
SCES349C-JUNE 2001-REVISED JANUARY 2006

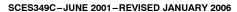
FEATURES

- TI-OPC™ Circuitry Limits Ringing on Unevenly Loaded Backplanes
- OEC[™] Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
- Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels
- Split LVTTL Port Provides a Feedback Path for Control and Diagnostics Monitoring
- LVTTL Interfaces Are 5-V Tolerant
- High-Drive GTLP Outputs (100 mA)
- LVTTL Outputs (–24 mA/24 mA)
- Variable Edge-Rate Control (ERC) Input Selects GTLP Rise and Fall Times for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads
- I_{off}, Power-Up 3-State, and BIAS V_{CC} Support Live Insertion
- Polarity Control Selects True or Complementary Outputs
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

The SN74GTLP1395 is two 1-bit, high-drive, 3-wire bus transceivers that provide LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation for applications, such as primary and secondary clocks, that require individual output-enable and true/complement controls. The device allows for transparent and inverted transparent modes of data transfer with separate LVTTL input and LVTTL output pins, which provide a feedback path for control and diagnostics monitoring. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels and is designed especially to work with the Texas Instruments 3.3-V 1394 backplane physical-layer controller. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP reduced output swing (<1 V), reduced input threshold levels, improved differential input, OECTM circuitry, and TI-OPCTM circuitry. Improved GTLP OEC and TI-OPC circuitry minimizes bus settling time, and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes, with equivalent load impedance down to 11 Ω.


GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLP1395 is given only at the preferred higher noise margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2 \text{ V}$ and $V_{REF} = 0.8 \text{ V}$) or GTLP ($V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$) signal levels. For information on using GTLP devices in FB+/BTL applications, refer to TI application reports, *Texas Instruments GTLP Frequently Asked Questions*, literature number SCEA019, and *GTLP in BTL Applications*, literature number SCEA017.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and are compatible with TTL or 5-V CMOS devices. V_{REF} is the B-port differential input reference voltage.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

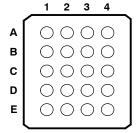
TI-OPC, OEC are trademarks of Texas Instruments.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

This device is fully specified for live-insertion applications using I_{off} , power-up 3-state, and BIAS V_{CC} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits the overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between low and high adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.


When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

ORDERING INFORMATION

T _A	PACKAG	iE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SOIC – DW	Tube	SN74GTLP1395DW	GTLP1395
	SOIC - DW	Tape and reel	SN74GTLP1395DWR	GILF1395
–40°C to 85°C	TSSOP – PW	Tape and reel	SN74GTLP1395PWR	GP395
	TVSOP – DGV	Tape and reel	SN74GTLP1395DGVR	GP395
	VFBGA – GQN	Tape and reel	SN74GTLP1395GQNR	GP395

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

TERMINAL ASSIGNMENTS

	1	2	3	4
Α	1T/C	1Y	1OEBY	2T/C
В	GND	GND	2Y	2 OEBY
С	V _{CC}	1 OEAB	ERC	1B
D	GND	GND	1A	2B
E	2 OEAB	2A	BIAS V _{CC}	V_{REF}

SCES349C-JUNE 2001-REVISED JANUARY 2006

FUNCTIONAL DESCRIPTION

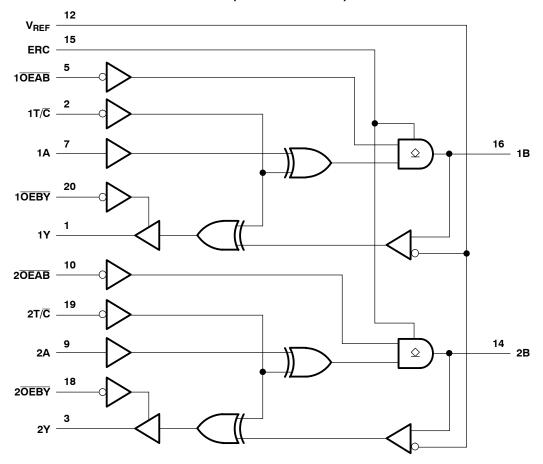
The output-enable ($1\overline{OEAB}$, $1\overline{OEBY}$) and polarity-control ($1T/\overline{C}$) inputs control 1A, 1B, and 1Y. $2\overline{OEAB}$, $2\overline{OEBY}$, and $2T/\overline{C}$ control 2A, 2B, and 2Y.

 $\overline{\text{OEAB}}$ controls the activity of the B port. When $\overline{\text{OEAB}}$ is low, the B-port output is active. When $\overline{\text{OEAB}}$ is high, the B-port output is disabled.

A separate LVTTL A input and Y output provide a feedback path for control and diagnostics monitoring. \overline{OEBY} controls the Y output. When \overline{OEBY} is low, the Y output is active. When \overline{OEBY} is high, the Y output is disabled.

 T/\overline{C} selects polarity of data transmission in both directions. When T/\overline{C} is high, data transmission is true, and A data goes to the B bus and B data goes to the Y bus. When T/\overline{C} is low, data transmission is complementary, and inverted A data goes to the B bus and inverted B data goes to the Y bus.

FUNCTION TABLES OUTPUT CONTROL


INPUTS OUTPUT MODE OEAB T/C **OEBY** Χ Н Н Ζ Isolation Н L Н A data to B bus True transparent Н Н L B data to Y bus True transparent Н L L A data to B bus, B data to Y bus with feedback path L L Н Inverted A data to B bus Inverted transparent Inverted B data to Y bus L Н L Inverted A data to B bus. Inverted transparent L L L Inverted B data to Y bus with feedback path

OUTPUT EDGE-RATE CONTROL (ERC)

	· · ·
INPUT ERC LOGIC LEVEL	OUTPUT B-PORT EDGE RATE
Н	Slow
L	Fast

LOGIC DIAGRAM (POSITIVE LOGIC)

Pin numbers shown are for the DGV, DW, and PW packages.

SCES349C-JUNE 2001-REVISED JANUARY 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC} BIAS V _{CC}	Supply voltage range		-0.5	4.6	V
V	Input voltage range (2) A inputs, ERC, and control inputs		-0.5	7	V
V _I	input voltage range	B port and V _{REF}	-0.5	4.6	V
V	Voltage range applied to any output	Y outputs	-0.5	7	V
Vo	in the high-impedance or power-off state (2)	B port	-0.5	4.6	V
	Company into any order tip the law state	Y outputs		48	A
Io	Current into any output in the low state	B port		200	mA
Io	Current into any output in the high state (3)			48	mA
	Continuous current through each V _{CC} or GND			±100	mA
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
		DGV package		92	
	Dealer at the surred in a red area (4)	DW package		58	°C 141
θ_{JA}	Package thermal impedance (4)	GQN package		78	°C/W
		PW package		83	
T _{stg}	Storage temperature range		-65	150	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

This current flows only when the output is in the high state and $V_{\rm O} > V_{\rm CC}$. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74GTLP1395

TWO 1-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVERS WITH SPLIT LYTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY

SCES349C-JUNE 2001-REVISED JANUARY 2006

Recommended Operating Conditions (1)(2)(3)(4)

			MIN	NOM	MAX	UNIT
V_{CC} BIAS V_{CC}	Supply voltage		3.15	3.3	3.45	V
M	Tormination valtage	GTL	1.14	1.2	1.26	V
V_{TT}	Termination voltage	GTLP	1.35	1.5	1.65	\ \
.,	Deference vallege	GTL	0.74	0.8	0.87	V
V_{REF}	Reference voltage	GTLP	0.87	1	1.1	\ \
V	lanut valtana	B port			V _{TT}	V
V _I	Input voltage	Except B port		V _{CC}	5.5	\ \
V	High level inner voltage	B port	V _{REF} + 0.05			V
V_{IH}	High-level input voltage	Except B port	2			V
V	Low level input voltage	B port			V _{REF} - 0.05	V
V_{IL}	Low-level input voltage	Except B port			0.8	\ \
I _{IK}	Input clamp current	·			-18	mA
I _{OH}	High-level output current	Y outputs			-24	mA
	Law law law day day day	Y outputs			24	A
I _{OL}	Low-level output current	B port			100	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled			10	ns/V
$\Delta t/\Delta V_{CC}$	Power-up ramp rate	,	20			μs/V
T _A	Operating free-air temperature		-40		85	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

 V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded. V_{REF} can be adjusted to optimize noise margins, but normally it is two-thirds V_{TT} . TI-OPC is enabled in the A-to-B direction and is activated when $V_{TT} > 0.7 \text{ V}$ above V_{REF} . If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current

SCES349C-JUNE 2001-REVISED JANUARY 2006

Electrical Characteristics

over recommended operating free-air temperature range for GTLP (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}		V _{CC} = 3.15 V,	I _I = -18 mA			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	$I_{OH} = -100 \mu A$	V _{CC} - 0.2			ı
V _{OH}	Y outputs	V _{CC} = 3.15 V	$I_{OH} = -12 \text{ mA}$	2.4			V
		VCC = 3.13 V	I _{OH} = -24 mA	2			
		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2	
	Y outputs	tputs V _{CC} = 3.15 V				0.4	
V _{OL}		VCC = 3.13 V	I _{OL} = 24 mA			0.5	V
VOL.			I _{OL} = 10 mA			0.2	
	B port	V _{CC} = 3.15 V	I _{OL} = 64 mA	0.4		ı	
			I _{OL} = 100 mA			0.55	
I ₁ (2)	A-port and control inputs	V _{CC} = 3.45 V,	V _I = 0 to 5.5 V			±10	μΑ
I _{OZ} ⁽²⁾	Y outputs	V _{CC} = 3.45 V,	$V_0 = 0 \text{ to } 5.5 \text{ V}$			±10	μΑ
'OZ`	B port	V_{CC} = 3.45 V, V_{REF} within 0.6 V of V_{TT} ,	$V_0 = 0 \text{ to } 2.3 \text{ V}$			±10	μΑ
		V _{CC} = 3.45 V, I _O = 0,	Outputs high			20	
I _{CC}	Y outputs or B port	V_{I} (A-port or control inputs) = V_{CC} or GND,	Outputs low			20	mA
		V _I (B port) = V _{TT} or GND	Outputs disabled			20	
ΔI _{CC} ⁽³⁾		V_{CC} = 3.45 V, One A-port or control input at Other A-port or control inputs at V_{CC} or GNI				1.5	mA
_	A-port inputs	V _I = 3.15 V or 0			4	4.5	pF
C _I	Control inputs	ν ₁ = 3.13 ν οι ο			3.5	5	μΓ
C _o	Y outputs	V _O = 3.15 V or 0			5	5.5	pF
C _{io}	B port	V _O = 1.5 V or 0			7	10.5	pF

- All typical values are at V_{CC} = 3.3 V, T_A = 25°C. For I/O ports, the parameter I_{OZ} includes the input leakage current.
- This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

Hot-Insertion Specifications for A Inputs and Y Outputs

over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS					
l _{off}	$V_{CC} = 0$,	V_I or $V_O = 0$ to 5.5 V			10	μΑ	
l _{ozpu}	$V_{CC} = 0 \text{ to } 1.5 \text{ V},$	$V_0 = 0.5 \text{ V to 3 V},$	OEBY = 0		±30	μΑ	
I _{OZPD}	V _{CC} = 1.5 V to 0,	V _O = 0.5 V to 3 V,	OEBY = 0		±30	μΑ	

Live-Insertion Specifications for B Port

over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS					
I _{off}	V _{CC} = 0,	BIAS $V_{CC} = 0$,	V_I or $V_O = 0$ to 1.5 V			10	μΑ
I _{OZPU}	$V_{CC} = 0 \text{ to } 1.5 \text{ V},$	BIAS $V_{CC} = 0$,	$V_0 = 0.5 \text{ V to } 1.5 \text{ V},$	$\overline{OEAB} = 0$		±30	μΑ
I _{OZPD}	V _{CC} = 1.5 V to 0,	BIAS $V_{CC} = 0$,	$V_0 = 0.5 \text{ V to } 1.5 \text{ V},$	$\overline{OEAB} = 0$		±30	μΑ
I _{CC}	V _{CC} = 0 to 3.15 V	DIACV 0.45 V to 0.45 V	\/ (D nort)	,		5	mA
(BIAS V _{CC})	V _{CC} = 3.15 V to 3.45 V	BIAS $V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	V_O (B port) = 0 to 1.5 V			10	μΑ
V _O	V _{CC} = 0,	BIAS $V_{CC} = 3.3 \text{ V}$,	I _O = 0		0.95	1.05	V
Io	V _{CC} = 0,	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V		-1		μΑ

SN74GTLP1395

TWO 1-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE BUS TRANSCEIVERS WITH SPLIT LVTTL PORT, FEEDBACK PATH, AND SELECTABLE POLARITY

SCES349C-JUNE 2001-REVISED JANUARY 2006

Switching Characteristics

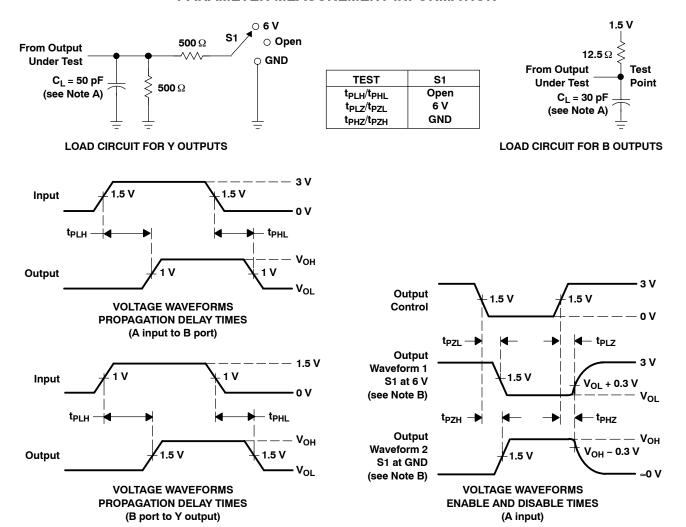
over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE ⁽¹⁾	MIN	TYP ⁽²⁾ MA	UNIT
t _{PLH}	A	В	Slow	3.3	6.	3
t _{PHL}	A	Б	Slow	1.9		ns 6
t _{PLH}	A	В	Fast	2.5	5.	
t _{PHL}	A	Ь	Fasi	1.6	4.	9 ns
t _{PLH}	Α Α	Y	Slow	3.4	9.	7
t _{PHL}	^	ľ	Slow	3.3	9.	ns 2
t _{PLH}	A	Υ	Fast	2.9	8.	7
t _{PHL}	A	T	Fasi	2.9	8.	ns 1
t _{PLH}	T/C	В	Slow	3.7	6.	
t _{PHL}	1/0	Ь	Slow	1.8	6.	ns ns
t _{PLH}	T/C	В	Fast	1.5	5.	6 ns
t _{PHL}	1/0	Ь	Fasi	1.7	5.	5
t _{en}	- OEAB	В	Slow	3.8	6.	4
t _{dis}	OEAB	Ь	Slow	1.9	6.	ns 1
t _{en}	- OEAB	В	Fast	2.8	5.	3
t _{dis}	OLAB	D	i asi	1.5		ns 5
	Disco timo. B outp	uts (20% to 80%)	Slow		2.4	ns
t _r	nise time, b outp	uis (20% to 80%)	Fast		1.3	115
	Fall time, B outpo	uto (909/ to 209/)	Slow		3	no
t _f	Fall time, B outpo		Fast		2.7	ns
t _{PLH}	В	Y		1.3	5.	
t _{PHL}	D	T		1.4	4.	ns 5
t _{PLH}	T/C	Y		1	4.	5 ns
t _{PHL}	1/0	ı	1			4
t _{en}	- OEBY	Y		1	4.	5
t _{dis}	UEDI	Ť		1		7 ns

⁽¹⁾ Slow (ERC = H) and Fast (ERC = L) (2) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCES349C-JUNE 2001-REVISED JANUARY 2006

Skew Characteristics⁽¹⁾


over recommended ranges of supply voltage and operating free-air temperature, V_{REF} = 1 V, standard lumped loads (C_L = 30 pF for B port and C_L = 50 pF for Y port) (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE ⁽²⁾	MIN MAX	UNIT
t _{sk(LH)} (3)	A	В	Slow	0.3	20
t _{sk(HL)} (3)	A	Б	Slow	0.4	ns
t _{sk(LH)} (3)	А	В	Fast	0.3	ns
t _{sk(HL)} (3)	A	Б	rasi	0.3	115
t _{sk(LH)} (3)	В	Y		0.4	20
t _{sk(HL)} (3)	В	T		0.2	ns
	۸	В	Slow	1.8	
t _{sk(t)} (3)	Α	В	Fast	1.5	ns
	В	Y		1	
t _{sk(prLH)} (4)	^	В	Claur	0.7	
t _{sk(prHL)} (4)	Α	D	Slow	2	ns
t _{sk(prLH)} (4)	Δ.	В	Fast	0.5	
t _{sk(prHL)} (4)	A	D	rasi	1.7	ns
t _{sk(prLH)} (4)	В	Y		1.2	
t _{sk(prHL)} (4)	В	Y		1.6	ns

- (1) Actual skew values between GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.
- (2) Slow (ERC = L) and Fast (ERC = H)
- (3) $t_{sk(LH)}/t_{sk(HL)}$ and $t_{sk(t)}$ Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs with the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature and apply to any outputs switching in the same direction either high to low $[t_{sk(HL)}]$ or low to high $[t_{sk(LH)}]$ or in opposite directions, both low to high and high to low $[t_{sk(t)}]$.
- (4) t_{sk(prLH)}/t_{sk(prH-L)} The magnitude of the difference in propagation delay times between corresponding terminals of two logic devices when both logic devices operate with the same supply voltages and at the same temperature, and have identical package types, identical specified loads, and identical logic functions. Furthermore, these values are provided by SPICE simulations.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≈ 10 MHz, Z_O = 50 Ω, t_r ≈ 2 ns, t_f ≈ 2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SCES349C-JUNE 2001-REVISED JANUARY 2006

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in the backplane. See www.ti.com/sc/gtlp for more information.

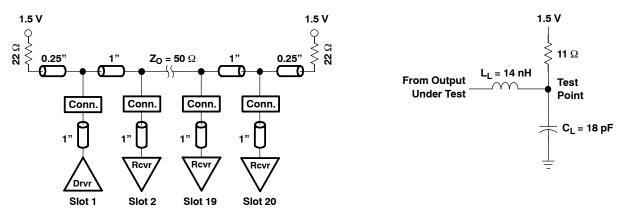


Figure 2. High-Drive Test Backplane

Figure 3. High-Drive RLC Network

Switching Characteristics

over recommended operating conditions for the bus transceiver function (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE(1)	TYP (2)	UNIT
t _{PLH}	Α	В	Slow	4.3	
t _{PHL}	A	Ь	Slow	4.2	ns
t _{PLH}	Α	В	Fast	3.8	20
t _{PHL}	A	Ь	rasi	3.4	ns
t _{PLH}	Α	Υ	Slow	6.1	20
t _{PHL}	A	T	Slow	5.9	ns
t _{PLH}	Α	Υ	Fast	5.6	ns
t _{PHL}	A	1	i asi	5.4	110
	Pico timo. P. out	outs (20% to 80%)	Slow	1.5	ns
t _r	nise tillie, b out	outs (20% to 60%)	Fast	1	115
	Fall time Dout	outo (000/ to 000/)	Slow	2.6	
t _f	Fall time, B out	outs (80% to 20%)	Fast	2	ns

⁽¹⁾ Slow (ERC = H) and Fast (ERC = L)

⁽²⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. All values are derived from TI SPICE models.

SCES349C-JUNE 2001-REVISED JANUARY 2006

APPLICATION INFORMATION

Operational Description

The GTLP1395 is designed specifically for use with the TI 1394 backplane-layer controller family to transmit the 1394 backplane serial bus across parallel backplanes. But, it is a versatile two 1-bit device that also can provide multiple 1-bit clocks or an ATM read and write clock in multislot parallel backplane applications.

The 1394-1995 is an IEEE designation for a high-performance serial bus. This serial bus defines both a backplane (e.g., GTLP, VME, FB+, CPCI, etc.) physical layer and a point-to-point cable-connected virtual bus. The backplane version operates at 25, 50, or 100 Mbps, whereas the cable version supports data rates of 100, 200, and 400 Mbps. Both versions are compatible at the link layer and above. The interface standard defines the transmission method, media in the cable version, and protocol. The primary application of the cable version is the interconnection of digital A/V equipment and integration of I/O connectivity at the back panel of personal computers using a low-cost, scalable, high-speed serial interface. The primary application of the backplane version is to provide a robust control interface to each daughter card. The 1394 standard also provides new services such as real-time I/O and live connect/disconnect capability for external devices.

Electrical

The 1394 standard is a transaction-based packet technology for cable- or backplane-based environments. Both chassis and peripheral devices can use this technology. The 1394 serial bus is organized as if it were memory space interconnected between devices, or as if devices resided in slots on the main backplane. Device addressing is 64 bits wide, partitioned as 10 bits for bus ID, 6 bits for node ID, and 48 bits for memory addresses. The result is the capability to address up to 1023 buses, each having up to 63 nodes and each with 281 terabytes of memory. Memory-based addressing, rather than channel addressing, views resources as registers or memory that can be accessed with processor-to-memory transactions. Each bus entity is termed a unit, to be individually addressed, reset, and identified. Multiple nodes can reside physically in a single module, and multiple ports can reside in a single node.

Some key features of the 1394 topology are multimaster capabilities, live connect/disconnect (hot plugging) capability, genderless cabling connectors on interconnect cabling, and dynamic node address allocation as nodes are added to the bus. A maximum of 63 nodes can be connected to one network.

The cable-based physical interface uses dc-level line states for signaling during initialization and arbitration. Both environments use dominant mode addresses for arbitration. The backplane environment does not have the initialization requirements of the cable environment because it is a physical bus and does not contain repeaters. Due to the differences, a backplane-to-cable bridge is required to connect these two environments.

The signals transmitted on both the cable and backplane environments are NRZ with data-strobe (DS) encoding. DS encoding allows only one of the two signal lines to change each data bit period, essentially doubling the jitter tolerance with very little additional circuitry overhead in the hardware.

SCES349C-JUNE 2001-REVISED JANUARY 2006

APPLICATION INFORMATION

Protocol

Both asynchronous and isochronous data transfers are supported. The asynchronous format transfers data and transaction layer information to an explicit address. The isochronous format broadcasts data based on channel numbers rather than specific addressing. Isochronous packets are issued on the average of each 125 µs in support of time-sensitive applications. Providing both asynchronous and isochronous formats on the same interface allows both non-real-time and real-time critical applications on the same bus. The cable environment's tree topology is resolved during a sequence of events, triggered each time a new node is added or removed from the network. This sequence starts with a bus reset phase, where previous information about a topology is cleared. The tree ID sequence determines the actual tree structure, and a root node is dynamically assigned, or it is possible to force a particular node to become the root. After the tree is formed, a self-ID phase allows each node on the network to identify itself to all other nodes. During the self-ID process, each node is assigned an address. After all the information has been gathered on each node, the bus goes into an idle state, waiting for the beginning of the standard arbitration process.

The backplane physical layer shares some commonality with the cable physical layer. Common functions include: bus-state determination, bus-access protocols, encoding and decoding functions, and synchronization of received data to a local clock.

Backplane Features

- 25-, 50-, and 100-Mbps data rates for backplane environments
- Live connection/disconnection possible without data loss or interruption
- Configuration ROM and status registers supporting plug and play
- Multidrop or point-to-point topologies supported
- · Specified bandwidth assignments for real-time applications

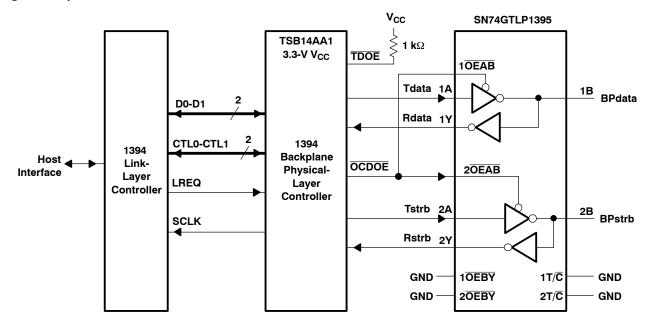
Applicability and Typical Application for IEEE 1394 Backplane

The 1394 backplane serial bus (BPSB) plays a supportive role in backplane systems, specifically GTLP, FutureBus+, VME64, and proprietary backplane bus systems. This supportive role can be grouped into three categories:

- Diagnostics
 - Alternate control path to the parallel backplane bus
 - Test, maintenance, and troubleshooting
 - Software debug and support interface
- System enhancement
 - Fault tolerance
 - Live insertion
 - CSR access
 - Auxiliary 2-bit bus with a 64-bit address space to the parallel backplane bus
- Peripheral monitoring
 - Monitoring of peripherals (disk drives, fans, power supplies, etc.) in conjunction with another externally wired monitor bus, such as defined by the Intelligent Platform Management Interface (IPMI)

The 1394 backplane physical layer (PHY) and the SN74GTLP1395 provide a cost-effective way to add high-speed 1394 connections to every daughter card in almost any backplane. More information on the backplane PHY devices and how to implement the 1394 standard in backplane and cable applications can be found at www.ti.com/sc/1394.

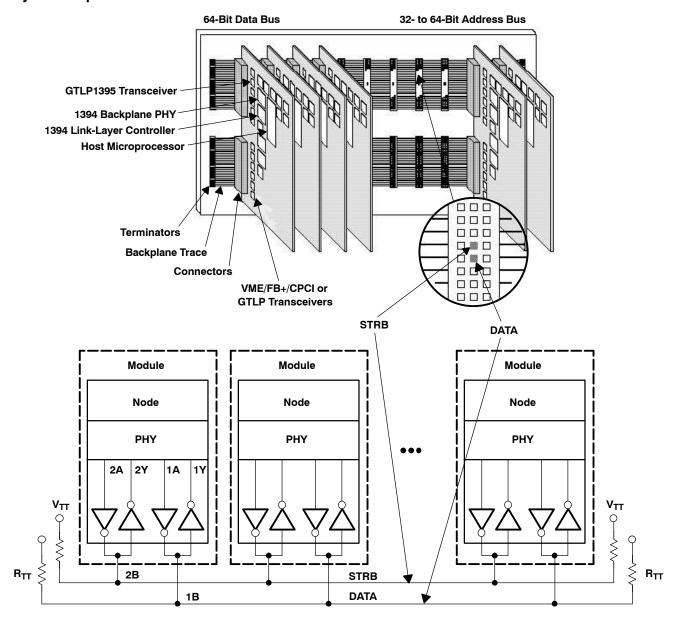
SCES349C-JUNE 2001-REVISED JANUARY 2006



APPLICATION INFORMATION

SN74GTLP1395 Interface With the TSB14AA1 1394 Backplane PHY

- 1A, 1B, and 1Y are used for the PHY data signals.
- 2A, 2B, and 2Y are used for the PHY strobe signals.
- PHY N OEB D or OCDOE connects to 1 OEAB and 2 OEAB, which control the PHY transmit signals.
- 1OEBY and 2OEBY are connected to GND because the transceiver must always be able to receive signals from the backplane and relay them to the PHY.
- 1T/\overline{
- V_{CC} is nominal 3.3 V.
- BIAS V_{CC} is connected to nominal 3.3 V to support live insertion.
- V_{REF} is normally 2/3 of V_{TT}.
- ERC is normally connected to V_{CC} for slow edge-rate operation because frequencies of only 50 MHz (S100) and 25 MHz (S50) are required.


Logical Representation

APPLICATION INFORMATION

Physical Representation

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74GTLP1395DWR	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	GTLP1395
SN74GTLP1395DWR.B	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	GTLP1395
SN74GTLP1395PW	Active	Production	TSSOP (PW) 20	70 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	GP395
SN74GTLP1395PW.B	Active	Production	TSSOP (PW) 20	70 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	GP395
SN74GTLP1395PWR	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	GP395
SN74GTLP1395PWR.B	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	GP395

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

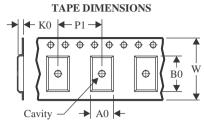
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM


www.ti.com 11-Nov-2025

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

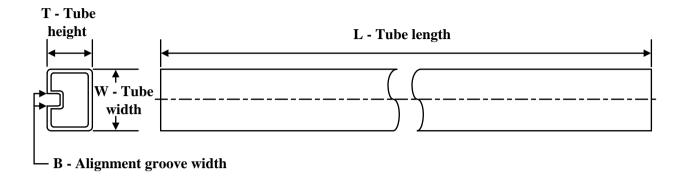
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74GTLP1395DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74GTLP1395PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

