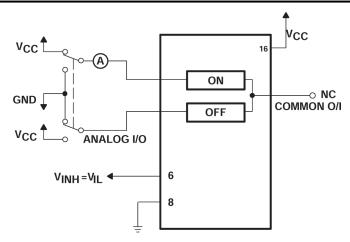


Figure 6-4. Maximum On-Channel Leakage Current, Channel to Channel, Test Setup

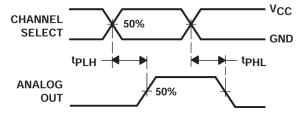


Figure 6-5. Propagation Delays, Channel Select to Analog Out

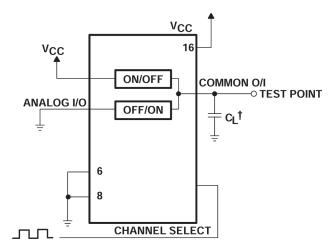


Figure 6-6. Propagation Delay, Channel Select to Analog Out, Test Setup

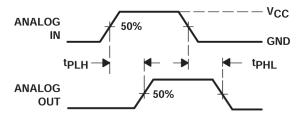


Figure 6-7. Propagation Delays, Analog in to Analog Out

Copyright © 2024 Texas Instruments Incorporated

t

[†] Includes all probe and jig capacitance

ANALOG 16 COMMON O/I
ON TEST POINT

6

8

Figure 6-8. Propagation Delay, Analog in to Analog Out, Test Setup

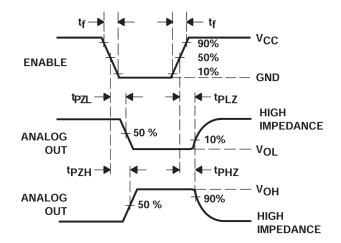


Figure 6-9. Propagation Delays, Enable to Analog Out

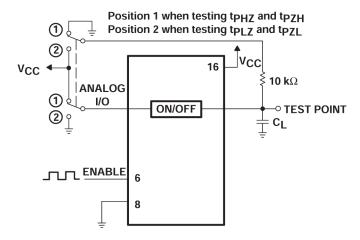


Figure 6-10. Propagation Delay, Enable to Analog Out, Test Setup

[†] Includes all probe and jig capacitance

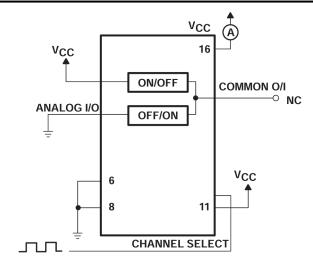
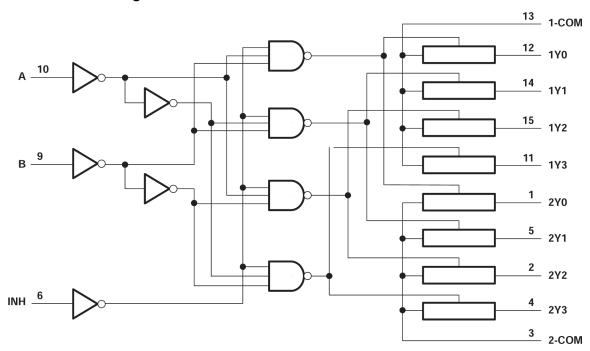



Figure 6-11. Power-Dissipation Capacitance, Test Setup

7 Detailed Description

7.1 Functional Block Diagram

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

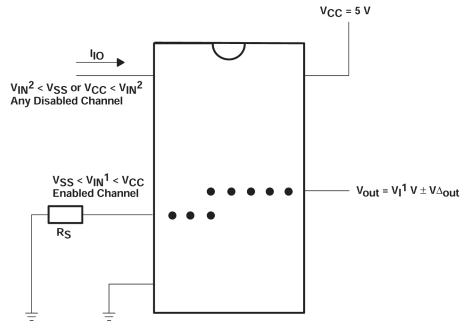


Figure 8-1. Injection-Current Coupling Specification

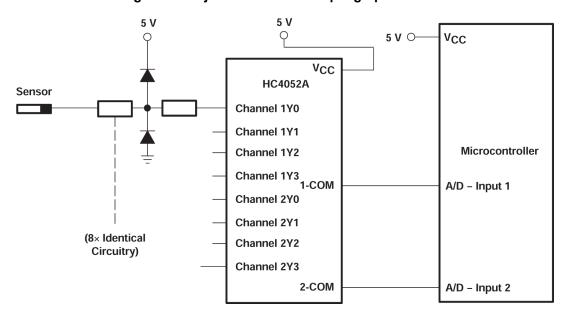


Figure 8-2. Actual Technology Requires 32 Passive Components and One Extra 6-v Regulator to Suppress Injection Current into a Standard HC4052 Multiplexer

