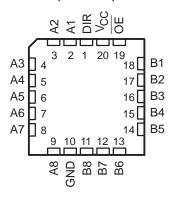

SCBS680A - MARCH 1997 - REVISED MAY 1997

- Outputs Have Equivalent 25- Ω Series Resistors, So No External Resistors Are Required
- State-of-the-Art *EPIC-IIB™* BiCMOS Design Significantly Reduces Power Dissipation
- **High-Impedance State During Power Up** and Power Down
- Latch-Up Performance Exceeds 500 mA Per **JEDEC Standard JESD-17**
- ESD Protection Exceeds 2000 V Per MIL-STD-833, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Typical V_{OLP} (Output Ground Bounce) < 1 V at $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$
- **Package Options Include Plastic** Small-Outline (DW), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), and Thin Very Small-Outline (DGV) Packages, Ceramic Chip Carriers (FK), and Plastic (N) and Ceramic (J) DIPs


description

These octal transceivers and line drivers are designed for asynchronous communication between data buses. The devices transmit data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so the buses are effectively isolated.

SN54ABTR2245...J PACKAGE SN74ABTR2245...DB, DGV, DW, N, OR PW PACKAGE (TOP VIEW)

SN54ABTR2245 . . . FK PACKAGE (TOP VIEW)

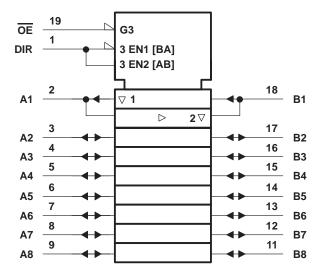
Both the A-port and B-port outputs, which are designed to sink up to 12 mA, include equivalent 25- Ω series resistors to reduce overshoot and undershoot.

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABTR2245 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABTR2245 is characterized for operation from -40°C to 85°C.

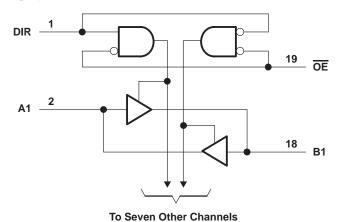
FUNCTION TABLE

INP	UTS	OPERATION
OE	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	X	Isolation



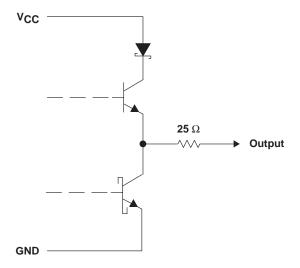
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC-IIB is a trademark of Texas Instruments Incorporated


SCBS680A - MARCH 1997 - REVISED MAY 1997

logic symbol†

 $[\]ensuremath{^{\dagger}}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


logic diagram (positive logic)

TEXAS INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SCBS680A - MARCH 1997 - REVISED MAY 1997

output schematic

All resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		0.5 V to 7 V
Input voltage range, VI (except I/O ports) (see I	Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high	or power-off state, VO	–0.5 V to 5.5 V
Current into any output in the low state, IO		30 mA
Input clamp current, I_{IK} ($V_I < 0$)		–18 mA
Output clamp current, I _{OK} (V _O < 0)		–50 mA
Package thermal impedance, θ _{JA} (see Note 2):	DB package	115°C/W
	DGV package	146°C/W
	DW package	97°C/W
	N package	67°C/W
	PW package	128°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.

SCBS680A - MARCH 1997 - REVISED MAY 1997

recommended operating conditions (see Note 3)

			SN54ABT	R2245	SN74AB1	R2245	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2	3	2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage		0 4	Vcc	0	VCC	V
IOH	High-level output current		1	-12		-12	mA
loL	Low-level output current		22	12		12	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	20/	5		5	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

SCBS680A - MARCH 1997 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DAD	AMETER	TEST CON	IDITIONS	T,	A = 25°C	;	SN54AB1	TR2245	SN74ABTR2245		UNIT
FAN	ANIETER	TEST CON	IDITIONS	MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	ONIT
VIK		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2		-1.2		-1.2	V
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -1 \text{ mA}$	3.35			3.3		3.35		
VOH		$V_{CC} = 5 V$,	$I_{OH} = -1 \text{ mA}$	3.85			3.8		3.85		V
VOH		V _{CC} = 4.5 V	$I_{OH} = -3 \text{ mA}$				3		3.1		V
		VCC = 4.0 V	$I_{OH} = -12 \text{ mA}$	2.6					2.6		
VOL		V _{CC} = 4.5 V	IOL = 8 mA			0.65		0.8		0.65	V
		VCC = 1.0 V	I _{OL} = 12 mA			8.0				0.8	•
V _{hys}					100						mV
1.	Control inputs	$V_{CC} = 0 \text{ to } 5.5 \text{ V, V}_{I}$	= V _{CC} or GND			±1		±1		±1	μΑ
t _I	A or B ports	$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}$ $V_{I} = V_{CC} \text{ or GND}$	/,			±20		±20		±20	μΑ
I _{OZH} ‡		$\frac{\text{V}_{CC}}{\text{OE}} \ge 2.1 \text{ V to } 5.5 \text{ V}$	$V_{0} = 2.7 V_{0}$			10		10		10	μΑ
I _{OZL} ‡		$\frac{V_{CC}}{OE} = 2.1 \text{ V to } 5.5 \text{ V}$	$V_{0} = 0.5 V_{0}$			-10	,	-10		-10	μΑ
IOZPU§	}	$\frac{\text{VCC}}{\text{OE}} = 0 \text{ to } 2.1 \text{ V, VC}$) = 0.5 V to 2.7 V,			±50	300%	±50		±50	μΑ
IOZPD§	}	$\frac{\text{VCC}}{\text{OE}} = 2.1 \text{ V to 0, V}_{\text{O}}$	0 = 0.5 V to 2.7 V,			±50	Q'	±50		±50	μΑ
l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100				±100	μΑ
ICEX		V _{CC} = 5.5 V, V _O = 5.5 V	Outputs high			50		50		50	μΑ
Io¶		V _{CC} = 5.5 V,	V _O = 2.5 V	-25		-100	-25	-100	-25	-100	mA
		V _{CC} = 5.5 V,	Outputs high		1	250		250		250	μΑ
Icc	A or B ports	$I_{O} = 0$,	Outputs low		24	32		32		32	mA
		$V_I = V_{CC}$ or GND	Outputs disabled		0.5	250		250		250	μΑ
	V _{CC} = 5.5 V, One input at 3		Outputs enabled			1.5		1.5		1.5	
∆l _{CC} #	Data inputs ΔI _{CC} #	Other inputs at VCC or GND	Outputs disabled			0.05		0.05		0.05	mA
	Control inputs	$V_{CC} = 5.5 \text{ V}$, One in Other inputs at V_{CC}				1.5		1.5		1.5	
Ci		V _I = 2.5 V or 0.5 V			3						pF
C _{io}		$V_0 = 2.5 \text{ V or } 0.5 \text{ V}$			6						pF

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

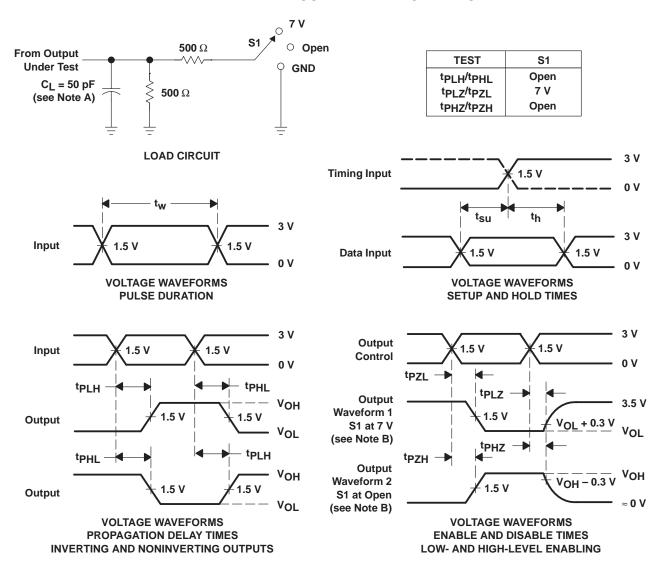
[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] The parameters I_{OZH} and I_{OZL} include the input leakage current.

[§] This parameter is characterized but not production tested.

[¶] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[#]This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.


SCBS680A - MARCH 1997 - REVISED MAY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	FROM TO (INPUT) (OUTPUT)		V _{CC} = 5 V, T _A = 25°C			R2245	SN74AB1	UNIT	
	(IIII O1)	(001101)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	A or B	B or A	1	2.5	3.4	1	4	1	3.8	no
tPHL	AUIB	D UI A	1	3.2	4.2	1 (4.6	1	4.5	ns
^t PZH		A or B	1.5	3.6	4.9	1.5	6.3	1.5	6.1	no
t _{PZL}	ŌĒ	AUIB	1.5	3.9	5.3	1.5	6.6	1.5	6.3	ns
^t PHZ	ŌĒ	A or P	1.5	3.6	4.7	1.5	5.5	1.5	5.3	ns
t _{PLZ}	OE OE	A or B	1.5	3.3	4.4	1.5	4.9	1.5	4.8	

6

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \Omega$, $t_{f} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com 7-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74ABTR2245DW	Active	Production	SOIC (DW) 20	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABTR2245
SN74ABTR2245DW.B	Active	Production	SOIC (DW) 20	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABTR2245
SN74ABTR2245DWR	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABTR2245
SN74ABTR2245DWR.B	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABTR2245
SN74ABTR2245PWR	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AR245
SN74ABTR2245PWR.B	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AR245

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

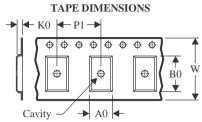
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM


www.ti.com 7-Oct-2025

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TAPE AND REEL INFORMATION

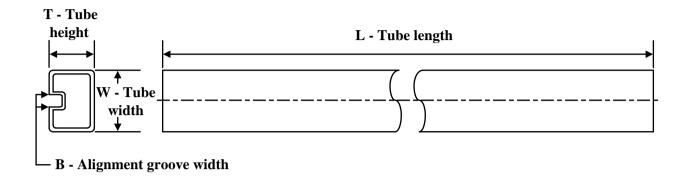
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ABTR2245DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74ABTR2245PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

www.ti.com 24-Jul-2025

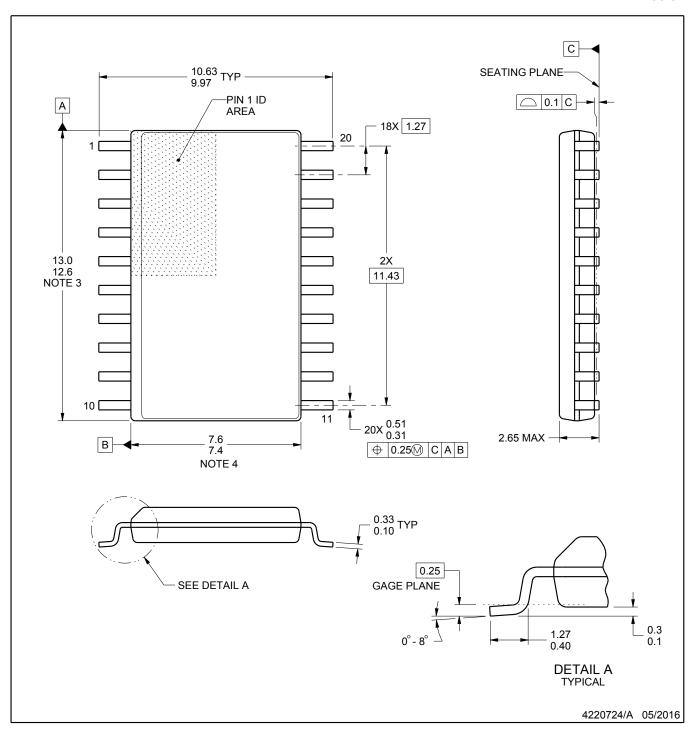

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ABTR2245DWR	SOIC	DW	20	2000	356.0	356.0	45.0
SN74ABTR2245PWR	TSSOP	PW	20	2000	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE

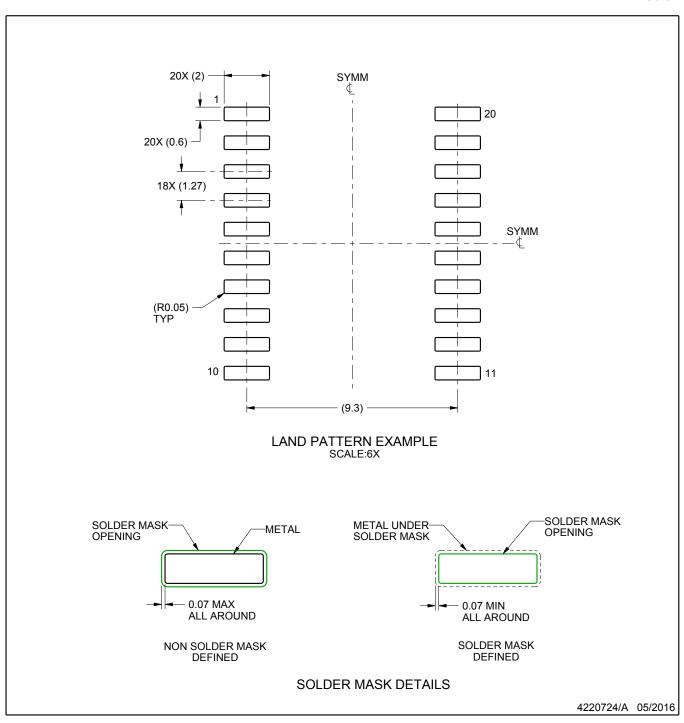


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74ABTR2245DW	DW	SOIC	20	25	507	12.83	5080	6.6
SN74ABTR2245DW.B	DW	SOIC	20	25	507	12.83	5080	6.6

SOIC

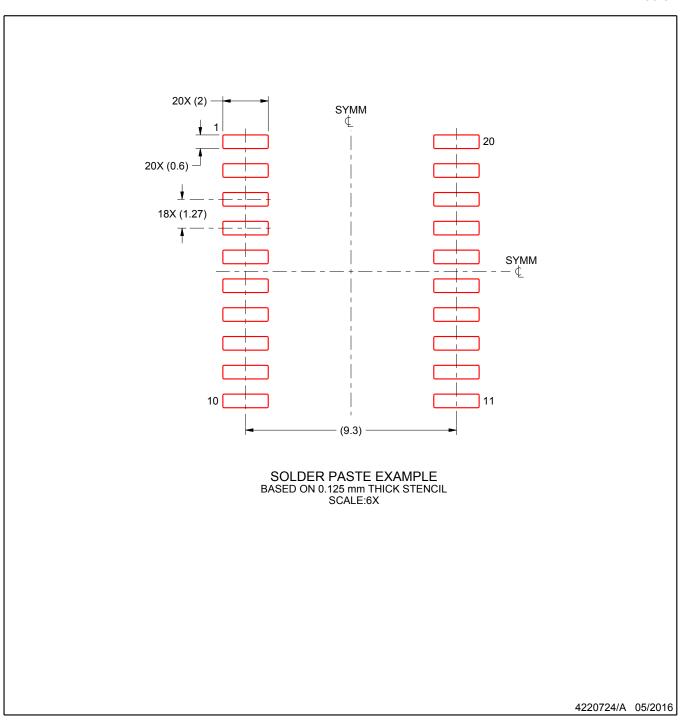
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

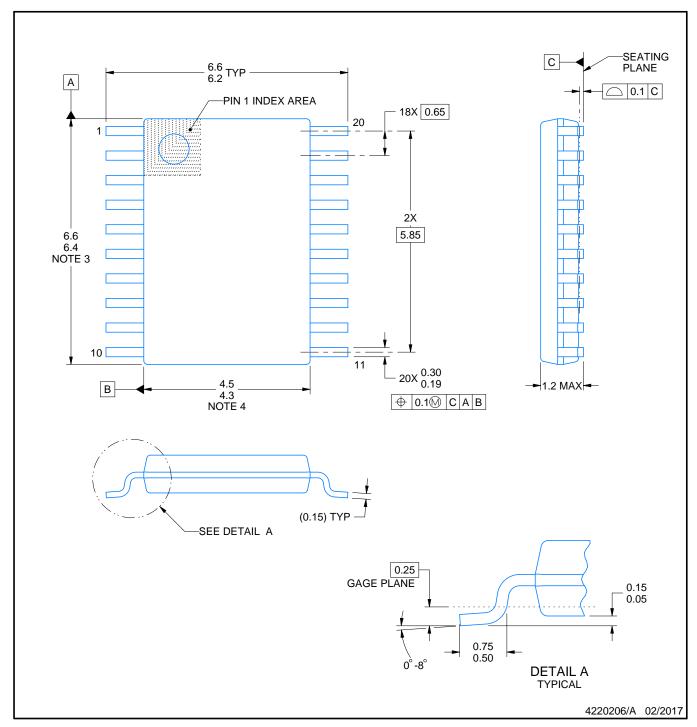
SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

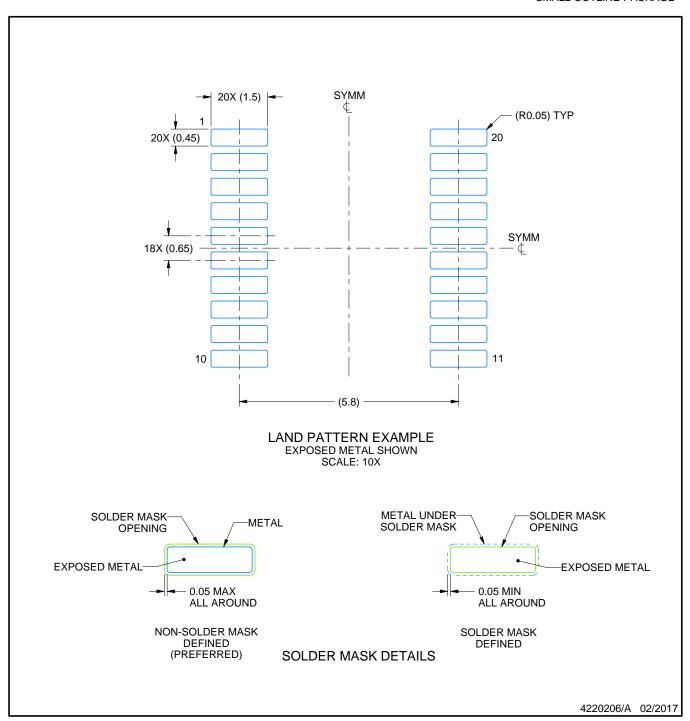
SOIC


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE PACKAGE

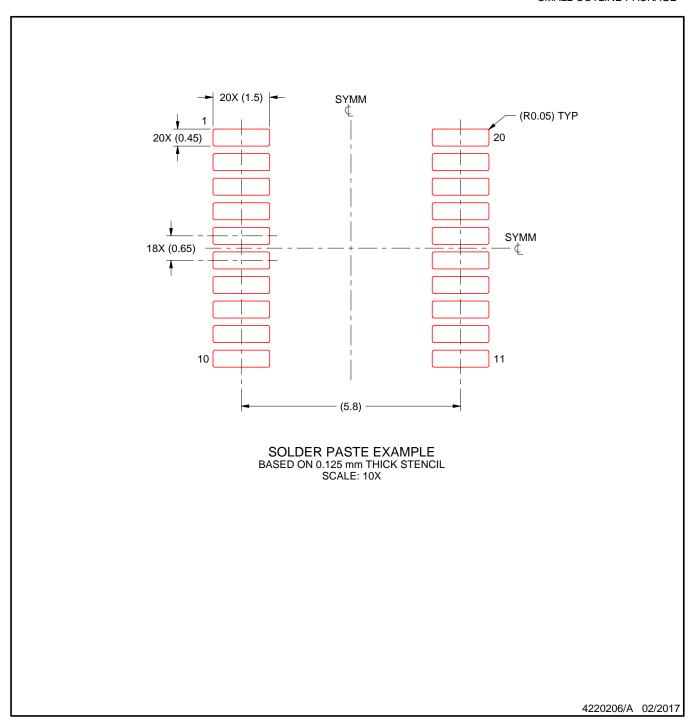
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated