
SCBS702H - AUGUST 1997 - REVISED MARCH 2004

- Compatible With IEEE Std 1194.1-1991 (BTL)
- LVTTL A Port, Backplane Transceiver Logic (BTL) B Port
- Open-Collector B-Port Outputs Sink
 100 mA
- B-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage
- High-Impedance State During Power Up and Power Down
- Selectable Clock Delay
- TTL-Input Structures Incorporate Active Clamping Networks to Aid in Line Termination
- BIAS V_{CC} Minimizes Signal Distortion During Live Insertion/Withdrawal

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCBS702H - AUGUST 1997 - REVISED MARCH 2004

description/ordering information

The SN74FB1653 contains an 8-bit and a 9-bit transceiver with a buffered clock. The clock and transceivers are designed to translate signals between LVTTL and BTL environments. The device is designed specifically to be compatible with IEEE Std 1194.1-1991 (BTL).

The A port operates at LVTTL signal levels. The A outputs reflect the inverse of the data at the \overline{B} port when the A-port output enable (OEA) is high. When OEA is low or when $V_{CC}(5 \text{ V})$ typically is less than 2.5 V, the A outputs are in the high-impedance state.

The \overline{B} port operates at BTL signal levels. The open-collector \overline{B} ports are specified to sink 100 mA. Two output enables (OEB and \overline{OEB}) are provided for the \overline{B} outputs. When OEB is low, \overline{OEB} is high, or $V_{CC}(5\ V)$ typically is less than 2.5 V, the \overline{B} port is turned off.

The clock-select (2SEL1 and 2SEL2) inputs are used to configure the TTL-to-BTL clock paths and delays (refer to the MUX-MODE DELAY table).

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC}(5 V) is not connected.

BG V_{CC} and BG GND are the supply inputs for the bias generator.

 V_{REF} is an internally generated voltage source. It is recommended that V_{REF} be decoupled with an external 0.1- μ F capacitor.

Enhanced heat-dissipation techniques should be used when operating this device from AI to A0 at frequencies greater than 50 MHz, or from AI to \overline{B} or \overline{B} to A0 at frequencies greater than 100 MHz.

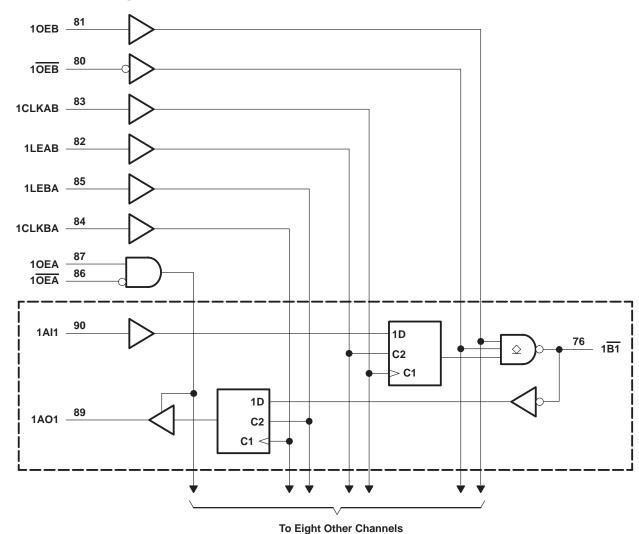
ORDERING INFORMATION

TA	PACKAG	ΕŤ	ORDERABLE PART NUMBER	TOP-SIDE MARKING
0°C to 70°C	TQFP - PCA	Tube	SN74FB1653PCA	FB1653

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

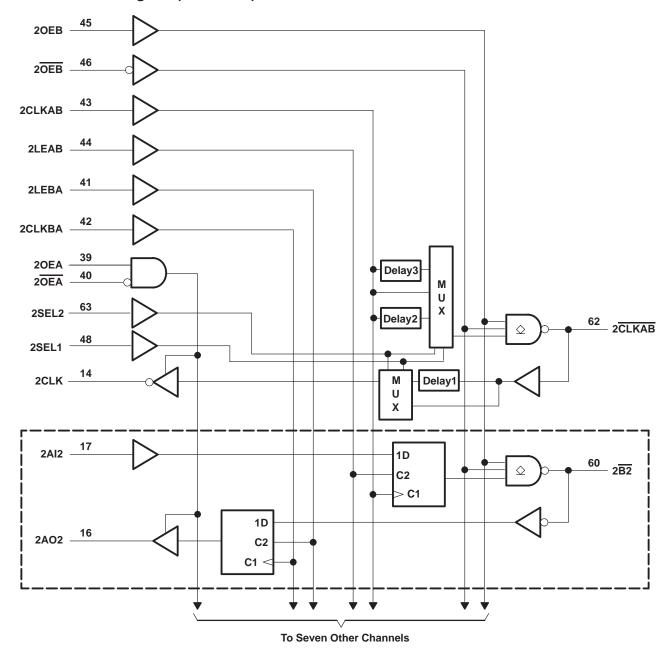
Function Tables

TRANSCEIVER


	INP	UTS		FUNCTION				
OEA	OEA	OEB	OEB	FUNCTION				
Х	Х	Н	L	A data to B bus				
L	Н	Χ	X	B data to A bus				
L	Н	Н	L	\overline{A} data to B bus, \overline{B} data to A bus				
Х	Χ	L	X	D have tradefine				
Χ	X	Χ	Н	B-bus isolation				
Н	Χ	Χ	Χ	A-bus isolation				
Х	L	X	X	A-bus isolation				

STORAGE MODE

INP	UTS	FUNCTION				
LE	CLK	FUNCTION				
Н	Х	Transparent				
L	\uparrow	Store data				
L	L	Storage				



functional block diagram

SCBS702H - AUGUST 1997 - REVISED MARCH 2004

functional block diagram (continued)

MUX-MODE DELAY

INP	UTS	DELAY PATH [†]					
2SEL1	2SEL2	2CLKAB TO 2CLK					
L	L	No delay	No delay				
L	Н	No delay	Delay1				
Н	L	Delay2	Delay1				
Н	Н	Delay3	Delay1				

[†] Refer to delay1 through delay3 in the functional block diagram.

SCBS702H - AUGUST 1997 - REVISED MARCH 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range: V _{CC} (5 V), BIAS V _{CC} , BG V _{CC}	–0.5 V to 7 V
V _{CC} (3.3 V)	
Input voltage range, V _I : Except B port	–1.2 V to 7 V
B port	
Input clamp current, I _{IK} : Except B port	–40 mA
B port	–18 mA
Voltage range applied to any \overline{B} output in the disabled or power-off state .	
Voltage range applied to any output in the high state	–0.5 V to V _{CC}
Current applied to any single output in the low state: A port	48 mA
B port	200 mA
Package thermal impedance, θ _{JA} (see Note 1)	22°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 2)

			MIN	NOM	MAX	UNIT	
V _{CC} , BG V _{CC} , BIAS V _{CC}	Supply voltage		4.5	5	5.5	V	
VCC(3.3 V)	Supply voltage		3	3.3	3.6	V	
VIH	High level in motoral to me	B port	1.62		2.3	.,	
	High-level input voltage Except B port					V	
		B port	0.75		1.47	.,	
V _{IL}	Low-level input voltage	Except B port			0.8	V	
l _{IK}	Input clamp current				-18	mA	
loн	High-level output current	AO port			-3	mA	
	Law law law and and an arranged	AO port			24	4	
lOL	Low-level output current B port				100	mA	
T _A	Operating free-air temperature		0		70	°C	

NOTE 2: To ensure proper device operation, all unused inputs must be terminated as follows: A and control inputs to V_{CC}(5 V) or GND, and B inputs to GND only. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

SN74FB1653 17-BIT LVTTL/BTL UNIVERSAL STORAGE TRANSCEIVER WITH BUFFERED CLOCK LINE SCBS702H - AUGUST 1997 - REVISED MARCH 2004

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST CO	ONDITIONS	MIN	TYP	MAX	UNIT
.,	B port	$V_{CC}(5 \text{ V}) = 4.5 \text{ V},$	I _I = -18 mA			-1.2	
VIK	Except B port	V _{CC} (3.3 V) = 3.3 V	$I_I = -40 \text{ mA}$			-0.5	V
Vон	AO port	$V_{CC}(5 \text{ V}) = 4.5 \text{ V},$ $V_{CC}(3.3 \text{ V}) = 3 \text{ V}$	I _{OH} = −3 mA	2.5			V
,,	AO port	$V_{CC}(5 \text{ V}) = 4.5 \text{ V},$ $V_{CC}(3.3 \text{ V}) = 3 \text{ V}$	I _{OL} = 24 mA		0.35	0.5	V
VOL	B port	$V_{CC}(5 \text{ V}) = 4.5 \text{ V},$	$I_{OL} = 80 \text{ mA}$	0.75		1.1	V
	ь роп	V _{CC} (3.3 V) = 3 V	$I_{OL} = 100 \text{ mA}$			1.15	
lį	Except B port	$V_{CC}(5 \text{ V}) = 5.5 \text{ V},$ $V_{CC}(3.3 \text{ V}) = 3.6 \text{ V}$	V _I = 5.5 V			50	μΑ
I _{IH} ‡	Except B port	$V_{CC}(5 \text{ V}) = 5.5 \text{ V},$ $V_{CC}(3.3 \text{ V}) = 3.6 \text{ V}$	V _I = 2.7 V			50	μΑ
. +	Except B port	$V_{CC}(5 \text{ V}) = 5.5 \text{ V},$ $V_{CC}(3.3 \text{ V}) = 3.6 \text{ V}$	V _I = 0.5 V			-50	
I _{IL} ‡	B port	V _{CC} (5 V) = 5.5 V, V _{CC} (3.3 V) = 3.6 V	V _I = 0.75 V			-100	μΑ
ЮН	B port	$V_{CC}(5 \text{ V}) = 0 \text{ to } 5.5 \text{ V},$ $V_{CC}(3.3 \text{ V}) = 3.6 \text{ V}$	V _O = 2.1 V			100	μА
I _{OZH}	AO port	$V_{CC}(5 \text{ V}) = 5.5 \text{ V},$ $V_{CC}(3.3 \text{ V}) = 3.6 \text{ V}$	V _O = 2.7 V			50	μΑ
I _{OZL}	AO port	$V_{CC}(5 \text{ V}) = 5.5 \text{ V},$ $V_{CC}(3.3 \text{ V}) = 3.6 \text{ V}$	V _O = 0.5 V			-50	μΑ
lozpu	AO port	V _{CC} = 0 to 2.1 V,	V _O = 0.5 V to 2.7 V			-50	μΑ
lozpd	AO port	$V_{CC} = 2.1 \text{ V to } 0,$	$V_0 = 0.5 \text{ V to } 2.7 \text{ V}$			-50	μΑ
	Al port to B port	., ,=,,,				145	
ICC(5 V)	B port to AO port	$V_{CC}(5 \text{ V}) = 5.5 \text{ V},$ $V_{CC}(3.3 \text{ V}) = 3.3 \text{ V}$	IO = 0			130	mA
	Outputs disabled	100(0.0 1) = 0.0 1				120	
I _{CC} (3.3 V)	B port to AO port	$V_{CC}(5 \text{ V}) = 5.5 \text{ V},$ $V_{CC}(3.3 \text{ V}) = 3.3 \text{ V}$	I _O = 0			1	mA
Ci	Control and Al inputs	V _I = 0.5 V or 2.5 V			6.5		pF
Co	AO port	V _O = 0.5 V or 2.5 V			3.5		pF
C _{iO}	B port per IEEE Std 1194.1-1991	$V_{CC}(5 \text{ V}) = 0 \text{ to } 5.5 \text{ V},$	V _{CC} (3.3 V) = 3.3 V		_	6.5	pF

[†] All typical values are at $V_{CC}(5 \text{ V}) = 5 \text{ V}$ and $V_{CC}(3.3 \text{ V}) = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. ‡ For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

SCBS702H - AUGUST 1997 - REVISED MARCH 2004

live-insertion specifications over recommended operating free-air temperature range

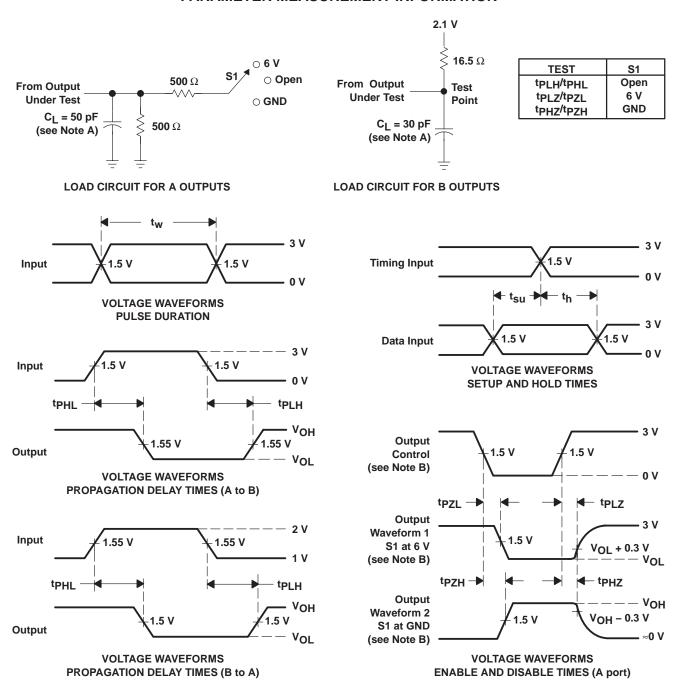
PAR	RAMETER		TEST CONDITION	NS	MIN	MAX	UNIT
	140.1/	$V_{CC}(5 \text{ V}) = 0 \text{ to } 4.5 \text{ V},$ $V_{CC}(3.3 \text{ V}) = 3.3 \text{ V}$	V 04-0V	V (DIAOV) 45V (-55V	450		
I _{CC} (BIAS V _{CC})		$V_{CC}(5 \text{ V}) = 4.5 \text{ V to } 5.5 \text{ V},$ $V_{CC}(3.3 \text{ V}) = 3.3 \text{ V}$ $V_{B} = 0 \text{ to } 2 \text{ V},$		V_I (BIAS V_{CC}) = 4.5 V to 5.5 V		10	μА
VO	B port	$V_{CC}(5 \text{ V}) = 0,$ $V_{CC}(3.3 \text{ V}) = 0 \text{ V}$	V _I (BIAS V _{CC}) = 5 \	1.62	2.1	V	
		$V_{CC}(5 \text{ V}) = 0,$ $V_{CC}(3.3 \text{ V}) = 0 \text{ V}$	V _B = 1 V,	V_{I} (BIAS V_{CC}) = 4.5 V to 5.5 V	-1		
IO B port		$V_{CC}(5 \text{ V}) = 0 \text{ to } 2.2 \text{ V},$ $V_{CC}(3.3 \text{ V}) = 3.3 \text{ V}$	OEB = 0 to 5 V			100	μΑ
		$V_{CC}(5 \text{ V}) = 0 \text{ to } 5.5 \text{ V},$ $V_{CC}(3.3 \text{ V}) = 3.3 \text{ V}$	OEB = 0 to 0.8 V			1	mA

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			MIN	MAX	UNIT
fclock	Clock frequency			90	MHz
t	Date describe	LE high	3		
t _W	Pulse duration	CLK high or low	3		ns
	Catura time	Al or B before LE↓	3.5		
t _{su}	Setup time	Al or B before CLK↑	3.5		ns
4.	Hold time	Al or B after LE↓	1		20
th	noid tille	Al or B after CLK↑	0.7		ns

SCBS702H - AUGUST 1997 - REVISED MARCH 2004

switching characteristics over recommended operating free-air temperature range, V_{CC}(5 V) = 5 V \pm 0.5 V and V_{CC}(3.3 V) = 3.3 V (see Figure 1)


PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
fmax			90		MHz
t _{PLH}		B	1.8	6.2	
^t PHL	Al	В	2.9	6.6	ns
t _{PLH}	LEAD	B	2.7	6.9	
^t PHL	LEAB	В	3.5	7.3	ns
t _{PLH}	CLKAD	B	2.3	6.4	20
^t PHL	CLKAB	Ь	2.9	6.7	ns
t _{PLH}	2CLKAB	2 <mark>CLKAB</mark>	2.3	6	20
^t PHL	(no delay)	ZCLKAB	2.9	6.7	ns
t _{PLH}	2CLKAB	2 CLKAB	4.5	9.5	20
^t PHL	(delay2)	2CLKAB	4.5	9.5	ns
t _{PLH}	2CLKAB	2 CLKAB	9.3	15.4	
^t PHL	(delay3)	ZCLKAB	9.3	15.4	ns
t _{PLH}	B	40	2	6.5	
^t PHL	В	AO	2	6.5	ns
^t PLH	LEDA	40	1.8	6.3	
^t PHL	LEBA	AO	1.8	6.3	ns
^t PLH	CLKBA	40	1.8	6.3	20
^t PHL	CLKBA	AO	1.8	6.3	ns
^t PLH	2 <mark>CLKAB</mark>	5.7	12.3	20	
^t PHL	(delay1)	2CLK	5.7	12.3	ns
t _{PLH}	2 <mark>CLKAB</mark>	2CLK	2	6.5	no
^t PHL	(no delay)	ZOLK	2	6.5	ns
tpLH	OEB or OEB	B	2.6	7	ne
^t PHL	OLB OF OLB	В	2.6	7	ns
^t PZH	OEA or OEA	AO	1.4	5.5	no
^t PZL	OEA OI OEA	AO	1.4	5.5	ns
^t PHZ	OEA or OEA	AO	1.4	6.5	no
t _{PLZ}		AO	1.4	5.8	ns
t _{sk(p)} †	Pulse skew, AI to B or B to AO			1.6	ns
'SK(p)'	Pulse skew, 2CLKAB to 2CLK			1.8	113
tok(n)	Pulse skew, CLKAB to B or CLKBA to	AO		1.5	ns
	tsk(p) Pulse skew, CLKAB to 2CLKAB				110
^t sk(HL) ^{, t} sk(LH) [†]	Output skew, AI to B or B to AO		1	ns	
t _{sk(o)} ‡	Output skew, nondelayed mode for 2CLKAB, CLKAB to AO				
	Output skew, nondelayed mode for 20		1	ns	
t _{sk(o)} ‡	Output skew, nondelayed mode for 20	<u> </u>		1.5	ns
t.	Transition time, B outputs (1.3 V to 1.8	,	0.5	4.6	ne
t _t	Transition time, AO outputs (10% to 9	0%)	0.4	4.2	ns
t _{PR}	B-port input pulse rejection		1		ns

[†] Skew values are applicable for through mode only, with single-output switching.

^{\$} Skew values are applicable for CLK mode only, with all outputs simultaneously switching high-to-low or low-to-high.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r \leq 2.5 \text{ ns}$, $t_f \le 2.5$ ns; BTL inputs: PRR ≤ 10 MHz, $Z_O = 50 \Omega$, $t_r \le 1$ ns, $t_f \le 1$ ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN74FB1653PCA	Active	Production	HLQFP (PCA) 100	90 JEDEC TRAY (10+1)	Yes	NIPDAU	Level-3-260C-168 HR	0 to 70	FB1653
SN74FB1653PCA.B	Active	Production	HLQFP (PCA) 100	90 JEDEC TRAY (10+1)	Yes	NIPDAU	Level-3-260C-168 HR	0 to 70	FB1653
SN74FB1653PCAG4	Active	Production	HLQFP (PCA) 100	90 JEDEC TRAY (10+1)	Yes	NIPDAU	Level-3-260C-168 HR	0 to 70	FB1653
SN74FB1653PCAG4.B	Active	Production	HLQFP (PCA) 100	90 JEDEC TRAY (10+1)	Yes	NIPDAU	Level-3-260C-168 HR	0 to 70	FB1653