Submit Document Feedback

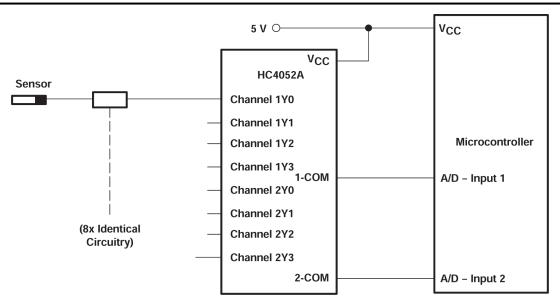


Figure 8-3. Solution by Applying the HC4852 Multiplexer

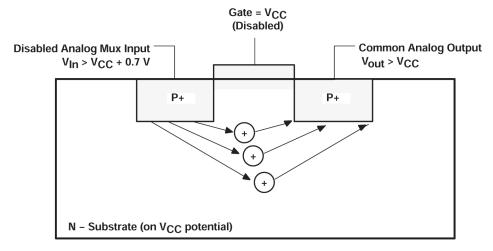


Figure 8-4. Diagram of Bipolar Coupling Mechanism (Appears If V_{ln} Exceeds V_{CC} , Driving Injection Current into the Substrate)

9 Device and Documentation Support

9.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision * (March 2004) to Revision A (June 2024)	Page
•	Updated the numbering format for tables, figures, and cross-references throughout the document	1
•	Changed VCC ABS Max from 7V to 6V	3
•	Changed RθJA	3
•	Recommended supply changed from 6V to 5.5V and all test conditions using 6V were removed	4
•	Changed tpd, ttran, tON, tOFF parameters	6

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: SN74HC4852

www.ti.com 7-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	3		Part marking (6)
	()	.,			(-)	(4)	(5)		(-/
SN74HC4852D	NRND	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4852
SN74HC4852D.A	NRND	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4852
SN74HC4852DGVR	NRND	Production	TVSOP (DGV) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4852
SN74HC4852DGVR.A	NRND	Production	TVSOP (DGV) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4852
SN74HC4852DGVR.B	NRND	Production	TVSOP (DGV) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4852
SN74HC4852DR	NRND	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4852
SN74HC4852DR.A	NRND	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4852
SN74HC4852DRG4	NRND	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC4852
SN74HC4852N	NRND	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 125	SN74HC4852N
SN74HC4852N.A	NRND	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 125	SN74HC4852N
SN74HC4852PW	NRND	Production	TSSOP (PW) 16	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4852
SN74HC4852PW.A	NRND	Production	TSSOP (PW) 16	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4852
SN74HC4852PWR	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4852
SN74HC4852PWR.A	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC4852
SN74HC4852PWRE4	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC4852

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 7-Oct-2025

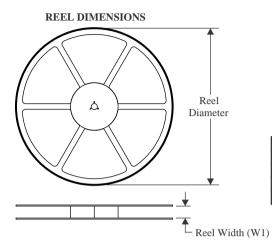
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

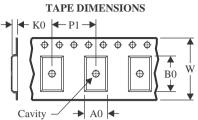
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74HC4852:

Automotive: SN74HC4852-Q1


NOTE: Qualified Version Definitions:

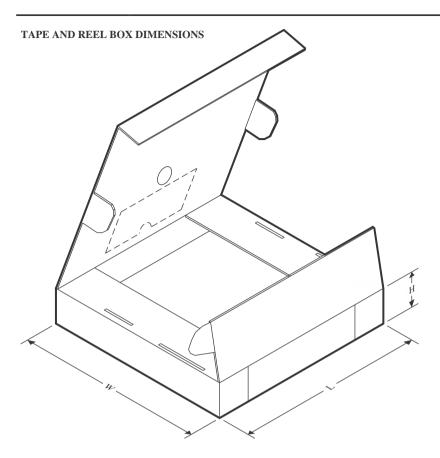

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TAPE AND REEL INFORMATION

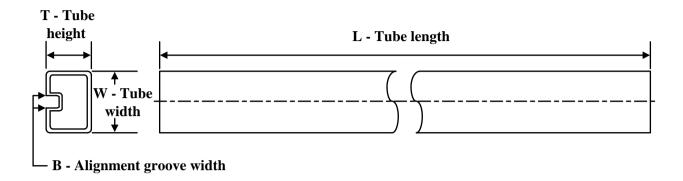
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HC4852DGVR	TVSOP	DGV	16	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
SN74HC4852DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC4852PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 24-Jul-2025

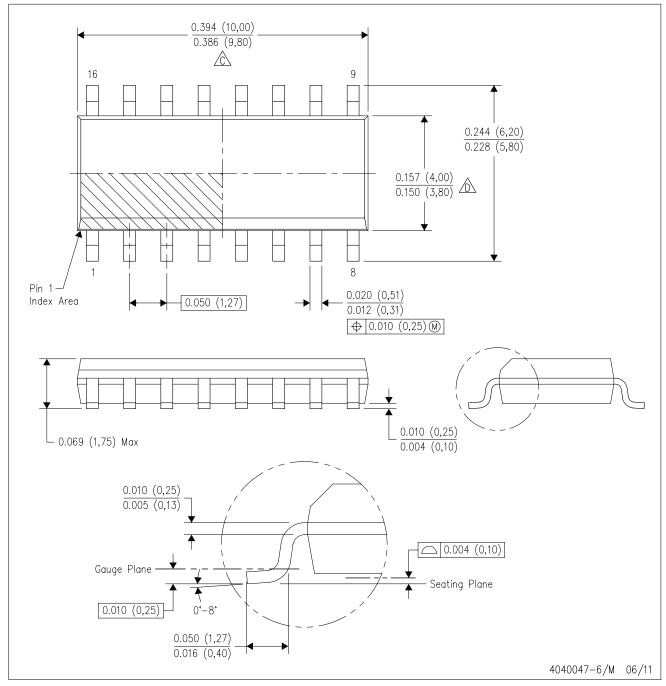

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HC4852DGVR	TVSOP	DGV	16	2000	353.0	353.0	32.0
SN74HC4852DR	SOIC	D	16	2500	353.0	353.0	32.0
SN74HC4852PWR	TSSOP	PW	16	2000	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE



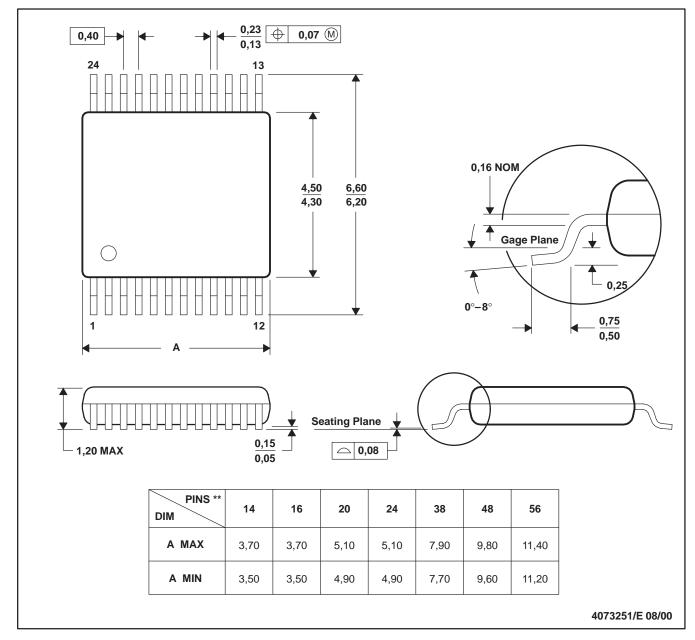
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74HC4852D	D	SOIC	16	40	507	8	3940	4.32
SN74HC4852D.A	D	SOIC	16	40	507	8	3940	4.32
SN74HC4852N	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC4852N.A	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC4852PW	PW	TSSOP	16	90	530	10.2	3600	3.5
SN74HC4852PW.A	PW	TSSOP	16	90	530	10.2	3600	3.5

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

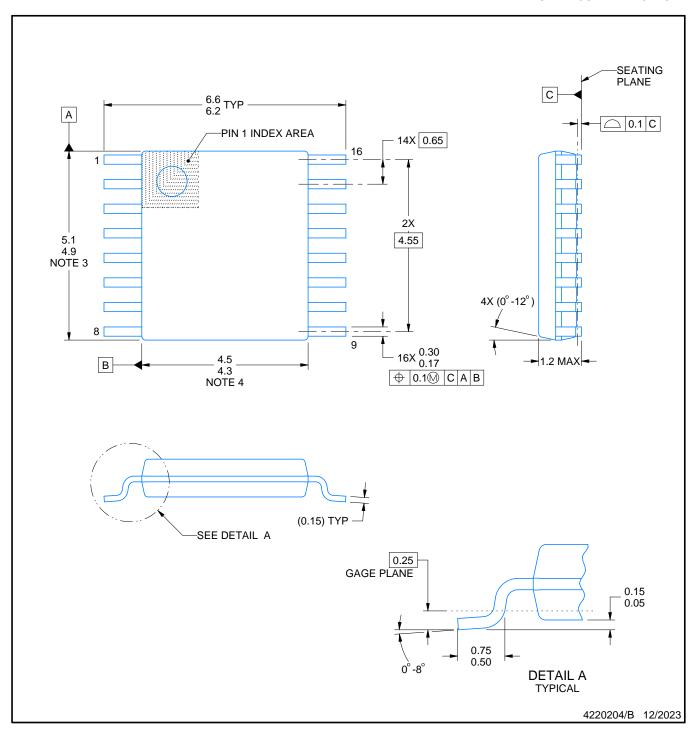

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

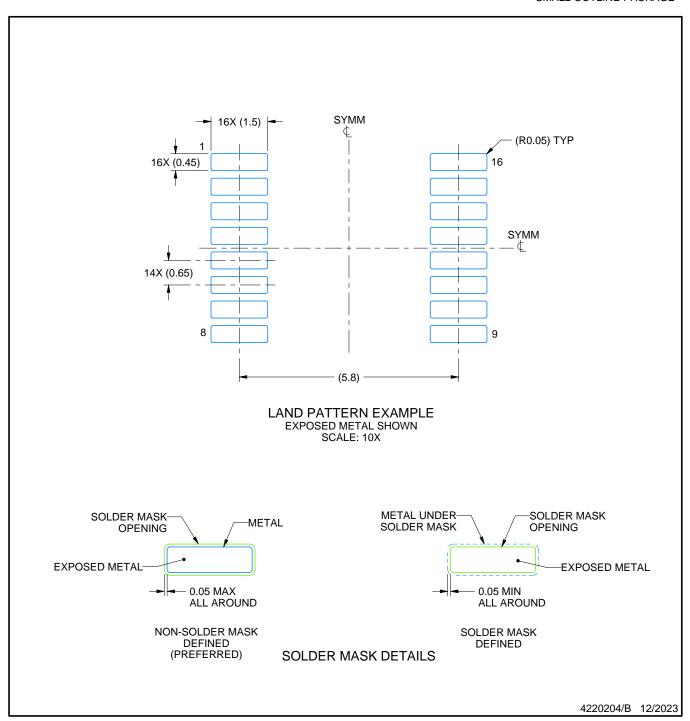

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

SMALL OUTLINE PACKAGE

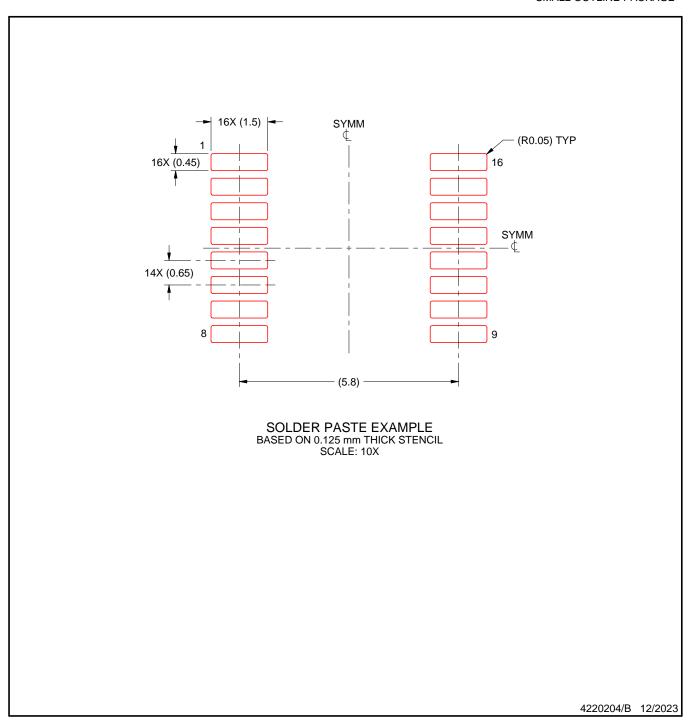
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated