- State-of-the-Art BiCMOS Design Significantly Reduces I_{CC7}
- 3-State Outputs Drive Bus Lines or Buffer-Memory Address Registers
- ESD Protection Exceeds 2000 V Per MIL-STD-883 Method 3015
- High-Impedance State During Power Up and Power Down
- Package Options Include Plastic Small-Outline (D) and Standard Plastic 300-mil DIPs (N)

D OR N PACKAGE (TOP VIEW) 14 🛮 V_{CC} 10E 1A [] 13 ¶ 40E 2 1Y [] 12 4A 20E 11 **∏** 4Y 2A 🛛 10 30E 9 🛮 3A 2Y 🛮 6 **GND** 8 3Y

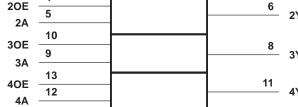
description

The SN64BCT126A bus buffer features independent line drivers with 3-state outputs. Each output is disabled when the associated output-enable (OE) input is low.

The SN64BCT126A is characterized for operation from – 40°C to 85°C and 0°C to 70°C.

FUNCTION TABLE (each buffer)

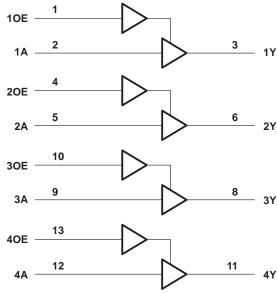
INPU	JTS	OUTPUT
OE	Α	Υ
Н	Н	Н
Н	L	L
L	Χ	Z


logic symbol†

4

10E

1A


1⊳ ∇ 3 1Y 6 2Y

ΕN

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TEXAS INSTRUMENTS

SN64BCT126A QUADRUPLE BUS BUFFER GATE WITH 3-STATE OUTPUTS

SCBS051C - AUGUST 1990 - REVISED JULY 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	\dots -0.5 V to 7 V
Input voltage range, V _I (see Note 1)	\dots -0.5 V to 7 V
Voltage range applied to any output in the disabled or power-off state, VO	–0.5 V to 5.5 V
Voltage range applied to any output in the high state, V _O	\dots -0.5 V to V _{CC}
Current into any output in the low state, IO	128 mA
Package thermal impedance, θ _{JA} (see Note 2): D package	
N package	78°C/W
Storage temperature range, T _{stg}	. –65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative voltage rating may be exceeded if the input clamp current rating is observed.

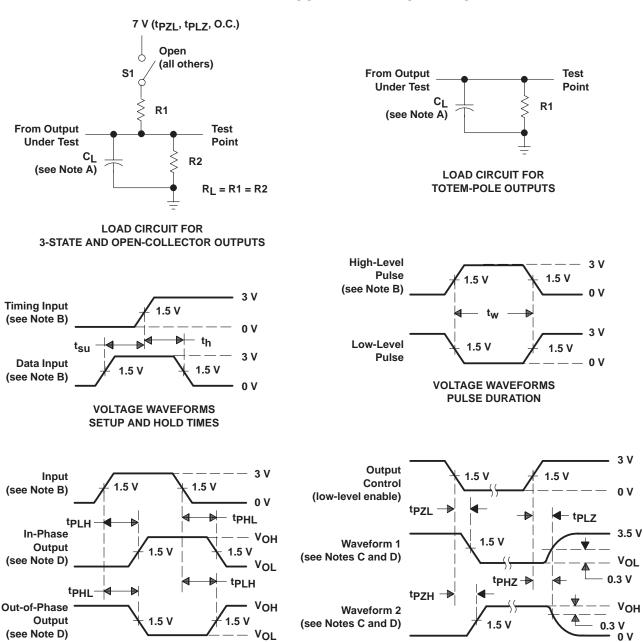
recommended operating conditions (see Note 3)

		MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2			V
VIL	Low-level input voltage			0.8	V
lik	Input clamp current			-18	mA
ІОН	High-level output current			-15	mA
loL	Low-level output current			64	mA
TA	Operating free-air temperature	-40		85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

^{2.} The package thermal impedance is calculated in acordane with JESD 51, except for through-hole packages, which use a trace length of zero.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)


