

SN74CBTU4411 SCDS192C - APRIL 2005 - REVISED SEPTEMBER 2021

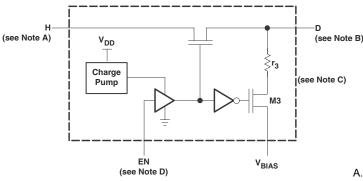
SN74CBTU4411 11-Bit 1-of-4 Multiplexer or Demultiplexer 1.8-V DDR-II Switch With Charge Pump and Precharged Outputs

1 Features

- Supports SSTL 18 signaling levels
- Suitable for DDR-II applications
- D-port outputs are precharged by bias voltage (V_{BIAS})
- Internal termination for control inputs
- High bandwidth (400 MHz minimum)
- Low and flat ON-state resistance (r_{on}) characteristics, $(r_{on} = 17 \Omega \text{ maximum})$
- Internal 400-Ω pulldown resistors
- Low differential and rising or falling edge skew
- Latch-up performance exceeds 100 mA per JESD 78. Class II

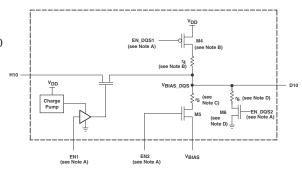
2 Applications

- ATCA solutions
- Automated external defibrillators
- Adaptive lighting
- Blood gas analyzers: portable
- Bluetooth headsets
- CT scanners
- Cameras: surveillance analog
- Chemical and gas sensors
- DLP 3D machine vision and optical networking


3 Description

The SN74CBTU4411 device is a high-bandwidth, SSTL_18 compatible FET multiplexer/demultiplexer with low ON-state resistance (ron). The device uses an internal charge pump to elevate the gate voltage of the pass transistor, providing a low and flat ron. The low and flat ron allows for minimal propagation delay and supports rail-to-rail signaling on data input/output (I/O) ports. The device also features very low data I/O capacitance to minimize capacitive loading and signal distortion on the data bus. Matched ron and I/O capacitance among channels results in extremely low differential and rising or falling edge skew. This allows the device to show optimal performance in DDR-II applications.

Device Information⁽¹⁾


PART NUMBER	PACKAGE	BODY SIZE	
SN74CBTU4411ZST	NFBGA (72)	7.00 mm × 7.00 mm	

For all available packages, see the orderable addendum at the end of the data sheet.

- Applicable for ports H0 through H9
- B. Applicable for ports D0 through D9
- C. $r_3 + r_{on} (M3) = 400 \Omega \text{ typical.}$
- D. EN is the internal enable signal applied to the switch.

Simplified Schematic, Each FET Switch (SW1)

- EN DQS1, EN DQS2, EN1, and EN2 are the internal enable signals applied to the switch.
- $r_4 + r_{on} (M4) = 1 k\Omega typical.$
- $r_5 + r_{on} (M5) = 400 \Omega \text{ typical}.$
- D. $r_6 + r_{on}$ (M6) = 2.3 k Ω typical.

Simplified Schematic, Each FET Switch (SW2)

Table of Contents

 Changed the V_{BIAS} MAX value From: 0.33 : 6 	× V _{DD} To:	V_DD in the <i>Recommended Operating Conditions</i> to	ıble
Changes from Revision A (February 2016) t			Page
		d cross-references throughout the document	
Changes from Revision B (April 2018) to Re	vision C	(September 2021)	Page
4 Revision History NOTE: Page numbers for previous revisions m	nay differ f	rom page numbers in the current version.	
8.2 Functional Block Diagram	11		
8.1 Overview		Information	16
8 Detailed Description		15 Mechanical, Packaging, and Orderable	
7.2 Skew and Propagation Delay Times		14 Glossary	
7.1 Enable and Disable Times		13 Electrostatic Discharge Caution	
7 Parameter Measurement Information		12.4 Trademarks	
6.7 Typical Characteristic		12.3 Support Resources	
6.5 Electrical Characteristics		12.1 Documentation Support	
6.4 Thermal Information		12 Device and Documentation Support	
6.3 Recommended Operating Conditions		11.2 Layout Example	
6.2 ESD Ratings		11.1 Layout Guidelines	
6.1 Absolute Maximum Ratings		11 Layout	
6 Specifications		10 Power Supply Recommendations	
5 Pin Configuration and Functions		9.2 Typical Application	13
4 Revision History	<mark>2</mark>	9.1 Application Information	13
3 Description		9 Application and Implementation	13
2 Applications	1	8.4 Device Functional Modes	
1 Features	1	8.3 Feature Description	12