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

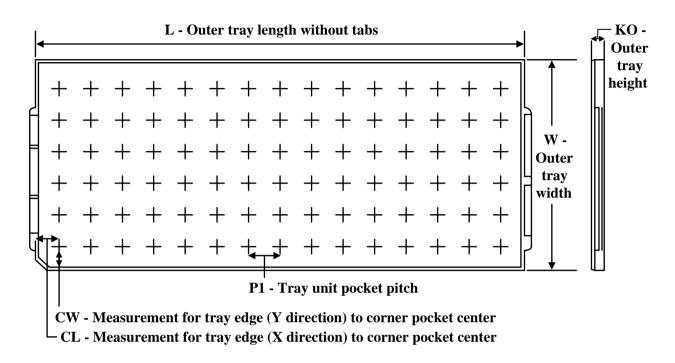
⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

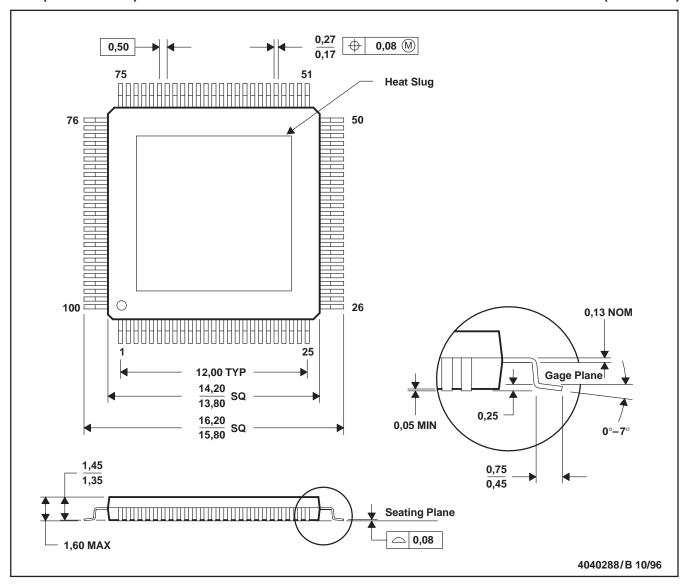
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

www.ti.com 15-Jul-2025

TRAY


Chamfer on Tray corner indicates Pin 1 orientation of packed units.

*All dimensions are nominal

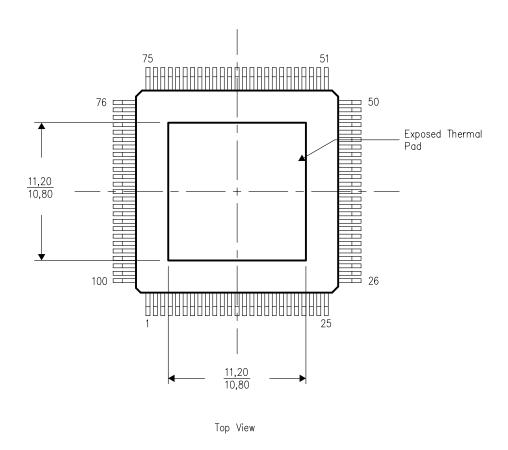
Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	Κ0 (μm)	P1 (mm)	CL (mm)	CW (mm)
SN74FB1653PCA	PCA	HLQFP	100	90	6 x 15	150	315	135.9	7620	20.3	15.4	15.45
SN74FB1653PCA.B	PCA	HLQFP	100	90	6 x 15	150	315	135.9	7620	20.3	15.4	15.45
SN74FB1653PCAG4	PCA	HLQFP	100	90	6 x 15	150	315	135.9	7620	20.3	15.4	15.45
SN74FB1653PCAG4.B	PCA	HLQFP	100	90	6 x 15	150	315	135.9	7620	20.3	15.4	15.45

PCA (S-PQFP-G100)

PLASTIC QUAD FLATPACK (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Thermally enhanced molded plastic package with a heat slug (HSL)
- D. Falls within JEDEC MS-026



THERMAL INFORMATION

This PowerPADTM package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025