

SN54HC112, SN74HC112

SCLS099I - DECEMBER 1982 - REVISED SEPTEMBER 2024

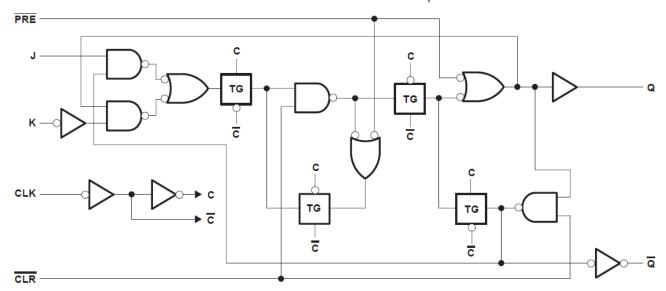
SNx4HC112 Dual J-K Negative-Edge-Triggered Flip-Flops With Clear and Preset

1 Features

- Wide operating voltage range of 2V to 6V
- Outputs can drive up to 10 LSTTL loads
- Low power consumption, 40µA max I_{CC}
- Typical t_{pd} = 13ns
- ±4mA output drive at 5V
- Low input current of 1µA max

2 Applications

- Servers
- LED displays
- **Network switch**
- Telecom infrastructure
- Motor drivers
- I/O expanders


3 Description

The SNx4HC112 devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the preset (PRE) or clear (CLR) inputs sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock (CLK) pulse. Clock triggering occurs at a voltage level and is not directly related to the fall time of the CLK pulse. Following the hold-time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flipflops perform as toggle flip-flops by tying J and K high.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾	BODY SIZE (NOM)(3)
	J (CDIP, 16)	19.56mm × 6.92mm	19.56mm × 6.92mm
	D (SOIC, 16)	9.9mm × 6mm	9.9mm × 3.9mm
SNx4HC112	N (PDIP, 16)	19.3mm × 9.4mm	19.3mm × 6.35mm
	FK (LCCC, 20)	8.89mm × 8.89mm	8.89mm × 8.89mm
	W (CFP, 16)	10.3mm × 6.73mm	10.3mm × 6.73mm

- For more information, see Section 11
- The package size (length × width) is a nominal value and includes pins, where applicable.
- The body size (length × width) is a nominal value and does not include pins.

Functional Block Diagram

Table of Contents

1 Features	1	7.2 Functional Block Diagram	7
2 Applications		7.3 Device Functional Modes	7
3 Description		8 Application and Implementation	8
4 Pin Configuration and Functions	2	8.1 Power Supply Recommendations	
5 Specifications	3	8.2 Layout	8
5.1 Absolute Maximum Ratings	3	9 Device and Documentation Support	9
5.2 Recommended Operating Conditions (2)		9.1 Receiving Notification of Documentation Updates.	9
5.3 Thermal Information	4	9.2 Support Resources	9
5.4 Electrical Characteristics	4	9.3 Trademarks	
5.5 Timing Requirements	4	9.4 Electrostatic Discharge Caution	9
5.6 Switching Characteristics		9.5 Glossary	
5.7 Operating Characteristics	<u>5</u>	10 Revision History	
6 Parameter Measurement Information		11 Mechanical, Packaging, and Orderable	
7 Detailed Description	7	Information	<u>g</u>
7 1 Overview			

4 Pin Configuration and Functions

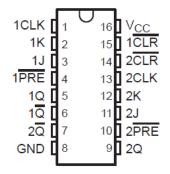
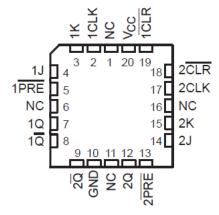



Figure 4-1. J, D, N, W Package, 16-Pin CDIP, SOIC, PDIP, CFP (Top View)

NC - No internal connection

Figure 4-2. FK Package, 20-Pin LCCC (Top View)

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
I _{IK}	Input clamp current ⁽²⁾	$V_{l} < 0$ or $V_{l} > V_{CC}$		±20	mA
I _{OK}	Output clamp current ⁽²⁾	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
Io	Continuous output current	Continuous output current $V_O = 0$ to V_{CC}		±25	mA
	Continuous current through V _{CC} or GND			±50	mA
T _J	Junction temperature		150	°C	
T _{stg}	Storage temperature range	-65	150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 Recommended Operating Conditions (2)

			SN	54HC112		SN	174HC112		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		2	5	6	2	5	6	V
		V _{CC} = 2V	1.5			1.5			
V_{IH}	V _{IH} High-level input voltage	V _{CC} = 4.5V	3.15			3.15			V
		V _{CC} = 6V	4.2			4.2			
	Low-level input voltage	V _{CC} = 2V			0.5			0.5	
V_{IL}		V _{CC} = 4.5V			1.35			1.35	V
		V _{CC} = 6V			1.8			1.8	
VI	Input voltage		0		V _{CC}	0		V _{CC}	V
Vo	Output voltage		0		V _{CC}	0		V _{CC}	V
		V _{CC} = 2V			1000			1000	
t _t (1)	Input transition (rise and fall) time	V _{CC} = 4.5V			500			500	ns
		V _{CC} = 6V			400			400	
T _A	Operating free-air temperature	<u>'</u>	-55		125	-40		85	°C

⁽¹⁾ If this device is used in the threshold region (from V_{IL}max = 0.5V to V_{IH}min = 1.5V), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at t_t = 1000ns and V_{CC} = 2V does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5.3 Thermal Information

	THERMAL METRIC	D (SOIC)	N (PDIP)	UNIT
	THERMAL METRIC	16 PINS	16 PINS	UNII
$R_{\theta JA}$	Junction-to-ambient thermal resistance (1)	117.2	89.1	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	77.2	46.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	75.6	47.4	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	38.1	11.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	75.3	47	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report.

5.4 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V _{cc}	T,	_A = 25°C		SN54HC	112	SN74HC112		UNIT	
PARAMETER			▼CC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	ONI	
			2V	1.9	1.998		1.9		1.9			
		I _{OH} = -20μA	4.5V	4.4	4.499		4.4		4.4			
V _{OH}	$V_I = V_{IH}$ or V_{IL}		6V	5.9	5.999		5.9		5.9		V	
		I _{OH} = -4mA	4.5V	3.98	4.3			3.7		3.84		
		I _{OH} = −5.2mA	6V	5.48	5.8			5.2		5.34		
				2V		0.002	0.1		0.1		0.1	
		I _{OL} = 20μA	4.5V		0.001	0.1		0.1		0.1		
V _{OL}	$V_I = V_{IH}$ or V_{IL}		6V		0.001	0.1		0.1		0.1	V	
		I _{OL} = 4mA	4.5V		0.17	0.26		0.4		0.33		
		I _{OL} = 5.2mA	6V		0.15	0.26		0.4		0.33		
I _I	$V_I = V_{CC}$ or 0		6V		±0.1	±100		±1000	=	£1000	nA	
I _{CC}	$V_I = V_{CC}$ or 0,	I _O = 0	6V			4		80		40	μΑ	
C _i			2V to 6V		3	10		10		10	pF	

5.5 Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted)

			V _{cc}	T _A = 25°C		SN54HC112		SN74HC112		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	ONIT
			2V		5		3.4		4	
f _{clock}	Clock frequency		4.5V		25		17		20	MHz
			6V		29		20		24	
		PRE or CLR low	2V	100		150		125		
			4.5V	20		30		25		
	Pulse duration		6V	17		25		21		ns
t _w	ruise duration	CLK high or low	2V	100		150		125		115
	C		4.5V	20		30		25		
			6V	17		25		21		

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

5.5 Timing Requirements (continued)

over recommended operating free-air temperature range (unless otherwise noted)

				T _A = 2	5°C	SN54H0	C112	SN74HC	112	UNIT
			V _{cc}	MIN	MAX	MIN	MAX	MIN	MAX	ONIT
			2V	100		150		125		
		Data (J, K)	4.5V	20		30		25		
	Setup time before CLK↓		6V	17		25		21		ns
t _{su}		PRE or CLR inactive	2V	100		150		125		
			4.5V	20		30		25		
			6V	17		25		21		
		-		0		0		0		
t _h I	Hold time, data after CLK↓	4.5V	0		0		0		ns	
			6V	0		0		0		