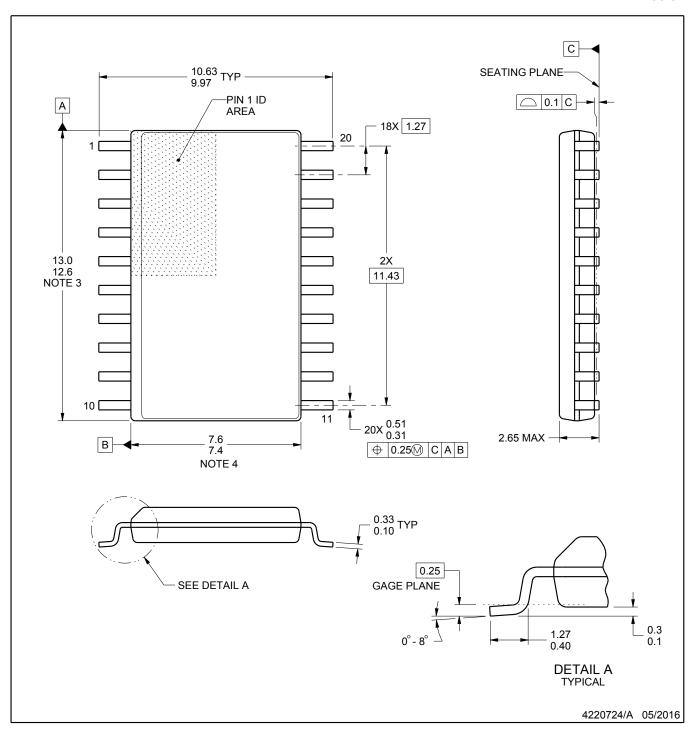

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74GTLP1395DWR	SOIC	DW	20	2000	356.0	356.0	45.0
SN74GTLP1395PWR	TSSOP	PW	20	2000	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE

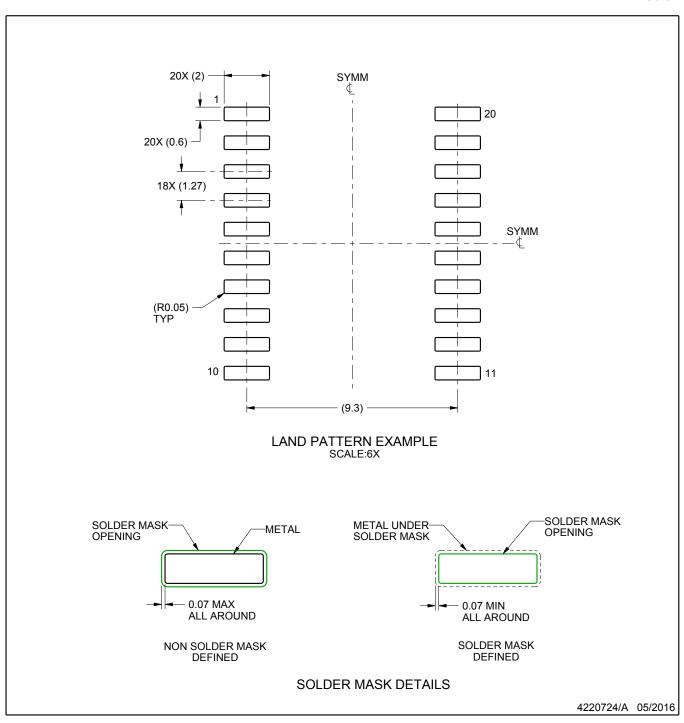


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74GTLP1395PW	PW	TSSOP	20	70	530	10.2	3600	3.5
SN74GTLP1395PW.B	PW	TSSOP	20	70	530	10.2	3600	3.5

SOIC

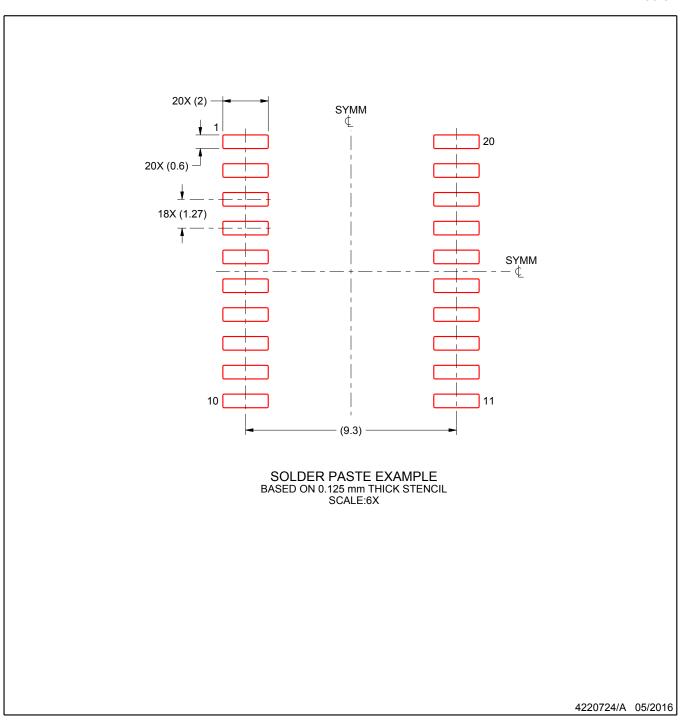
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

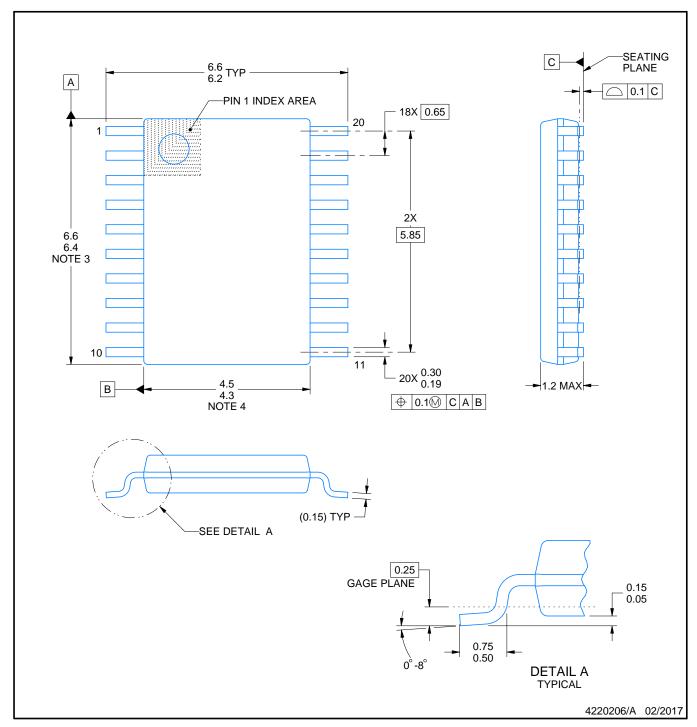
SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

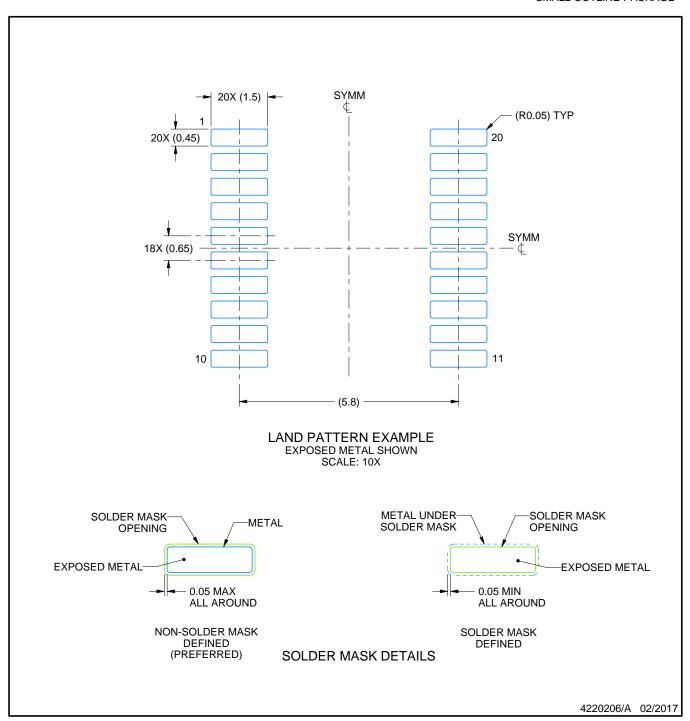
SOIC


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE PACKAGE

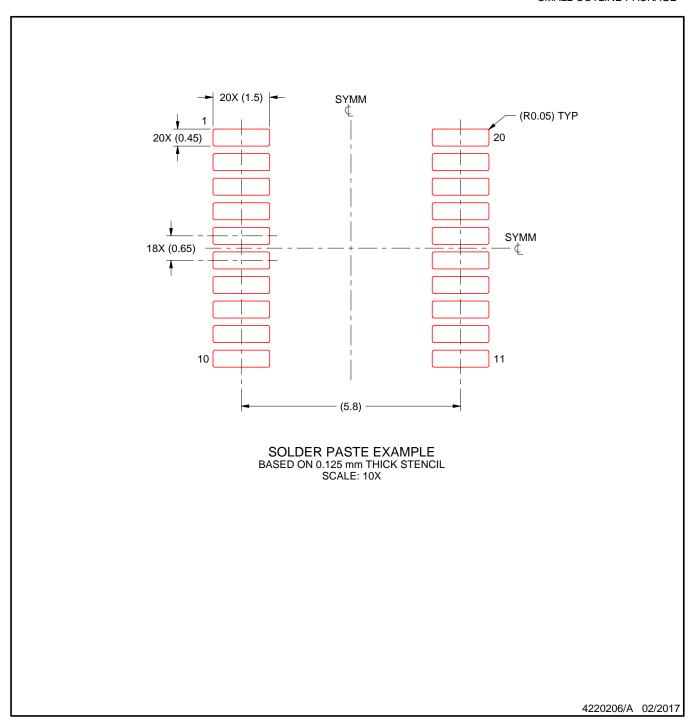
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025