

SN74AHC00-Q1

SGDS013C - FEBRUARY 2002 - REVISED JUNE 2023

SN74AHC00-Q1 Automotive Quadruple 2-Input Positive-NAND Gate

1 Features

- **Qualified for Automotive Applications**
- Operating Range 2-V to 5.5-V V $_{\rm CC}$
- Latch-Up Performance Exceeds 250 mA Per JESD

2 Description

The SN74AHC00 device performs the Boolean function $Y = \overline{A \cdot B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

Package Information

PART NUMBER	PACKAGE ¹	PACKAGE SIZE ²
	D (SOIC, 14)	8.65 mm × 6 mm
SN74AHC00-Q1	PW (TSSOP, 14)	5.00 mm x 6.4 mm
	BQA (WQFN, 14)	3 mm × 2.5 mm

- For all available packages, see the orderable addendum at the end of the data sheet.
- The package size (length × width) is a nominal value and includes pins, where applicable.

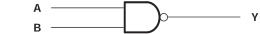


Figure 2-1. Logic Diagram, Each Gate (Positive Logic)

Table of Contents

1 Features1	5.9 Operating Characteristics
2 Description1	6 Parameter Measurement Information
3 Revision History2	7 Detailed Description
4 Pin Configuration and Functions3	7.1 Functional Block Diagram
5 Specifications4	7.2 Device Functional Modes
5.1 Absolute Maximum Ratings4	8 Device and Documentation Support
5.2 ESD Ratings4	8.1 Documentation Support
5.3 Recommended Operating Conditions4	8.2 Receiving Notification of Documentation Updates
5.4 Thermal Information5	8.3 Support Resources
5.5 Electrical Characteristics5	8.4 Trademarks
5.6 Switching Characteristics, V _{CC} = 3.3 V ± 0.3 V5	8.5 Electrostatic Discharge Caution
5.7 Switching Characteristics, V _{CC} = 5 V ± 0.5 V5	8.6 Glossary
5.8 Noise Characteristics6	9 Mechanical, Packaging, and Orderable Information 10

3 Revision History

Changes from Revision B (A	(2008 April 2008	to Revision C	(June 2023)
----------------------------	------------------	---------------	-------------

Page

- Added Package Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Device
 Functional Modes, Device and Documentation Support section, and Mechanical, Packaging, and Orderable
 Information section
 Added BQA package to Package Information table

4 Pin Configuration and Functions

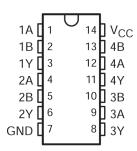


Figure 4-1. D or PW Package (Top View)

	PIN	TYPE ¹	DESCRIPTION
NO.	NAME	I TPE	DESCRIPTION
1	1A	I	1A Input
2	1B	I	1B Input
3	1Y	0	1Y Output
4	2A	I	2A Input
5	2B	I	2B Input
6	2Y	0	2Y Output
7	GND	_	GND
8	3Y	0	3Y Output
9	3A	I	3A Input
10	3B	I	3B Input
11	4Y	0	4Y Output
12	4A	I	4A Input
13	4B	I	4B Input
14	V _{CC}		Power Pin

1. Signal Types: I = Input, O = Output, I/O = Input or Output.

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
V _I ¹	Input voltage range		-0.5	7	V
V _O ¹	Output voltage range		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	(V _I < 0)		-20	mA
I _{OK}	Output clamp current	$(V_O < 0 \text{ or } V_O > V_{CC})$		±20	mA
Io	Continuous output current	$(V_O = 0 \text{ to } V_{CC})$		±25	mA
	Continuous current through V _{CC} or GND			±50	mA
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per AEC Q100-002 ¹	±2000	V
V _(ESD)	Liedilosialio discriarge	Charged device model (CDM), per AEC Q100-011	±1000	"

5.3 Recommended Operating Conditions

over recommended operating free-air temperature range (unless otherwise noted)¹

			MIN	MAX	UNIT
V _{CC}	Supply voltage		2	5.5	V
		V _{CC} = 2 V	1.5		
V_{IH}	High-level input voltage	V _{CC} = 3 V	2.1		V
		V _{CC} = 5.5 V	3.85		
		V _{CC} = 2 V		0.5	
V_{IL}	Low-level input voltage	V _{CC} = 3 V		0.9	V
		V _{CC} = 5.5 V		1.65	
VI	Input voltage	·	0	5.5	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 2 V		-50	μA
I_{OH}	High-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		-4	mA
		$V_{CC} = 5 V \pm 0.5 V$		-8	mA
		V _{CC} = 2 V		50	μΑ
I_{OL}	Low-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4	Λ
		$V_{CC} = 5 V \pm 0.5 V$		8	mA
A4/A	land the social and so	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		100	0/
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 5 V \pm 0.5 V$		20	ns/V
_		Q-suffix devices	-40	125	°C
T_A	Operating free-air temperature	I-suffix devices	-40	85	C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

5.4 Thermal Information

			SN74AHC00-Q1		
THERMAL METRIC ¹		D (SOIC)	PW (TSSOP)	BQA (WQFN)	UNIT
		14 PINS	14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	86	147.7	88.3	°C/W

5.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	T _A = 25 °C			T _A = -4		T _A = -40 85°		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
		2 V	1.9	2		1.9		1.9		
	I _{OH} = -50 μA	3 V	2.9	3		2.9		2.9		
V _{OH}		4.5 V	4.4	4.5		4.4		4.4		V
	I _{OH} = -4 mA	3 V	2.58			2.48		2.48		
	$I_{OH} = -8 \text{ mA}$		3.94			3.8		3.8		
		2 V			0.1		0.1		0.1	
	$I_{OL} = 50 \mu A$	3 V			0.1		0.1		0.1	
V _{OL}		4.5 V			0.1		0.1		0.1	V
	I _{OL} = 4 mA	3 V			0.36		0.5		0.44	
	I _{OL} = 8 mA	4.5 V			0.36		0.5		0.44	
Iı	V _I = 5.5 V or GND	0 V to 5.5 V			±0.1		±1		±1	μA
I _{CC}	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			2		20		20	μA
C _i	V _I = V _{CC} or GND	5 V		2	10				10	pF

5.6 Switching Characteristics, V_{CC} = 3.3 V \pm 0.3 V

over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

PARAMETER	METER FROM (INPUT) TO (OUTPUT) LOAD CAPACITANCE		T _A :	= 25 °C		T _A = -40 125°		T _A = -40 85°		UNIT	
			OAI AOIIANOL	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	A or B	V	C ₁ = 15 pF		5.5	7.9	1	9.5	1	9.5	no
t _{PHL}	AOIB	'	CL = 13 pr		5.5	7.9	1	9.5	1	9.5	ns
t _{PLH}	A or B	V	C ₁ = 50 pF		8	11.4	1	13	1	13	ne
t _{PHL}	AUID	Y	OL = 50 PF		8	11.4	1	13	1	13	ns

5.7 Switching Characteristics, V_{CC} = 5 V ± 0.5 V

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

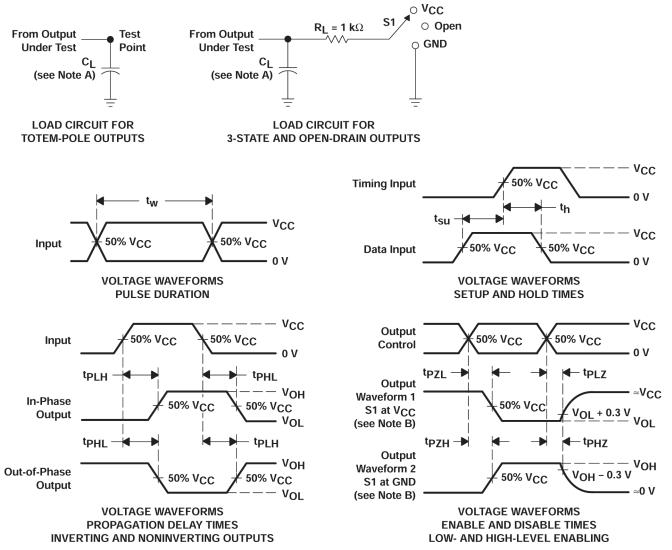
PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	T _A =	= 25 °C		T _A = -40		T _A = -40		UNIT	
			CAFACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX		
t _{PLH}	A or B	V	C _I = 15 pF		3.7	5.5	1	6.5	1	6.5	20	
t _{PHL}	Λοι Β Ι ΟΕ - 15 βι		ī	τ C _L = 15 pr		3.7	5.5	1	6.5	1	6.5	ns
t _{PLH}	A or B	V 0 - 50 - 5	V	C ₁ = 50 pF		5.2	7.5	1	8.5	1	8.5	ne
t _{PHL}	AUID	ľ	CL = 50 pr		5.2	7.5	1	8.5	1	8.5	ns	

5.8 Noise Characteristics

 V_{CC} = 5 V, C_L = 50 pF, T_A = 25°C ¹

	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL} (P)	Quiet output, maximum dynamic V _{OL}		0.3	0.8	V
V _{OL} (V)	Quiet output, minimum dynamic V _{OL}		-0.3	-0.8	V
V _{OH} (V)	Quiet output, minimum dynamic V _{OH}		4.6 ¹		V
V _{IH} (D)	High-level dynamic input voltage	3.5			V
V _{IL} (D)	Low-level dynamic input voltage			1.5	V

1. Characteristics are for surface-mount packages only.


5.9 Operating Characteristics

 V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd}	Power dissipation capacitance	No load, f = 1 MHz	9.5	pF

Submit Document Feedback

6 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , $t_f \leq$ 3 ns, $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 6-1. Load Circuit and Voltage Waveforms

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{CC}
t _{PHZ} /t _{PZH}	GND
Open Drain	V _{CC}

7 Detailed Description

7.1 Functional Block Diagram

Figure 7-1. Logic Diagram, Each Gate (Positive Logic)

7.2 Device Functional Modes

Table 7-1. Function Table (Each Gate)

INP	UTS	OUTPUT Y				
Α	В	OUIFUL				
Н	Н	L				
L	X	Н				
X	L	Н				

8 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

8.1 Documentation Support

8.1.1 Related Documentation

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 8-1. Related Links

PARTS	PARTS PRODUCT FOLDER SA		TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN74AHC00-Q1	Click here	Click here	Click here	Click here	Click here

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

9-Nov-2025 www.ti.com

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
SN74AHC00QDRG4Q1	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC00Q
SN74AHC00QDRG4Q1.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC00Q
SN74AHC00QDRQ1	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC00Q
SN74AHC00QDRQ1.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC00Q
SN74AHC00QPWRG4Q1	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA00Q
SN74AHC00QPWRG4Q1.A	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA00Q
SN74AHC00QPWRQ1	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA00Q
SN74AHC00QPWRQ1.A	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HA00Q
SN74AHC00QWBQARQ1	Active	Production	WQFN (BQA) 14	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC00Q
SN74AHC00QWBQARQ1.A	Active	Production	WQFN (BQA) 14	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AHC00Q

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 9-Nov-2025

and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

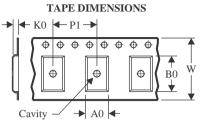
OTHER QUALIFIED VERSIONS OF SN74AHC00-Q1:

Catalog: SN74AHC00

● Enhanced Product: SN74AHC00-EP

Military: SN54AHC00

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TAPE AND REEL INFORMATION

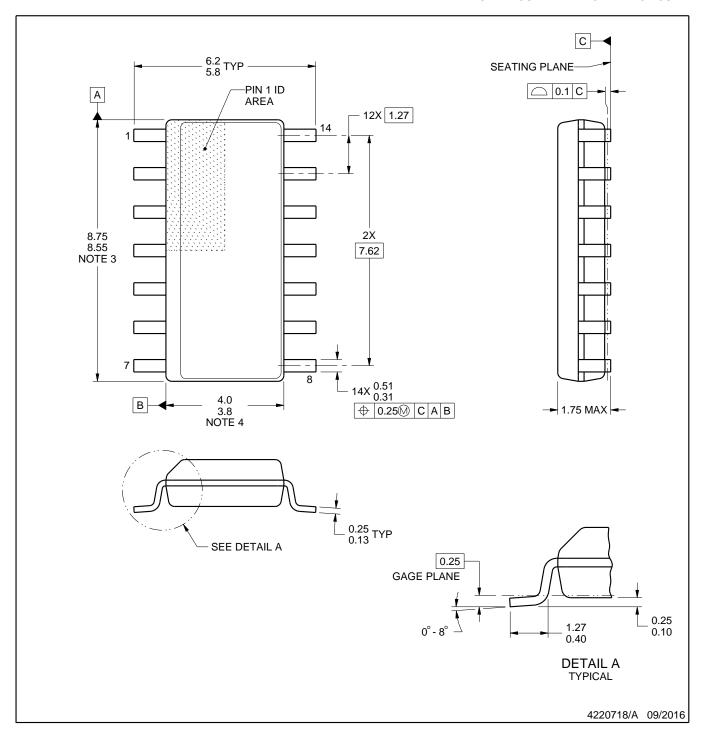
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC00QPWRG4Q1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74AHC00QPWRQ1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74AHC00QPWRQ1	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74AHC00QWBQARQ1	WQFN	BQA	14	3000	180.0	12.4	2.8	3.3	1.1	4.0	12.0	Q1

www.ti.com 24-Jul-2025



*All dimensions are nominal

7 III GIII IOI IOI IOI IOI III IOI							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHC00QPWRG4Q1	TSSOP	PW	14	2000	353.0	353.0	32.0
SN74AHC00QPWRQ1	TSSOP	PW	14	2000	353.0	353.0	32.0
SN74AHC00QPWRQ1	TSSOP	PW	14	2000	353.0	353.0	32.0
SN74AHC00QWBQARQ1	WQFN	BQA	14	3000	210.0	185.0	35.0

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

SMALL OUTLINE INTEGRATED CIRCUIT

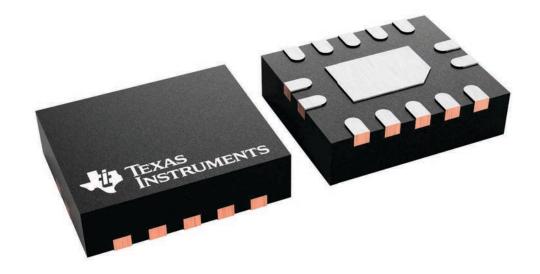
NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

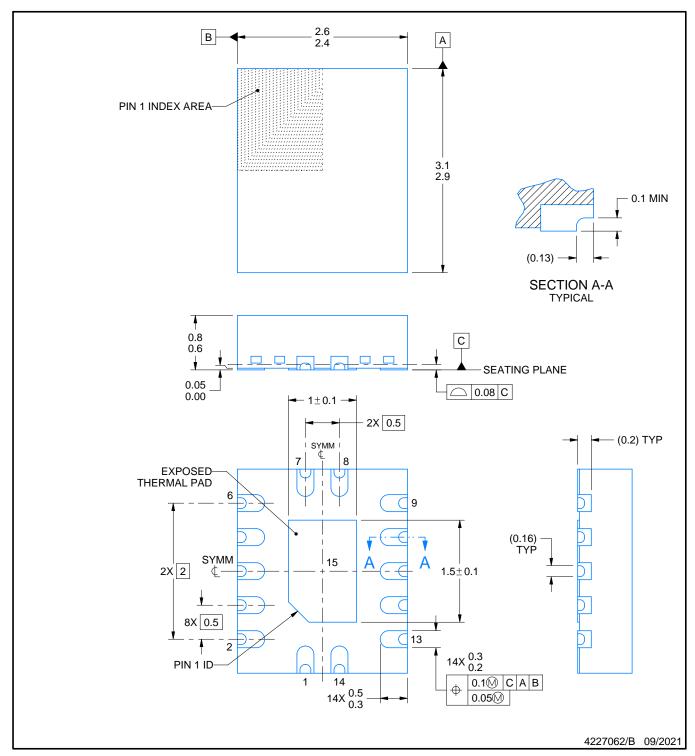
SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

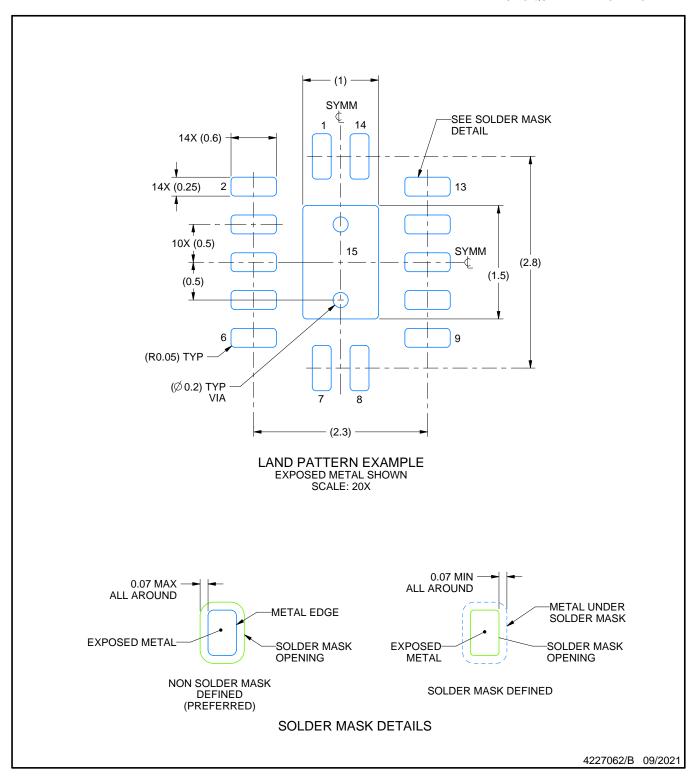
2.5 x 3, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

www.ti.com

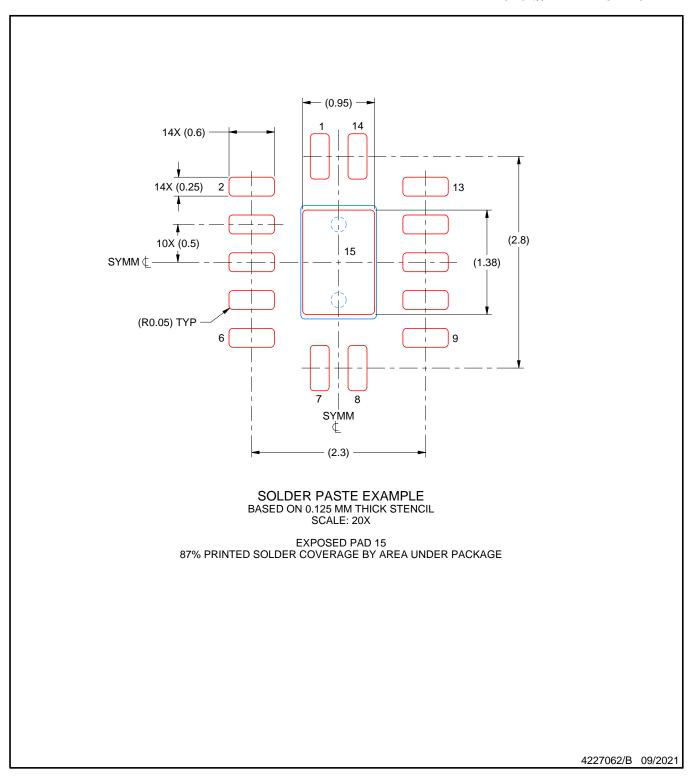
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025