5.6 Switching Characteristics

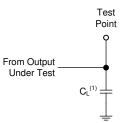
over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Parameter Measurement Information)

DADAMETED	FROM	то	.,	TA	= 25°C		SN54H0	C112	SN74HC112		LINUT	
PARAMETER	(INPUT)	(OUTPUT)	V _{CC}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
			2V	5	10		3.4		4			
f _{max}			4.5V	25	50		17		20		MHz	
			6V	29	60		20		24			
	PRE or CLR			2V		54	165		245		205	
		RE or CLR Q or Q	4.5V		16	33		49		41	ns	
4			6V		13	28		42		35		
t _{pd}			2V		56	125		185		155		
	CLK	Q or \overline{Q}	4.5V		16	25		37		31		
			6V		13	21		31		26		
t _t			2V		29	75		110		95		
		Q or \overline{Q}	4.5V		9	15		22		19	ns	
			6V		8	13		19		16		

5.7 Operating Characteristics

T_A = 25°C

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd}	Power dissipation capacitance	No load	35	pF


Copyright © 2024 Texas Instruments Incorporated

6 Parameter Measurement Information

Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1MHz, $Z_O = 50\Omega$, $t_t < 6$ ns.

For clock inputs, f_{max} is measured when the input duty cycle is 50%.

The outputs are measured one at a time with one input transition per measurement.

(1) C_I includes probe and test-fixture capacitance.

Figure 6-1. Load Circuit for Push-Pull Outputs

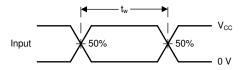


Figure 6-2. Voltage Waveforms, Standard CMOS Inputs Pulse Duration

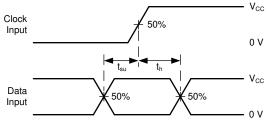


Figure 6-3. Voltage Waveforms, Standard CMOS Inputs Setup and Hold Times

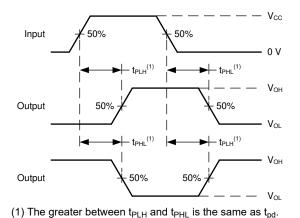
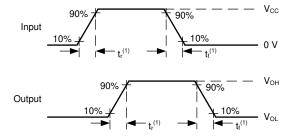
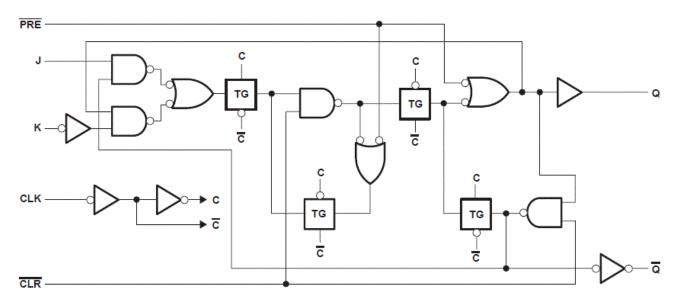



Figure 6-4. Voltage Waveforms, Propagation Delays for Standard CMOS Inputs

(1) The greater between t_r and t_f is the same as t_t .


Figure 6-5. Voltage Waveforms, Input and Output Transition Times for Standard CMOS Inputs

7 Detailed Description

7.1 Overview

The SNx4HC112 devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the preset ($\overline{\text{PRE}}$) or clear ($\overline{\text{CLR}}$) inputs sets or resets the outputs, regardless of the levels of the other inputs. When $\overline{\text{PRE}}$ and $\overline{\text{CLR}}$ are inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock (CLK) pulse. Clock triggering occurs at a voltage level and is not directly related to the fall time of the CLK pulse. Following the hold-time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops perform as toggle flip-flops by tying J and K high.