Changes from Revision * (April 2005) to Revision A (February 2016)

Page

- Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and

5 Pin Configuration and Functions

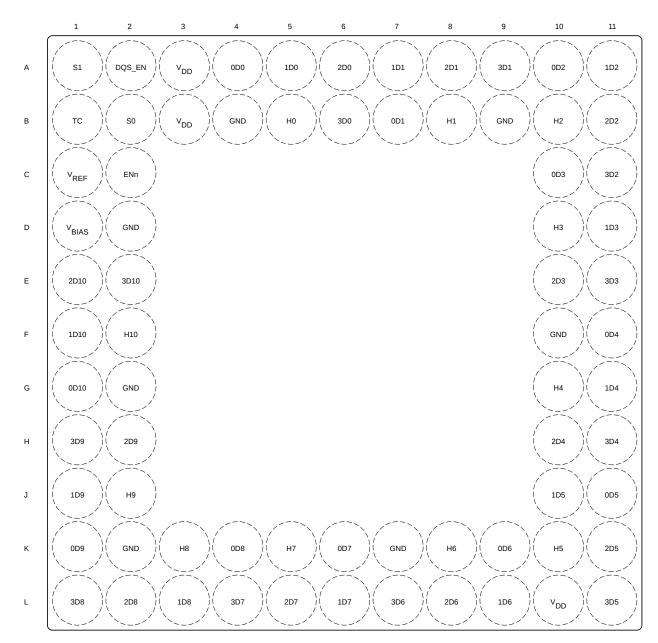


Figure 5-1. ZST Package 72-Pin NFBGA Top View

Table 5-1. Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION		
NAME	NO.	1166	DESCRIPTION		
0D0	A4	I/O	D0 port0		
0D1	B7	I/O	D1 port0		
0D2	A10	I/O	D2 port0		
0D3	C10	I/O	D3 port0		
0D4	F11	I/O	D4 port0		

Table 5-1. Pin Functions (continued)

PIN			able 5-1. Pin Functions (continued)		
NAME	NO.	TYPE ⁽¹⁾	DESCRIPTION		
0D5	J11	I/O	D5 port0		
0D6	K9	I/O	D6 port0		
0D7	K6	I/O	D7 port0		
0D8	K4	I/O	D8 port0		
0D9	K1	I/O	D9 port0		
0D10	G1	I/O	D10 port0		
1D0	A5	I/O	D0 port1		
1D1	A7	I/O	D1 port1		
1D2	A11	I/O	D2 port1		
1D3	D11	I/O	D3 port1		
1D4	G11	I/O	D4 port1		
1D5	J10	I/O	D5 port1		
1D6	L9	I/O	D6 port1		
1D7	L6	I/O	D7 port1		
1D8	L3	I/O	D8 port1		
1D9	J1	I/O	D9 port1		
1D10	F1	I/O	D10 port1		
2D0	A6	I/O	D0 port2		
2D1	A8	I/O	D1 port2		
2D2	B11	I/O	D2 port2		
2D3	E10	I/O	D3 port2		
2D4	H10	I/O	D4 port2		
2D5	K11	I/O	D5 port2		
2D6	L8	I/O	D6 port2		
2D7	L5	I/O	D7 port2		
2D8	L2	I/O	D8 port2		
2D9	H2	I/O	D9 port2		
2D10	E1	I/O	D10 port2		
3D0	В6	I/O	D0 port3		
3D1	A9	I/O	D1 port3		
3D2	C11	I/O	D2 port3		
3D3	E11	I/O	D3 port3		
3D4	H11	I/O	D4 port3		
3D5	L11	I/O	D5 port3		
3D6	L7	I/O	D6 port3		
3D7	L4	I/O	D7 port3		
3D8	L1	I/O	D8 port3		
3D9	H1	I/O	D9 port3		
3D10	E2	I/O	D10 port3		
DQS_EN	A2	I	D10 port output voltage control		
ENn	C2	I	Active low enable input		
GND	B4, B9, F10, K7, K2, G2, D2	Р	Ground		
H0	B5	I/O	H port0		
H1	B8	I/O	H port1		

www.ti.com

Table 5-1. Pin Functions (continued)

PIN		TYPE ⁽¹⁾	DESCRIPTION			
NAME	NO.	ITPE	DESCRIPTION			
H2	B10	I/O	H port2			
H3	D10	I/O	H port3			
H4	G10	I/O	H port4			
H5	K10	I/O	H port5			
H6	K8	I/O	H port6			
H7	K5	I/O	H port7			
H8	K3	I/O	H port8			
H9	J2	I/O	H port9			
H10	F2	I/O	H port10			
S0	B2	I	Select input control			
S1	A1	I	Select input control			
TC	B1	I	Termination control input			
V _{BIAS}	D1	Р	Bias voltage			
V_{DD}	A3, B3, L10	Р	Power supply			
V _{REF}	C1	Р	Reference voltage			

⁽¹⁾ I = input, O = output, I/O = input and output, P = power

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{DD}	Supply voltage		-0.5	2.5	V
V _{IN}	Control input voltage ^{(2) (3)}		-0.5	2.5	V
V _{I/O}	Switch I/O voltage ^{(2) (3) (4)}		-0.5	2.5	V
I _{IK}	Control input clamp current	V _{IN} < 0 or V _{IN} > 0		±50	mA
I _{I/OK}	I/O port clamp current	$V_{I/O} < 0 \text{ or } V_{I/O} > 0$		±50	mA
I _{I/O}	ON-state switch current ⁽⁵⁾			±100	mA
	Continuous current through V _{DD} or GND pine		±100	mA	
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Section 6.3 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- All voltages are with respect to ground unless otherwise specified.
- The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. (3)
- V_{I} and V_{O} are used to denote specific conditions for $V_{I/O}$.
- (5) I_1 and I_0 are used to denote specific conditions for $I_{1/0}$.

6.2 ESD Ratings

				VALUE	UNIT
	V _(ESD) Electrostatic discharge	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2500	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±750	, '

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with (1) less than 500-V HGM is possible with the necessary precautions.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	NOM	MAX	UNIT	
V _{DD}	Supply voltage		1.7	1.8	1.9	V	
V _{REF}	Reference supply voltage		0.49 × V _{DD}	0.5 × V _{DD}	0.51 × V _{DD}	V	
V _{BIAS}	BIAS supply voltage		0	0.3 × V _{DD}	V_{DD}	V	
.,	High-level control input voltage	S	V _{REF} + 250 mV			V	
V _{IH}	riigii-ievei control iliput voltage	EN, TX, DQS_EN	0.65 × V _{DD}			V	
\/	Low level central input voltage	S			V _{REF} – 250 mV	V	
V _{IL}	Low-level control input voltage	EN, TX, DQS_EN			0.35 × V _{DD}	V	
V _{I/O}	Data input/output voltage		0		V_{DD}	V	
T _A	Operating free-air temperature		0		85	°C	

All unused control inputs of the device must be held at V_{DD} or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004).

Product Folder Links: SN74CBTU4411

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

6.4 Thermal Information

		SN74CBTU4411	
	THERMAL METRIC ⁽¹⁾	ZST (NFBGA)	UNIT
		72 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	97	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	34.4	°C/W
R _{0JB}	Junction-to-board thermal resistance	67.2	°C/W
ΨЈТ	Junction-to-top characterization parameter	2	°C/W
ΨЈВ	Junction-to-board characterization parameter	69.1	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	_	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Minimum and maximum limits apply for $T_A = 0^{\circ}C$ to $85^{\circ}C$ (unless otherwise noted). Typical limits apply for $V_{DD} = 1.8 \text{ V}$ and $T_A = 25^{\circ}C$ (unless otherwise noted).

PA	RAMETER	TEST CON	MIN	TYP	MAX	UNIT		
V _{IK} (2)	Control inputs ⁽³⁾	V _{DD} = 1.7 V, I _{IN} = -18 mA				-1.8	V	
V _{BIAS_DQS}	D10	V_{DD} = 1.7 V, DQS_EN = V_{DD}		1.1		1.275	V	
V _{OH}	D10	V_{DD} = 1.7 V, DQS_EN = V_{DD} , \overline{EN}	Ī = V _{DD} , I _O = 100 μA		1.6	1.8	V	
I _{IN}	Control inputs ⁽³⁾	V_{DD} = 1.9 V, V_{IN} = V_{DD} or GND				±1	μΑ	
I _{OZ} (4)		$V_{DD} = 1.9 \text{ V}, V_{O} = 0 \text{ to } 1.9 \text{ V}, V_{I} =$	0, Switch OFF, V _{BIAS} open			±10	μΑ	
Icc		V_{DD} = 1.9 V, TC = GND, \overline{EN} = G switching at 50% duty cycles, Da			0.7	2.5	mA	
		EN = V _{DD}				500	μΑ	
Iccd		V_{DD} = 1.9 V, TC = GND, \overline{EN} = G switching at 50% duty cycle, Dat			0.5	mA/ MHz ⁽⁵⁾		
	S port	V_{DD} = 1.9 V, TC = GND, \overline{EN} = GND, V_{IN} = V_{REF} ± 250 mV		2.5		3.5		
C _{in}	EN, TC, DQS_EN inputs	V _{DD} = 1.9 V, V _{IN} = 0 or 1.9 V		2.5		pF		
C _{io(OFF)}	H port	$V_{I/O} = 0.5 \times V_{DD} \pm 0.4 \text{ V, Switch}$	OFF, V _{BIAS} open			2.5	pF	
C _{io(ON)}		$V_{I/O} = 0.5 \times V_{DD} \pm 0.4 \text{ V, Switch}$	ON, V _{BIAS} = GND			4.6	pF	
r _{on} (6)		$V_{DD} = 1.7 \text{ V}, V_{I} = 0.5 \times V_{DD} \pm 0.5$	5 V, I _O = 10 mA	6	10	17	Ω	
Ar (7)		V _{DD} = 1.7 V, DQS_EN = V _{DD} ,	V _I = 0.5 V _{DD} ± 0.25 V		1.5	3	Ω	
Δr _{on(flat)} (7)		I _O = 10 mA	$V_{I} = 0.5 V_{DD} \pm 0.5 V$		2.5	5	72	
r _{term}	S port	V _{DD} = 1.7 V		110	160	210	Ω	
_	D0-D10	V - 17V	DQS_EN = GND	280	400	520	0	
r _{pulldown}	D10	-V _{DD} = 1.7 V	$DQS_EN = V_{DD}, \overline{EN} = GND$	1600	2300	3000	Ω	
r _{pullup}	D10	V_{DD} = 1.7 V, DQS_EN = V_{DD} , \overline{EN}	Ī = GND	700	1000	1300	Ω	

- (1) V_{IN} and I_{IN} refer to control inputs. V_I , V_O , I_I , and I_O refer to data pins.
- (2) V_{IK} refers to the clamp voltage due to the internal diode, which is connected from each control input to GND.
- (3) For the leakage current test on S0 and S1, $\overline{\text{EN}}$ and TC inputs are set to low.
- 4) For I/O ports, the parameter I_{OZ} includes the input leakage current. I_{OZ} applies only to the H port.
- (5) This frequency of S0 and S1 inputs, for example, for a data I/O rate of 533 Mbit/s, with a burst of 4, the required frequency is for S0 or S1 input is ≅ 66 MHz (533/8). The total I_{CC} due to switching S0, S1 will be approximately 27 mA (66 MHz × 0.4 mA/MHz).
- (6) Measured by the voltage drop between the D and H pins at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (D or H) pins.
- (7) $\Delta r_{on(flat)}$ is the difference of maximum r_{on} and minimum r_{on} for a specific channel in a specific device.

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback

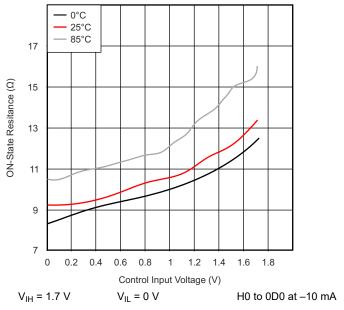
6.6 Switching Characteristics

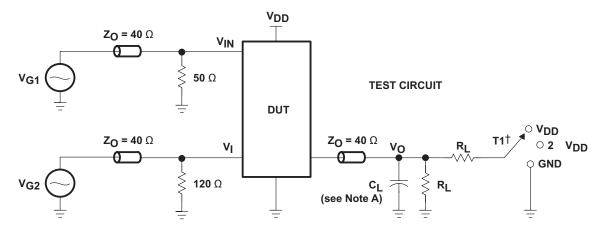
T_A = 0°C to 85°C (unless otherwise noted) (see Figure 7-1 and Figure 7-2)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}	D or H port		400			MHz
	S port ⁽¹⁾		84			IVITIZ
t _{pd}		From D or H (input) to D or H (output)		297		ps
t _{en} (t _{PZL}	, t _{PZH}) ⁽²⁾	From S (input) to D (output)	750		2100	ps
t _{dis} (t _{PLZ}	, t _{PHZ}) ⁽²⁾	From S (input) to D (output)	750		2100	ps
t _{osk}					85	ps
t _{esk}					40	ps
t _{start} (3)				20		μs

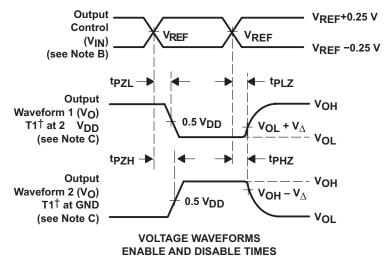
- (1) $\overline{EN} = GND, TC = GND$
- (2) V_{BIAS} = open
- (3) t_{start} is the time required for the charge-pump circuit output voltage to reach a steady state value after V_{DD} is applied.

6.7 Typical Characteristic




Figure 6-1. ON-State Resistance Across Temperature

Submit Document Feedback


Copyright © 2021 Texas Instruments Incorporated

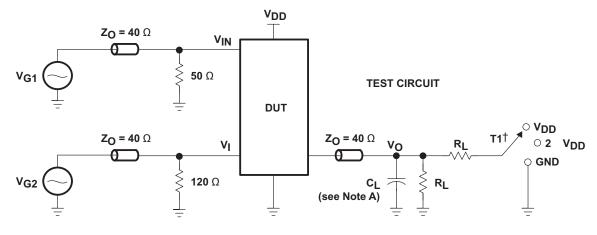
7 Parameter Measurement Information

7.1 Enable and Disable Times

TEST	V _{DD}	T1 [†]	RL	VI	CL	$oldsymbol{V}_\Delta$
t _{PLZ} /t _{PZL}	1.8 V ± 0.1 V	2 × V _{DD}	1 k Ω	GND	6 pF	0.125 V
t _{PHZ} /t _{PZH}	1.8 V ± 0.1 V	GND	1 k Ω	V _{DD}	6 pF	0.125 V

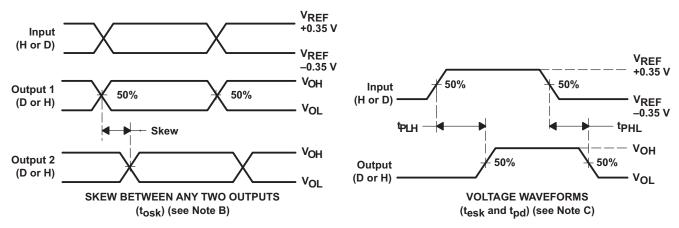
†T1 is an external terminal.

- A. C_L includes probe and jig capacitance.
- B. Output control applies to select (S0, S1) inputs.
- C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- D. All input pulses are supplied by generators having the following characteristics: $Z_{OS} = 50 \Omega$, rising and falling edge rate is 1 V/ns.
- E. The outputs are measured one at a time, with one transition per measurement.
- F. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- G. t_{PZL} and t_{PZH} are the same as t_{en} .


Figure 7-1. Test Circuit and Voltage Waveforms

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback



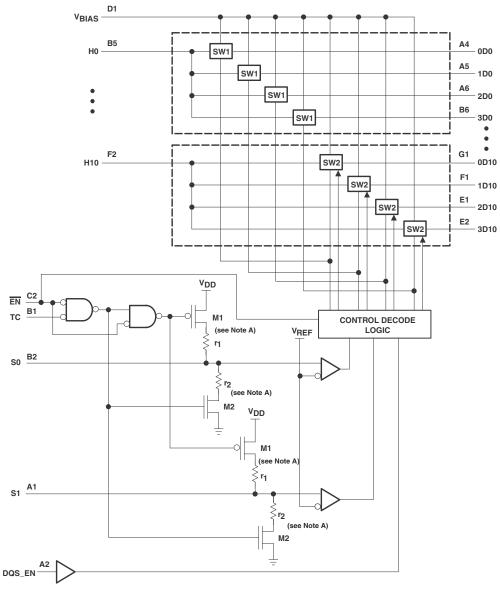
7.2 Skew and Propagation Delay Times

TEST	V _{DD} T1 [†] R _L		VI	CL	
t _{pd}	1.8 V ± 0.1 V	v_{DD}	150 Ω	See waveform	6 pF
t _{osk}	1.8 V ± 0.1 V	V _{DD}	150 Ω	See waveform	6 pF
t _{esk}	1.8 V ± 0.1 V	V _{DD}	150 Ω	See waveform	6 pF

†T1 is an external terminal.

- A. C_L includes probe and jig capacitance.
- B. t_{osk} is the difference in output voltage from channel to channel in a specific device.
- C. t_{PLH} and t_{PHL} are the same as t_{pd} and $t_{esk} = |t_{PLH} t_{PHL}|$
- D. All input pulses are supplied by generators having the following characteristics: Z_{OS} = 50 Ω , rising and falling edge rate is 1 V/ns.
- E. The outputs are measured one at a time, with one transition per measurement.

Figure 7-2. Test Circuit and Voltage Waveforms


8 Detailed Description

8.1 Overview

The SN74CBTU4411 device is organized as an 11-bit 1-of-4 multiplexer or demultiplexer with a single switch-enable (\overline{EN}) input. When \overline{EN} is low, the switch is enabled and the H port is connected to one of the D ports. Ports D0 to D9 for the disabled channels are connected to V_{BIAS} through a 400- Ω resistor. DQS_EN determines the output voltage for the disabled D10 ports. When DQS_EN is low, this voltage is V_{BIAS} . When DQS_EN is high, the disabled D10 ports are connected to an internal voltage (V_{BIAS_DQS}) source, which is approximately equal to 0.7 V_{DD} .

When $\overline{\text{EN}}$ is high, all the channels are disabled. Ports D0 to D9 are connected to V_{BIAS}. For the D10 port, the disabled output voltage is determined by the DQS_EN input. When DQS_EN is low, this voltage is V_{BIAS}. When DQS_EN is high, this voltage is V_{DD}.

8.2 Functional Block Diagram

A. $r_1 + r_{on}$ (M1), $r_2 + r_{on}$ (M2) = 160 Ω typical

Figure 8-1. Logic Diagram (Positive Logic)

8.3 Feature Description

The select (S0, S1) inputs control the data path of each multiplexer/demultiplexer. The \overline{EN} and TC inputs determine the internal termination for S0 and S1 inputs. When \overline{EN} is low, the termination is determined by the TC input. When both \overline{EN} and TC are low, termination resistors are disconnected from the S inputs. When \overline{EN} is low and TC is high, both pullup and pulldown resistors are connected to the S inputs. When \overline{EN} is high, only the pulldown termination resistors are connected to the S inputs, regardless of the voltage level at the TC input.

8.4 Device Functional Modes

Table 8-1 and Table 8-2 list the functional modes of the SN74CBTU4411.

Table 8-1. Function Table

INPUTS		INPUT/OUTPUT	FUNCTION				
EN	DQS_EN	S1	S0	Hn	FUNCTION		
L	L	L	L	0Dn	Hn = 0Dn 1Dn, 2Dn, 3Dn connected to V _{BIAS}		
L	L	L	Н	1Dn	Hn = 1Dn 0Dn, 2Dn, 3Dn connected to V _{BIAS}		
L	L	Н	L	2Dn	Hn = 2Dn 0Dn, 1Dn, 3Dn connected to V _{BIAS}		
L	L	Н	Н	3Dn	Hn = 3Dn 0Dn, 1Dn, 2Dn connected to V _{BIAS}		
L	Н	L	L	0Dn	H0–H9 = 0D0–0D9 1D0–1D9, 2D0–2D9, 3D0–3D9 connected to V _{BIAS} H10 = 0D10 1D10, 2D10, 3D10 connected to V _{BIAS_DQS} ⁽¹⁾		
L	Н	L	Н	1Dn	H0–H9 = 1D0–1D9 0D0–0D9, 2D0–2D9, 3D0–3D9 connected to V _{BIAS} H10 = 1D10 0D10, 2D10, 3D10 connected to V _{BIAS_DQS} ⁽¹⁾		
L	Н	Н	L	2Dn	H0-H9 = 2D0-2D9 $0D0-0D9$, $1D0-1D9$, $3D0-3D9$ connected to V_{BIAS} H10 = 2D10 $0D10$, $1D10$, $3D10$ connected to V_{BIAS_DQS} (1)		
L	Н	Н	Н	3Dn	H0–H9 = 3D0–3D9 0D0–0D9, 1D0–1D9, 2D0–2D9 connected to V _{BIAS} H10 = 3D10 0D10, 1D10, 2D10 connected to V _{BIAS_DQS} ⁽¹⁾		
Н	L	Х	X	Z	0Dn, 1Dn, 2Dn, 3Dn connected to V _{BIAS}		
Н	Н	Х	Х	Z	0D0–0D9, 1D0–1D9, 2D0–2D9, 3D0–3D9 connected to V _{BIAS} 0D10, 1D10, 2D10, 3D10 connected to V _{DD}		

⁽¹⁾ V_{BIAS_DQS} is an internal voltage condition.

Table 8-2. Function Table Continued

INPUTS		FUNCTION					
EN	TC	FUNCTION					
L	L	Termination resistors disconnected from S inputs					
L	Н	Termination resistors connected with S inputs					
Н	Х	Pulldown termination resistor connected and pullup termination resistor disconnected from the S inputs					

Product Folder Links: SN74CBTU4411

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The SN74CBTU4411 is suitable for DDR-II applications where high-bandwidth is required. This device has low and flat ON resistance and has internal termination control inputs. The D-ports are precharged by Bias voltage (V_{BIAS}) .

9.2 Typical Application

SN74CBTU4411 is an 11 bit, 1:4 Mux and suitable for high-bandwidth applications.

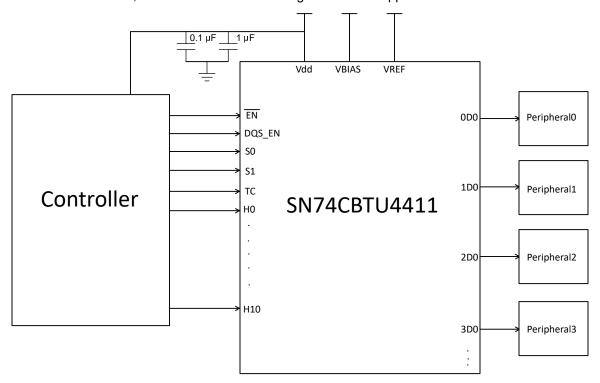


Figure 9-1. Typical Application Schematic

9.2.1 Design Requirements

SN74CBTU4411 supports 400-MHz bandwidth on the D or H ports and 84 MHz on the S port. The Enable control from the controller must be activated and depending on the select pins, the data is transferred into one of the peripherals 0 to 3. The Enable control at high will tristate the input or output as per the functional table. See Section 6.3 and Section 6.1 for other voltage, current and handling parameters.

9.2.2 Detailed Design Procedure

The H port signal from the controller can go to one of the 4 peripheral ports depending on the select inputs S0 and S1. The V_{BIAS} and V_{REF} can be determined from Section 6.3.

- 1. Recommended Input Conditions
 - For specified high and low levels for all the input control pins, see V_{IH} and V_{IL} in Section 6.3.
 - Inputs are not overvoltage tolerant and should be below the valid V_{DD}.
- 2. Recommend Input/Output Conditions
 - The absolute maximum continuous on state switch current for any I/O should not exceed ±100 mA.
 - The I/O voltage range should not be above V_{DD} and below ground.

9.2.3 Application Curve

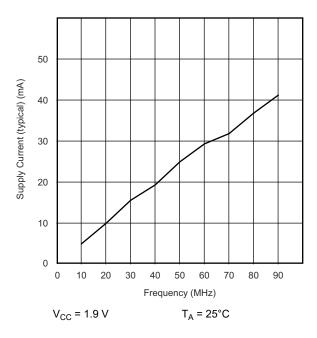


Figure 9-2. Supply Current (Typical) vs Frequency Data

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in Section 6.3.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor. If there are multiple V_{CC} pins, TI recommends a 0.01- μ F or 0.022- μ F capacitor for each power pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Figure 11-1 specifies the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they are tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it disables the outputs section of the part when asserted. This does not disable the input section of the I/Os, so they also cannot float when disabled.

11.2 Layout Example

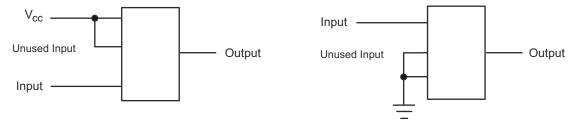


Figure 11-1. Layout Diagram

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

Texas Instruments, Implications of Slow or Floating CMOS Inputs application report

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

13 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

14 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

15 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

www.ti.com 7-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN74CBTU4411ZSTR	Active	Production	NFBGA (ZST) 72	2000 LARGE T&R	Yes	SNAGCU	Level-3-260C-168 HR	0 to 85	CTU4411
SN74CBTU4411ZSTR.A	Active	Production	NFBGA (ZST) 72	2000 LARGE T&R	Yes	SNAGCU	Level-3-260C-168 HR	0 to 85	CTU4411

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

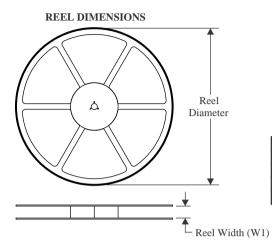
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

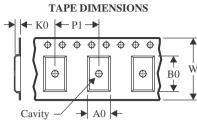
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

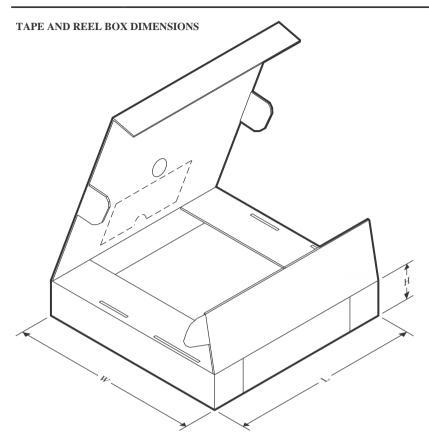
PACKAGE MATERIALS INFORMATION

www.ti.com 8-Jun-2022

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

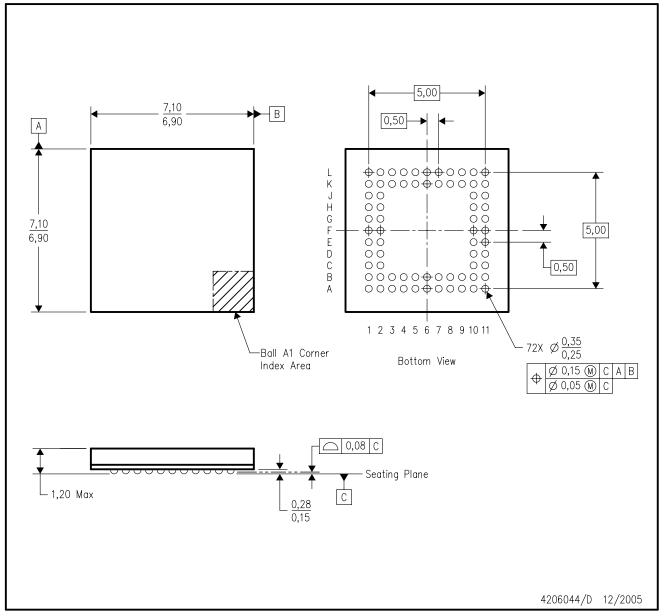


*All dimensions are nominal

Device	_	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74CBTU4411ZSTR	NFBGA	ZST	72	2000	330.0	16.4	7.3	7.3	1.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 8-Jun-2022



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74CBTU4411ZSTR	NFBGA	ZST	72	2000	336.6	336.6	31.8

ZST (S-PBGA-N72)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Complies to JEDEC MO-195 variation AD (depopulated).
- D. This package is lead-free. Refer to the 72 GST package (drawing 4206043) for tin-lead (SnPb).

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated