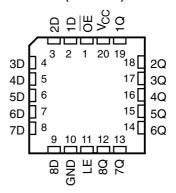

SN54BCT573, SN74BCT573 OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCBS071B - AUGUST 1990 - REVISED MARCH 2003


- Operating Voltage Range of 4.5 V to 5.5 V
- State-of-the-Art BiCMOS Design Significantly Reduces I_{CCZ}
- Full Parallel Access for Loading

SN54BCT573 . . . J OR W PACKAGE SN74BCT573 . . . DW, N, OR NS PACKAGE (TOP VIEW)

- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

SN54BCT573 . . . FK PACKAGE (TOP VIEW)

description/ordering information

These 8-bit latches feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches of the 'BCT573 devices are transparent D-type latches. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When the latch enable is taken low, the Q outputs are latched at the logic levels that were set up at the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

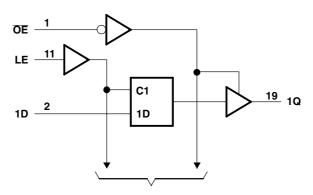
OE does not affect internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

ORDERING INFORMATION

TA	PACKA	GE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	PDIP – N Tube		SN74BCT573N	SN74BCT573N	
000 to 7000	COIC DW	Tube	SN74BCT573DW	DOTE 70	
0°C to 70°C	SOIC - DW	Tape and reel	SN74BCT573DWR	BCT573	
	SOP - NS	Tape and reel	SN74BCT573NSR	BCT573	
	CDIP – J	Tube	SNJ54BCT573J	SNJ54BCT573J	
–55°C to 125°C	CFP – W	Tube	SNJ54BCT573W	SNJ54BCT573W	
	LCCC - FK	Tube	SNJ54BCT573FK	SNJ54BCT573FK	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



SCBS071B - AUGUST 1990 - REVISED MARCH 2003

FUNCTION TABLE (each latch)

	INPUTS	OUTPUT	
ŌĒ	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Χ	Q_0
Н	Χ	Χ	Z

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the disabled or power-off state, V _O	-0.5 V to $5.5 V$
Voltage range applied to any output in the high state, V _O	. -0.5 V to V_{CC}
Input clamp current, I _{IK} (V _I < 0)	–30 mA
Current into any output in the low state: SN54BCT573	96 mA
SN74BCT573	128 mA
Package thermal impedance, θ _{JA} (see Note 2): DW package	58°C/W
N package	69°C/W
NS package	60°C/W
Storage temperature range, T _{stq}	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCBS071B - AUGUST 1990 - REVISED MARCH 2003

recommended operating conditions (see Note 3)

		SN54BCT573			SN	ш		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage			8.0			0.8	V
I _{IK}	Input clamp current			-18			-18	mA
I _{OH}	High-level output current			-12			-15	mA
I _{OL}	Low-level output current			48			64	mA
T _A	Operating free-air temperature	-55		125	0		70	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

24244555	TEGT COMPLETIONS		SN	54BCT5	73	SN			
PARAMETER	IEST	TEST CONDITIONS			MAX	MIN	TYP†	MAX	UNIT
V _{IK}	$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2			-1.2	V
		$I_{OH} = -3 \text{ mA}$	2.4	3.3		2.4	3.3		
V_{OH}	V _{CC} = 4.5 V	$I_{OH} = -12 \text{ mA}$	2	3.2					V
		$I_{OH} = -15 \text{ mA}$				2	3.1		
.,	V 45V	$I_{OL} = 48 \text{ mA}$		0.38	0.55				٧
V_{OL}	$V_{CC} = 4.5 \text{ V}$	$I_{OL} = 64 \text{ mA}$					0.42	0.55	V
I _I	$V_{CC} = 5.5 V,$	V _I = 5.5 V			0.4			0.4	mA
I _{IH}	$V_{CC} = 5.5 \text{ V},$	$V_{I} = 2.7 \text{ V}$			20			20	μΑ
I _{IL}	$V_{CC} = 5.5 \text{ V},$	V _I = 0.5 V			-0.6			-0.6	mA
I _{OS} ‡	$V_{CC} = 5.5 \text{ V},$	V _O = 0	-100		-225	-100		-225	mA
I _{OZH}	$V_{CC} = 5.5 \text{ V},$	V _O = 2.7 V			50			50	μΑ
I _{OZL}	$V_{CC} = 5.5 \text{ V},$	V _O = 0.5 V			-50			-50	μΑ
I _{CCL}	$V_{CC} = 5.5 \text{ V},$	Outputs open			62			62	mA
I _{CCH}	$V_{CC} = 5.5 \text{ V},$	Outputs open			8			8	mA
I _{CCZ}	$V_{CC} = 5.5 \text{ V},$	Outputs open			8			8	mA
C _i	V _{CC} = 5 V,	V _I = 2.5 V or 0.5 V		5.5			5.5		pF
C _o	V _{CC} = 5 V,	V _O = 2.5 V or 0.5 V		7.5			7.5		pF

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

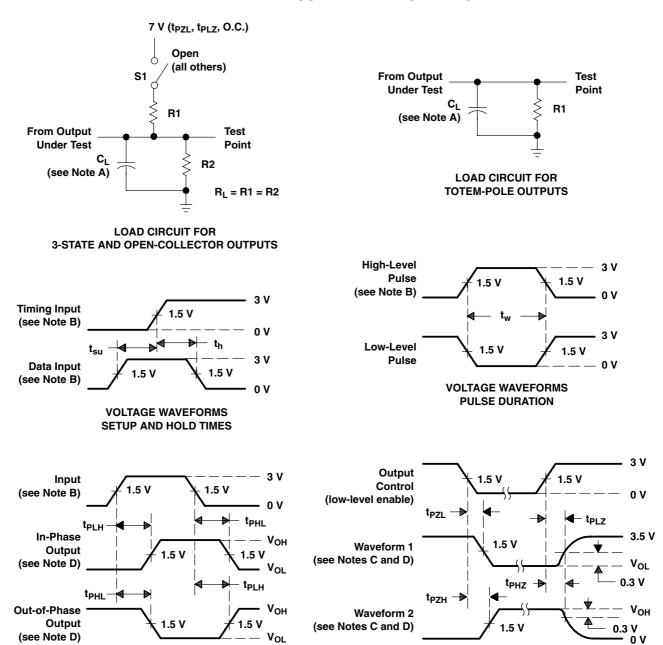
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		V _{CC} = 5 V, T _A = 25°C		SN54BCT573		SN74BCT573		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
t _w	Pulse duration, LE high	4		4		4		ns
t _{su}	Setup time, data before LE \downarrow	1		2.5		1		ns
t _h	Hold time, data after LE↓	4		4		4		ns

[‡] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

SN54BCT573, SN74BCT573 OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCBS071B - AUGUST 1990 - REVISED MARCH 2003


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	V _{CC} = 5 V, T _A = 25°C			SN54B	CT573	SN74B	UNIT		
	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX		
t _{PLH}	D	0	2	5	7.2	1	9.8	2	8.4		
t _{PHL}		Q	2.8	5.9	8.2	1.5	10.3	2.8	9.6	ns	
t _{PLH}		Q	2.4	6.1	7.2	2	9.7	2.4	8.1	ns	
t _{PHL}	LE		2.9	5.2	7.1	2	8.8	2.9	7.8		
t _{PZH}	OF.	Q	3	6.2	8.5	2.5	11	3	10.4		
t _{PZL}	ŌĒ		4.3	7.1	9.3	3.5	11.5	4.3	11	ns	
t _{PHZ}	OF.	0	2.2	3.9	5.6	1.5	7.2	2.2	6	no	
t _{PLZ}	ŌĒ	Q	Q	1.7	3.6	5.2	1	7	1.7	6	ns

VOLTAGE WAVEFORMS

ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

VOLTAGE WAVEFORMS

PROPAGATION DELAY TIMES (see Note D)

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $t_f = t_f \leq$ 2.5 ns, duty cycle = 50%.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.
- E. When measuring propagation delay times of 3-state outputs, switch S1 is open.
- F. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74BCT573DW	Active	Production	SOIC (DW) 20	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT573
SN74BCT573DW.A	Active	Production	SOIC (DW) 20	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	BCT573
SN74BCT573N	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74BCT573N
SN74BCT573N.A	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN74BCT573N

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

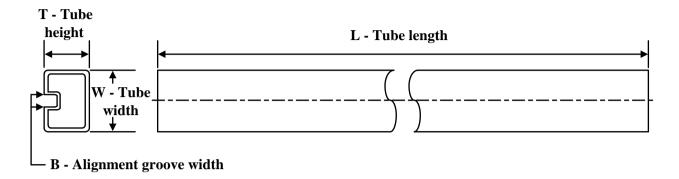
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

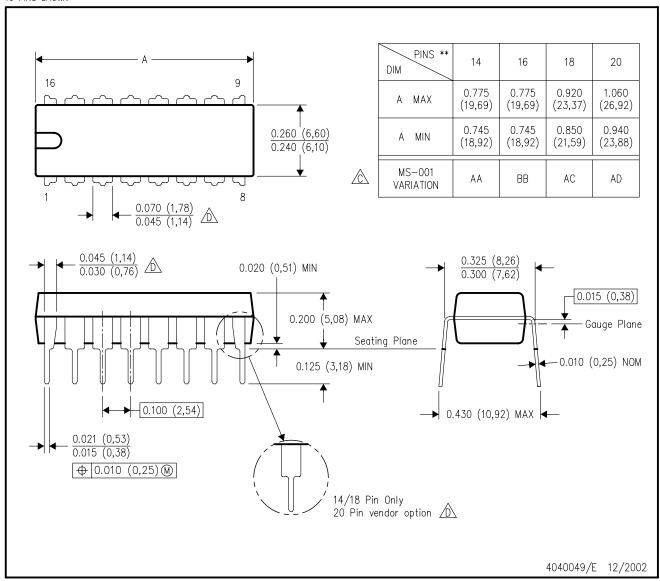

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE

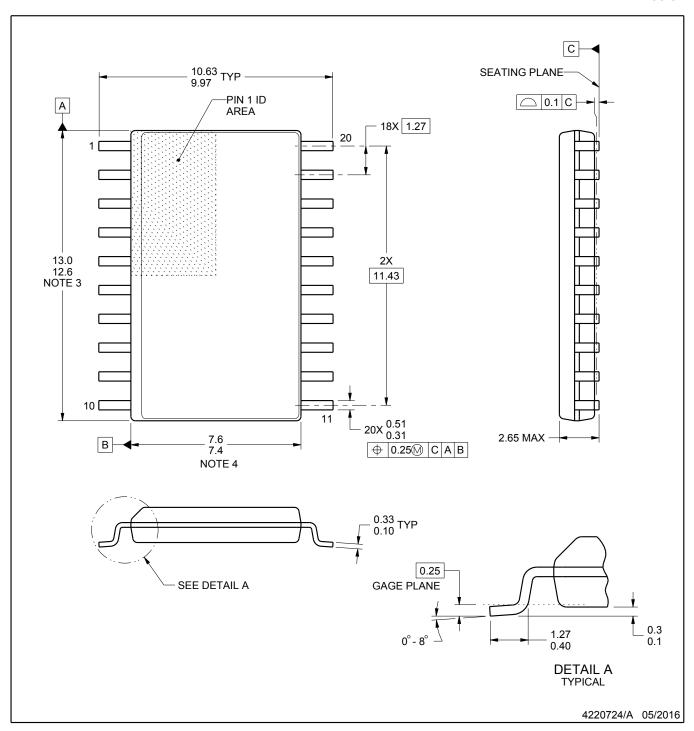

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74BCT573DW	DW	SOIC	20	25	507	12.83	5080	6.6
SN74BCT573DW.A	DW	SOIC	20	25	507	12.83	5080	6.6
SN74BCT573N	N	PDIP	20	20	506	13.97	11230	4.32
SN74BCT573N.A	N	PDIP	20	20	506	13.97	11230	4.32

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

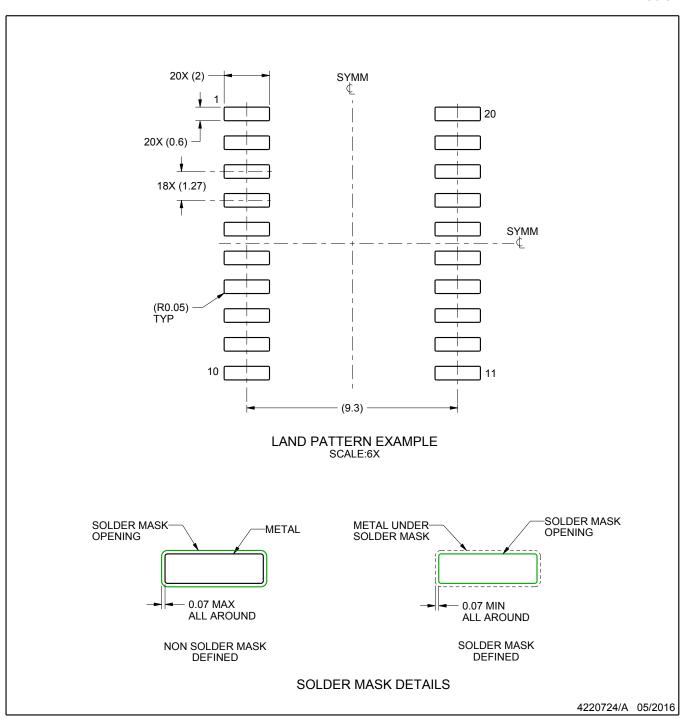
16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

SOIC

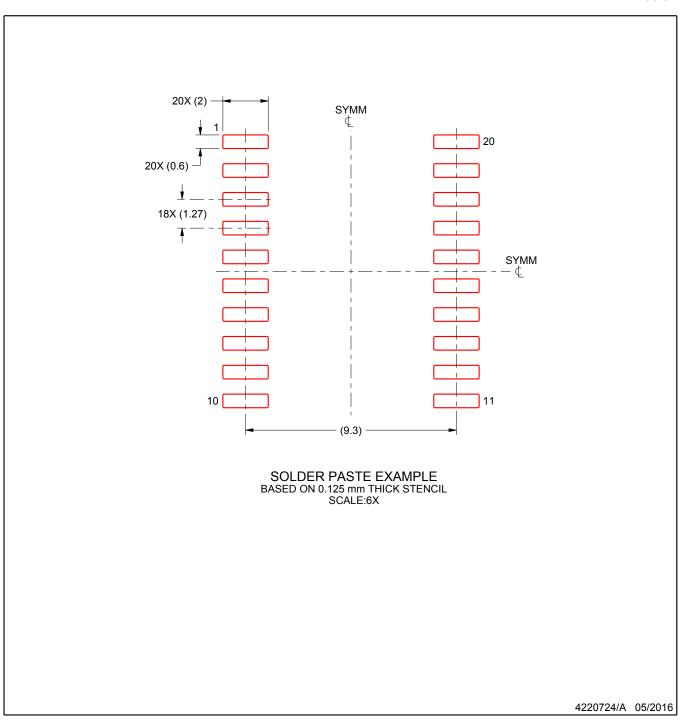
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025