7.2 Functional Block Diagram

7.3 Device Functional Modes

Table 7-1. Function Table

		INPUTS			OUTPUTS		
PRE	CLR	CLK	J	K	ď	Q	
L	Н	Х	Х	Х	Н	Н	
Н	L	Х	Х	Х	L	Н	
L	L	Х	Х	Х	H ⁽¹⁾	H ⁽¹⁾	
Н	Н	↓	L	L	Q_0	\overline{Q}_0	
Н	Н	\	Н	L	Н	L	
Н	Н	↓	L	Н	L	Н	
Н	Н	1	Н	Н	Toggle		
Н	Н	Н	Х	Х	Q_0	\overline{Q}_0	

(1) This configuration is non stable; that is, it does not persist when either PRE or CLR returns to its inactive (high) level.

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1µF capacitor is recommended for this device. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. The 0.1µF and 1µF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

8.2 Layout

8.2.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices, inputs must never be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC}, whichever makes more sense for the logic function or is more convenient.

Product Folder Links: SN54HC112 SN74HC112

9 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

9.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision H (June 2022) to Revision I (September 2024)	Page
•	Updated the Device Information table to include package lead frame and body size	1
•	Changed V _{CC} unit from: mA to: V in the Absolute Maximum Ratings section	3

Changes from Revision G (February 2022) to Revision H (June 2022) Junction-to-ambient thermal resistance values increased. D was 73 is now 117.2, N was 67 is now 89.1...........4

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2024 Texas Instruments Incorporated

www.ti.com

31-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
84088012A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	84088012A SNJ54HC 112FK
8408801EA	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	8408801EA SNJ54HC112J
8408801FA	Active	Production	CFP (W) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	8408801FA SNJ54HC112W
JM38510/65305BEA	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 65305BEA
JM38510/65305BEA.A	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 65305BEA
M38510/65305BEA	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 65305BEA
SN54HC112J	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54HC112J
SN54HC112J.A	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN54HC112J
SN74HC112D	Obsolete	Production	SOIC (D) 16	-	-	Call TI	Call TI	-40 to 85	HC112
SN74HC112DR	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	HC112
SN74HC112DR.A	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC112
SN74HC112DRG4	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC112
SN74HC112DRG4.A	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC112
SN74HC112DT	Obsolete	Production	SOIC (D) 16	-	-	Call TI	Call TI	-40 to 85	HC112
SN74HC112N	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74HC112N
SN74HC112N.A	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74HC112N
SNJ54HC112FK	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	84088012A SNJ54HC 112FK
SNJ54HC112FK.A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type -55 to 125		84088012A SNJ54HC 112FK
SNJ54HC112J	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	8408801EA SNJ54HC112J

-55 to 125

31-Oct-2025

8408801FA SNJ54HC112W

SNJ54HC112W.A

www.ti.com

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
,	(1)	(2)			(3)	Ball material	Peak reflow	- F (-)	(6)
						(4)	(5)		
SNJ54HC112J.A	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	8408801EA SNJ54HC112J
SNJ54HC112W	Active	Production	CFP (W) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	8408801FA SNJ54HC112W

Nο

SNPB

N/A for Pkg Type

25 | TUBE

Active

Production

CFP (W) | 16

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54HC112, SN74HC112:

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

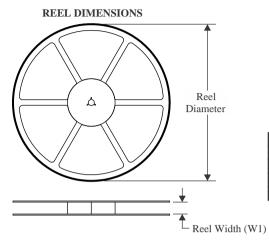
PACKAGE OPTION ADDENDUM

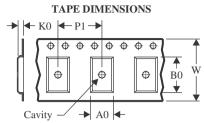
www.ti.com 31-Oct-2025

● Catalog : SN74HC112

• Military : SN54HC112

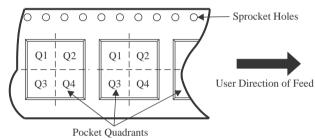
NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product

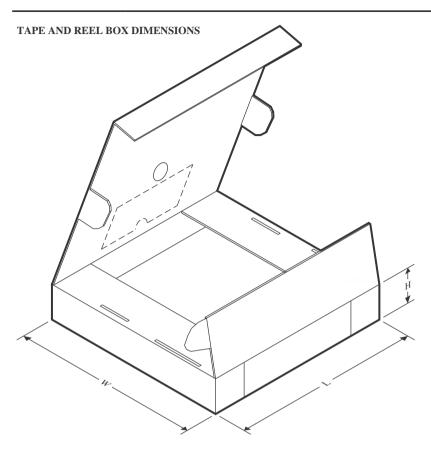

• Military - QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

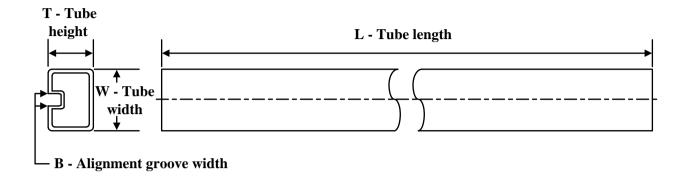
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HC112DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC112DRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

www.ti.com 24-Jul-2025

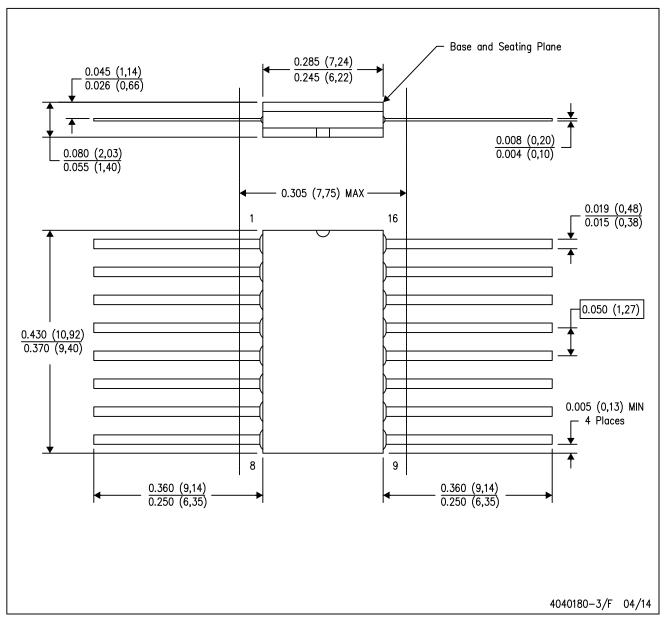

*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
S	SN74HC112DR	SOIC	D	16	2500	353.0	353.0	32.0
SN	174HC112DRG4	SOIC	D	16	2500	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE

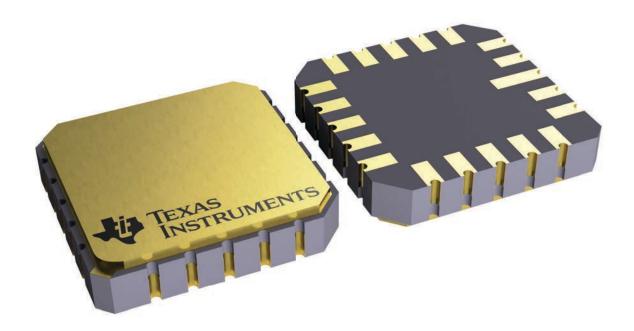


*All dimensions are nominal

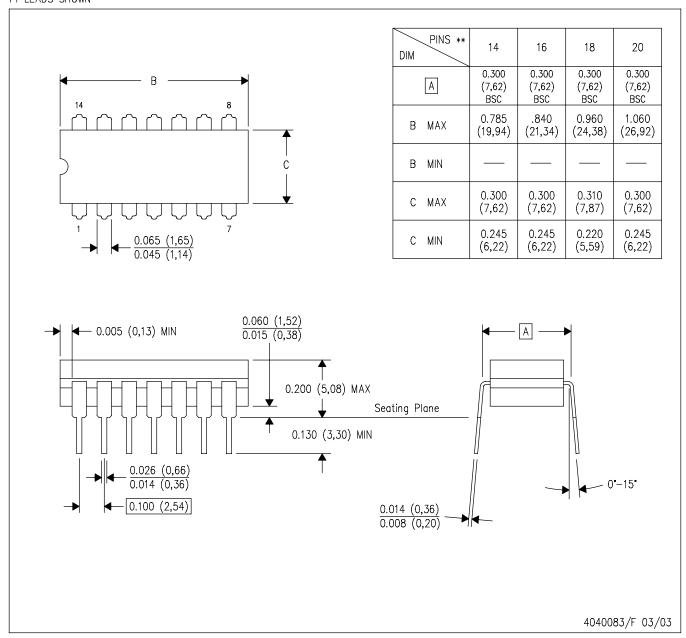
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
84088012A	FK	LCCC	20	55	506.98	12.06	2030	NA
8408801FA	W	CFP	16	25	506.98	26.16	6220	NA
SN74HC112N	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC112N	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC112N.A	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC112N.A	N	PDIP	16	25	506	13.97	11230	4.32
SNJ54HC112FK	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54HC112FK.A	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54HC112W	W	CFP	16	25	506.98	26.16	6220	NA
SNJ54HC112W.A	W	CFP	16	25	506.98	26.16	6220	NA

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

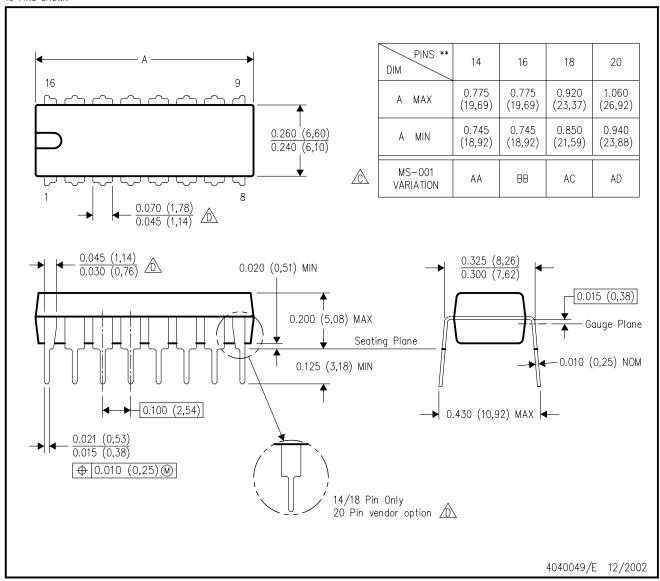
8.89 x 8.89, 1.27 mm pitch


LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

14 LEADS SHOWN

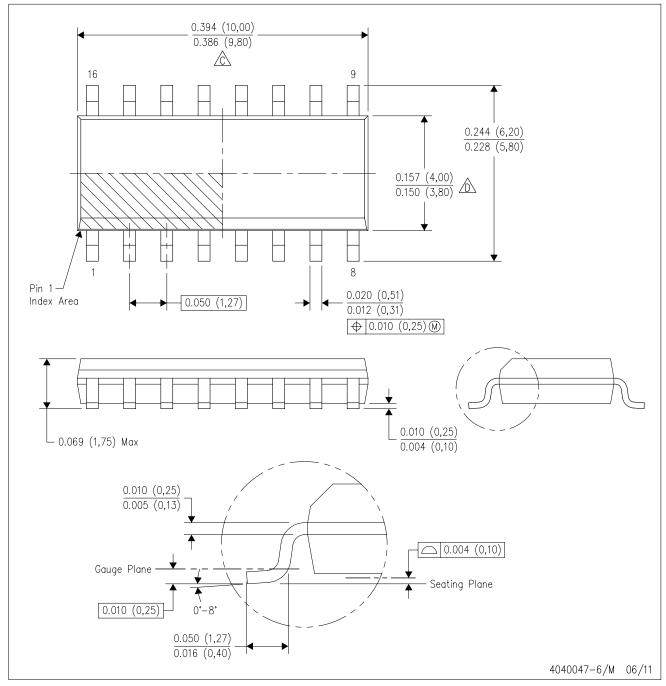


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025