PARAMETER	TES	MIN	TYP†	MAX	UNIT	
VIK	$V_{CC} = 4.5 \text{ V},$	$I_{\parallel} = -18 \text{ mA}$			-1.2	V
Vall	V _{CC} = 4.5 V	$I_{OH} = -3 \text{ mA}$	2.4	3.3		V
VOH	VCC = 4.5 V	I _{OH} = -15 mA	2	3.1		V
V _{OL}	$V_{CC} = 4.5 \text{ V},$	I _{OH} = 64 mA		0.42	0.55	V
lozh	$V_{CC} = 5.5 \text{ V},$	$V_0 = 2.7 \text{ V}$			50	μΑ
lozL	$V_{CC} = 5.5 \text{ V},$	$V_0 = 0.5 V$			-50	μΑ
107	V _{CC} = 0 to 1.3 V (power up)	V _O = 2.7 V or 0.5 V, OE at 2 V			±50	μΑ
loz	V _{CC} = 1.3 V to 0 (power down)	$V_0 = 2.7 \text{ V or } 0.5 \text{ V},$ OE at 2 V	±50			μΛ
lį	$V_{CC} = 0$,	V _I = 7 V			0.1	mA
lіН	$V_{CC} = 5.5 \text{ V},$	V _I = 2.7 V			25	μΑ
I _{IL}	$V_{CC} = 5.5 \text{ V},$	V _I = 0.5 V			-20	μΑ
los [‡]	$V_{CC} = 5.5 \text{ V},$	V _O = 0	-100		-225	mA
ICCL	V _{CC} = 5.5 V			35	51	mA
ICCH	V _{CC} = 5.5 V			21	33	mA
Iccz	V _{CC} = 5.5 V			5	10	mA
C _i	$V_{CC} = 5 V$,	$V_1 = 2.5 \text{ V or } 0.5 \text{ V}$		4		pF
Co	$V_{CC} = 5 V$,	$V_0 = 2.5 \text{ V or } 0.5 \text{ V}$		9		pF

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, C _L = 50 pF, R1 = 500 Ω, R2 = 500 Ω,			V_{CC} = 4.5 V to 5.5 V C_L = 50 pF, R1 = 500 Ω , R2 = 500 Ω				UNIT
	(1141 01)	(0011 01)	T _A = 25°C		T _A = -40 °C to 85 °C		T _A = 0°C to 70°C			
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	А	A Y	1.5	3.6	4.9	1.5	6.3	1.5	6.3	ns
t _{PHL}			· ·	2.7	5.3	6.9	2.7	7.7	2.7	7.4
^t PZH	OE	OE Y	2.6	4.8	6.4	2.6	7.9	2.6	7.9	ns
tPZL			3.7	6.4	8.3	3.7	10.5	3.7	10	115
^t PHZ	OE	Y	3.2	6.6	8.2	3.2	10	3.2	10	ns
^t PLZ			1	3.4	6.5	8	3.4	12.3	3.4	10.7

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C₁ includes probe and jig capacitance.

VOLTAGE WAVEFORMS

PROPAGATION DELAY TIMES (see Note D)

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $t_f = t_f \leq 2.5$ ns, duty cycle = 50%.

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.
- E. When measuring propagation delay times of 3-state outputs, switch S1 is open.

Figure 1. Load Circuits and Voltage Waveforms

www.ti.com 7-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN64BCT126AD	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	6BCT126A
SN64BCT126AD.A	Active	Production	SOIC (D) 14	50 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	6BCT126A

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

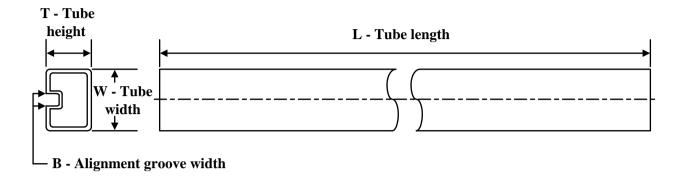
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

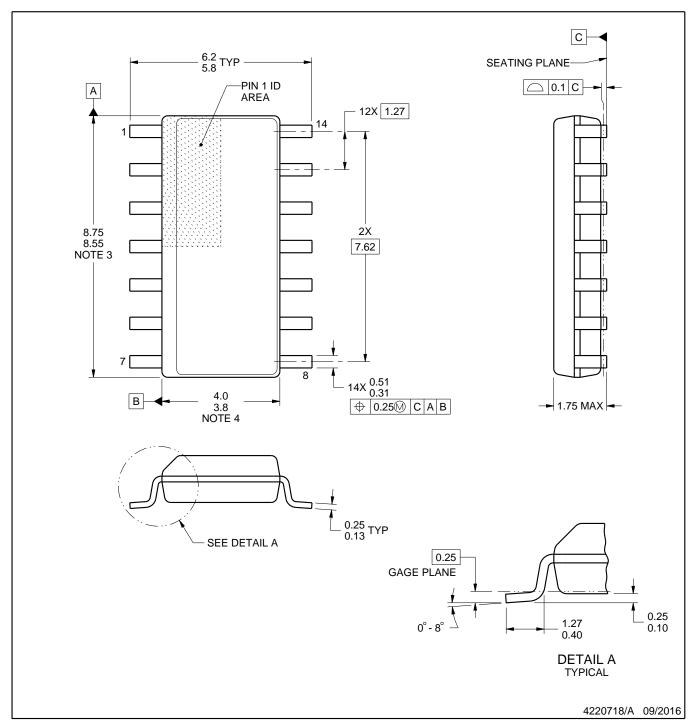

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN64BCT126AD	D	SOIC	14	50	506.6	8	3940	4.32
SN64BCT126AD.A	D	SOIC	14	50	506.6	8	3940	4.32

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated