SN74ACT1073 16-BIT BUS-TERMINATION ARRAY WITH BUS-HOLD FUNCTION

SCAS193A - MARCH 1992 - REVISED NOVEMBER 2002

- Designed to Ensure Defined Voltage Levels on Floating Bus Lines in CMOS Systems
- 4.5-V to 5.5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Reduces Undershoot and Overshoot Caused By Line Reflections
- Repetitive Peak Forward Current . . . I_{FRM} = 100 mA
- Inputs Are TTL-Voltage Compatible
- Low Power Consumption (Like CMOS)
- Center-Pin V_{CC} and GND Configuration Minimizes High-Speed Switching Noise
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

20 D16 D1 [D2 🛮 2 19**∏** D15 D3 🛮 3 18∏ D14 D4 🛮 4 17 **∏** D13 16 V_{CC} GND ∏5 GND 6 15 V_{CC} D5 **∏** 7 14 **□** D12 D6 **∏**8 13**∏** D11 D7 **∏** 9 12 D10 D8 **∏** 10 11 D9

DW OR NS PACKAGE

(TOP VIEW)

description/ordering information

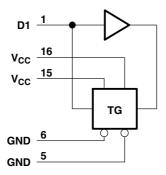
This device is designed to terminate bus lines in CMOS systems. The integrated low-impedance diodes clamp the voltage of undershoots and overshoots caused by line reflections and ensure signal integrity. The device also contains a bus-hold function that consists of a CMOS-buffer stage with a high-resistance feedback path between its output and its input. The SN74ACT1073 prevents bus lines from floating without using pullup or pulldown resistors.

The high-impedance inputs of these internal buffers are connected to the input terminals of the device. The feedback path on each internal buffer stage keeps a bus line tied to the bus holder at the last valid logic state generated by an active driver before the bus switches to the high-impedance state.

ORDERING INFORMATION

T _A	PACKAGI	<u></u> †	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	0010 DW	Tube	SN74ACT1073DW	AOT4070
	SOIC - DW	Tape and reel	SN74ACT1073DWR	ACT1073
	SOP - NS	Tape and reel	SN74ACT1073NSR	ACT1073

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCAS193A - MARCH 1992 - REVISED NOVEMBER 2002

logic diagram, one of sixteen channels (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	\dots -0.5 V to V _{CC} + 0.5 V
Continuous input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Positive-peak input clamp current, I_{IK} ($V_I > V_{CC}$) ($t_w < 1 \mu s$, duty cycle $< 20\%$)	100 mA
Negative-peak input clamp current, I_{IK} ($V_I < 0$) ($t_w < 1 \mu s$, duty cycle $< 20\%$)	–100 mA
Package thermal impedance, θ_{JA} (see Note 2): DW package	58°C/W
NS package	60°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

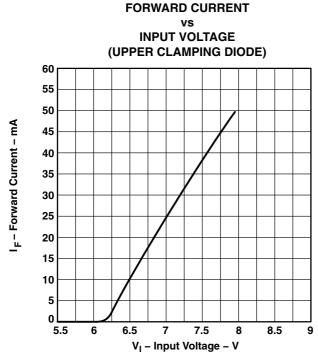
recommended operating conditions (see Note 3)

		MIN	MAX	UNIT
V_{CC}	Supply voltage	4.5	5.5	V
V_{IH}	High-level input voltage	2.5		V
V_{IL}	Low-level input voltage		0.8	V
VI	Input voltage	0	V_{CC}	V
T _A	Operating free-air temperature	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

NOTE 1: The input negative-voltage rating may be exceeded if the input clamp-current rating is observed.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.


electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	_	FOT CONDITIONS		T _A = 25°C			MINI MAY			
PARAMETER	Ī	EST CONDITIONS	MIN	TYP†	MAX	IVIIN	MIN MAX			
I _{IL}	$V_{CC} = 4.5 \text{ to } 5.5 \text{ V},$	$V_{I} = 0.8 V$	0.15	0.3	0.9	0.1	1	mA		
l _{IH}	$V_{CC} = 4.5 \text{ to } 5.5 \text{ V},$	V _I = 2.5 V	-0.2	-0.5	-1.4	-0.15	-1.5	mA		
V _{IKL}	$I_{IN} = -18 \text{ mA}$				-1.5		-1.5	V		
V _{IKH}	I _{IN} = 18 mA				V _{CC} +2		V _{CC} +2	V		
lcc [‡]	$V_{CC} = 5.5 \text{ V},$	Inputs open			4		40	μΑ		
Δl _{CC} §	One input at 3.4 V,	Other inputs at V_{CC} or GND			0.9		1	mA		
C _i	$V_I = V_{CC}$ or GND			3				pF		

[†] All typical values are at V_{CC} = 5 V. ‡ Inputs may be set high or low prior to the I_{CC} measurement. § This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or V_{CC}.

TYPICAL CHARACTERISTICS

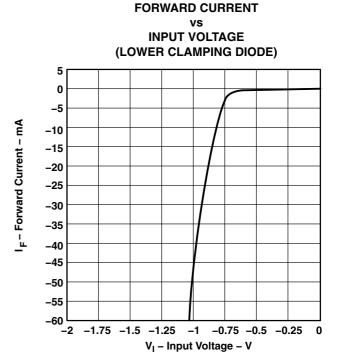
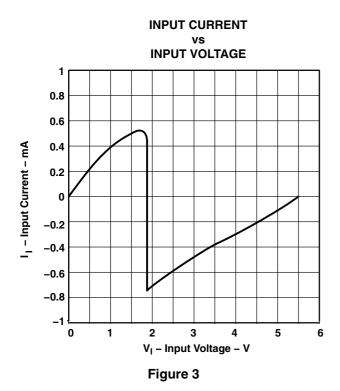
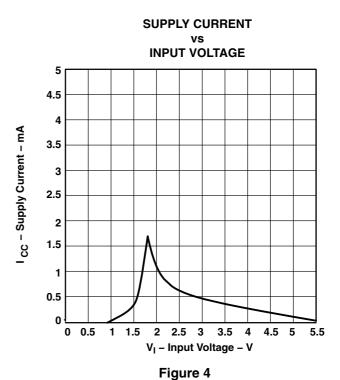




Figure 1

Figure 2

TEXAS INSTRUMENTS

SCAS193A - MARCH 1992 - REVISED NOVEMBER 2002

APPLICATION INFORMATION

The SN74ACT1073 terminates the output of a driving device and holds the input of the driven device at the logic level of the driver output prior to establishment of the high-impedance state on that output (see Figure 5).

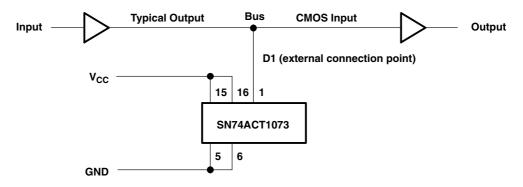


Figure 5. Bus-Hold Application

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
SN74ACT1073DW	Obsolete	Production	SOIC (DW) 20	-	-	Call TI	Call TI	-40 to 85	ACT1073
SN74ACT1073DWR	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT1073
SN74ACT1073DWR.A	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT1073
SN74ACT1073NSR	Active	Production	SOP (NS) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT1073
SN74ACT1073NSR.A	Active	Production	SOP (NS) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT1073

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

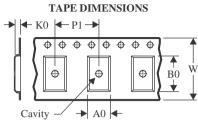
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

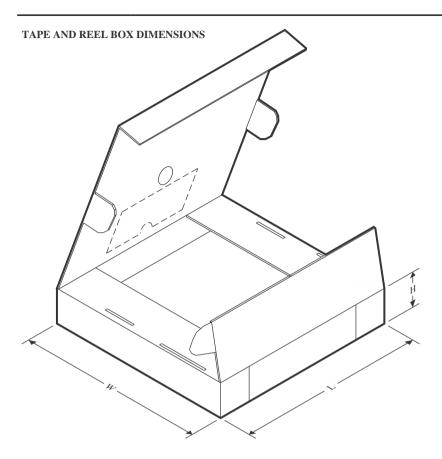

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ACT1073DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74ACT1073NSR	SOP	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1

www.ti.com 24-Jul-2025

*All dimensions are nominal

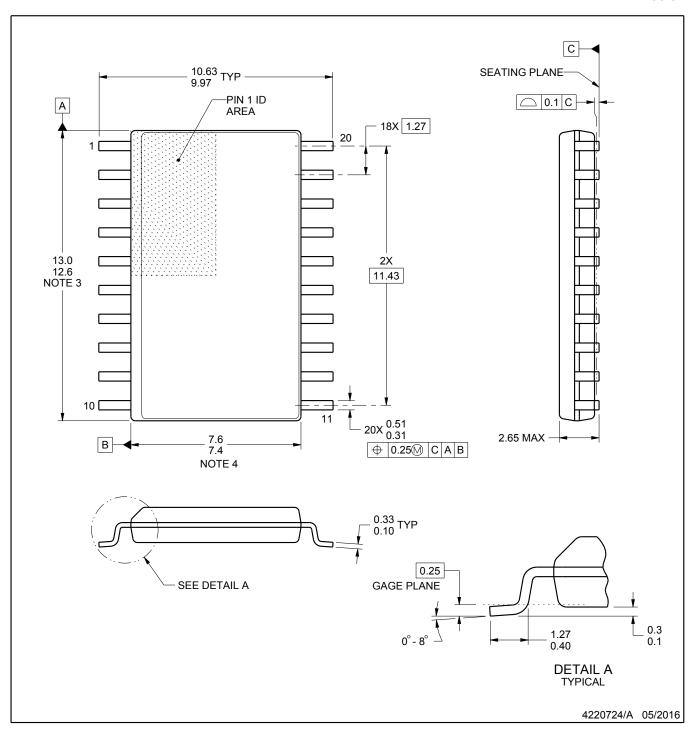
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ACT1073DWR	SOIC	DW	20	2000	356.0	356.0	45.0
SN74ACT1073NSR	SOP	NS	20	2000	356.0	356.0	45.0

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

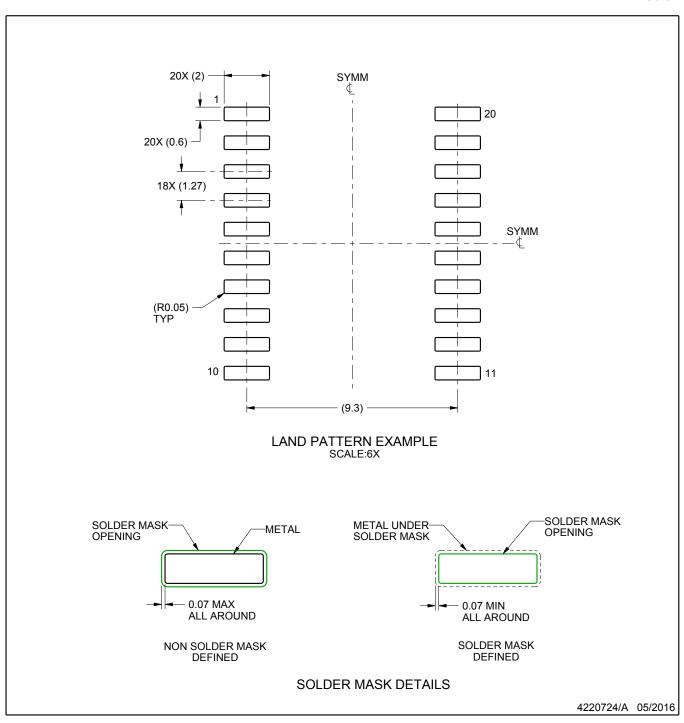
PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

SOIC

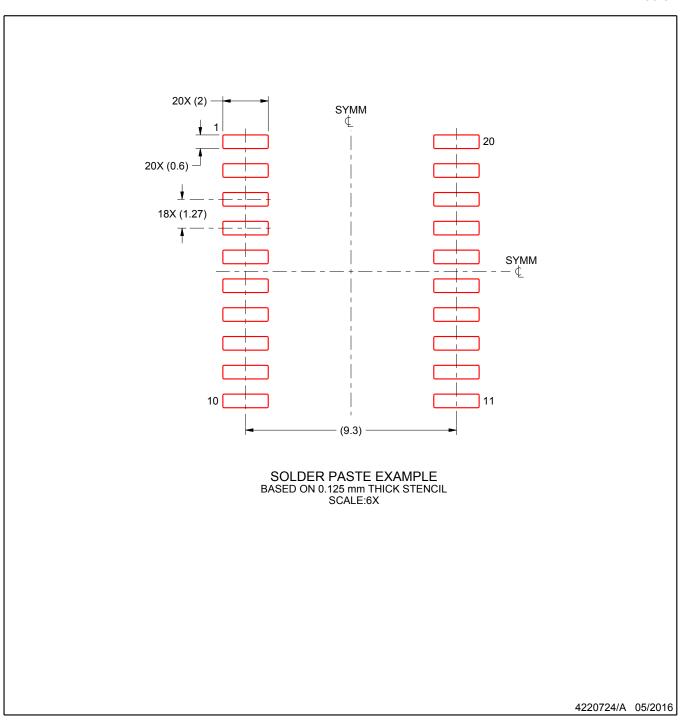
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025