

HIGH-SPEED DIFFERENTIAL LINE RECEIVER

Check for Samples: SN55LVDS32-SP

FEATURES

- QML-V Qualified, SMD 5962-97621
- Operate From a Single 3.3-V Supply
- Designed for Signaling Rates of up to 100 Mbps
- Differential Input Thresholds ±100 mV Max
- Typical Propagation Delay Times of 2.1 ns
- Power Dissipation 60 mW Typical Per Receiver at Maximum Data Rate
- Bus-Terminal ESD Protection Exceeds 8 kV
- Low-Voltage TTL (LVTTL) Logic Input Levels
- Open-Circuit Fail-Safe
- Cold Sparing for Space and High Reliability Applications Requiring Redundancy

DESCRIPTION

The SN55LVDS32 is a differential line receiver that implements the electrical characteristics of low-voltage differential signaling (LVDS). This signaling technique lowers the output voltage levels of 5-V differential standard levels (such as EIA/TIA-422B) to reduce the power, increase the switching speeds, and allow operation with a 3.3-V supply rail. Any of the four differential receivers provides a valid logical output state with a ±100-mV differential input voltage within the input common-mode voltage range. The input common-mode voltage range allows 1 V of ground potential difference between two LVDS nodes.

The intended application of these devices and signaling technique is both point-to-point and multidrop (one driver and multiple receivers) data transmission over controlled impedance media of approximately 100 Ω . The transmission media may be printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer depends on the attenuation characteristics of the media and the noise coupling to the environment.

The SN55LVDS32 is characterized for operation from -55°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION(1)

T _A PACKAGE ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING		
5500 to 40500	CDIP - J	5962-9762201VEA	5962-9762201VEA		
–55°C to 125°C	CFP - W	5962-9762201VFA	5962-9762201VFA		

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.
- (2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SN55LVDS32 logic diagram (positive logic)

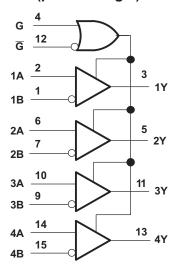
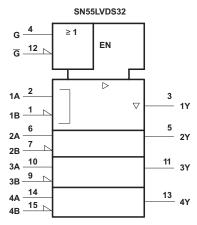
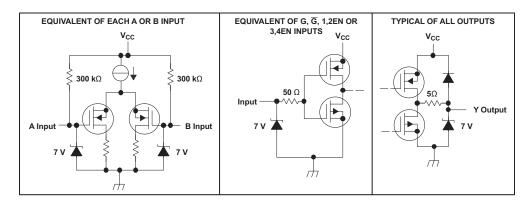



Table 1. FUNCTION TABLE⁽¹⁾

SN55LV	DS32		
DIFFERENTIAL INPUT	ENA	BLES	OUTPUT
A, B	G	G	Y
\/ > 100 m\/	Н	X	Н
V _{ID} ≥ 100 mV	Х	L	Н
100 mV . V < 100 mV	Н	X	?
-100 mV < V _{ID} ≤ 100 mV	X	L	?
\\ < 100 m\\	Н	X	L
V _{ID} ≤ −100 mV	X	L	L
X	L	Н	Z
Open	Н	X	Н
Open	X	L	Н


(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), ? = indeterminate

logic symbol[†]

 $^{^\}dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			UNIT
V_{CC}	Supply voltage range (2)		–0.5 V to 4 V
V_{I}	Input voltage range	Enables and output	-0.5 V to V _{CC} + 0.5 V
		A or B	–0.5 V to 4 V
	Continuous total power dissipation		See Dissipation Rating Table
	Lead temperature 1,6 mm (1/16 inch) from case for 10 second	ds	260°C
T _{stg}	Storage temperature range		−65°C to 150°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ⁽¹⁾ ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
J	1375 mW	11 mW/°C	880 mW	715 mW	275 mW
W	1000 mW	8 mW/°C	640 mW	520 mW	200 mW

⁽¹⁾ This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		3	3.3	3.6	V
V _{IH}	High-level input voltage	G, G, 1,2EN, or 3,4EN	2			V
V_{IL}	Low-level input voltage	G, G, 1,2EN, or 3,4EN			0.8	V
$ V_{ID} $	Magnitude of differential input	t voltage	0.1		0.6	V
V _{IC}	Common-mode input voltage	(see Figure 1)	V _{ID} /2		2.4 - V _{ID} /2	V
					V _{CC} - 0.8	V
T _A	Operating free-air temperatur	е	-55		125	°C

COMMON-MODE INPUT VOLTAGE RANGE

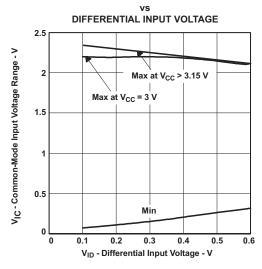


Figure 1. V_{IC} Versus V_{ID} and V_{CC}

4

⁽²⁾ All voltages, except differential I/O bus voltages, are with respect to the network ground terminal.

ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{ITH+}	Positive-going differential input voltage threshold	See Figure 2, Table 2, and ⁽²⁾			100	mV
V _{ITH} _	Negative-going differential input voltage threshold (3)	See Figure 2, Table 2, and ⁽²⁾	-100			mV
V _{OH}	High-level output voltage	I _{OH} = -8 mA	2.4			V
V _{OL}	Low-level output voltage	I _{OL} = 8 mA			0.4	V
	Complex compact	Enabled, No load		10	18	A
I _{CC}	Supply current	Disabled		0.25	0.5	mA
	land summer (A or Dispute)	V _I = 0	-2	-10	-20	
Ч	Input current (A or B inputs)	V _I = 2.4 V	-1.2	-3		μA
I _{I(OFF)}	Power-off input current (A or B inputs)	$V_{CC} = 0,$ $V_{I} = 2.4 \text{ V}$		6	20	μΑ
I _{IH}	High-level input current (EN, G, or G inputs)	V _{IH} = 2 V			10	μΑ
I _{IL}	Low-level input current (EN, G, or G inputs)	V _{IL} = 0.8 V			10	μΑ
l _{OZ}	High-impedance output current	$V_O = 0$ or V_{CC}			±12	μΑ

⁽¹⁾ All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3$ V. (2) $|V_{ITH}| = 200$ mV for operation at $-55^{\circ}C$.

SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}	Propagation delay time, low-to-high-level output		1.3	2.3	6	ns
t _{PHL}	Propagation delay time, high-to-low-level output		1.4	2.2	6.1	ns
t _{sk(o)}	Channel-to-channel output skew ⁽¹⁾	C _L = 10 pF, See Figure 3		0.1		ns
t _r	Differential output signal rise time (20% to 80%)			0.6		ns
t _f	Differential output signal fall time (80% to 20%)			0.7		ns
t _{PHZ}	Propagation delay time, high-level-to-high-impedance output			6.5	12	ns
t_{PLZ}	Propagation delay time, low-level-to-high-impedance output	Con Figure 4		5.5	12	ns
t _{PZH}	Propagation delay time, high-impedance-to-high-level output	See Figure 4		8	12	ns
t _{PZL}	Propagation delay time, high-impedance-to-low-level output			3	12	ns

(1) $t_{sk(0)}$ is the maximum delay time difference between drivers on the same device.

The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for the negative-going differential input voltage threshold only.

PARAMETER MEASUREMENT INFORMATION

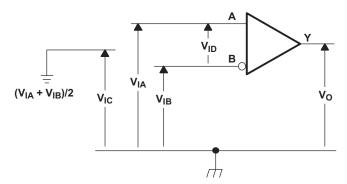
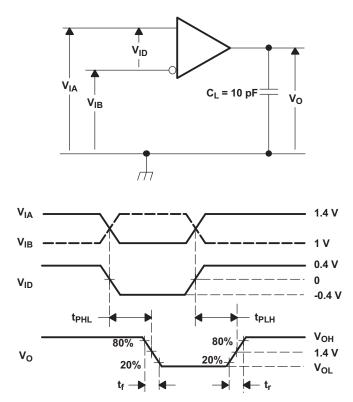
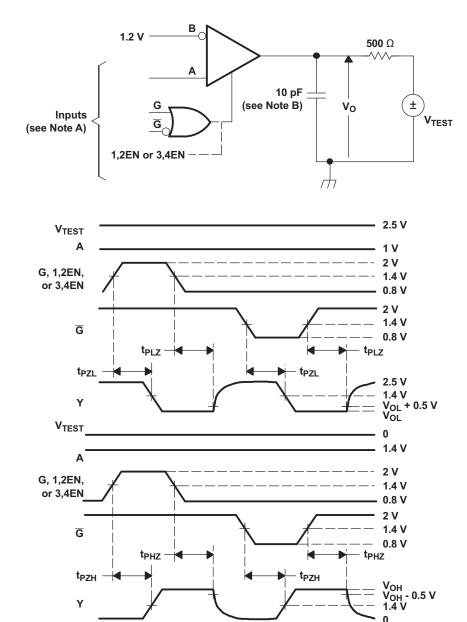



Figure 2. Voltage Definitions

Table 2. Receiver Minimum and Maximum Input Threshold Test Voltages

		•	•		
APPLIED V	OLTAGES ⁽¹⁾	RESULTING DIFFERENTIAL INPUT VOLTAGE	RESULTING COMMON- MODE INPUT VOLTAGE		
V _{IA} (mV)	V _{IB} (mV)	V _{ID} (mV)	V _{IC} (mV)		
1.25	1.15	100	1.2		
1.15	1.25	-100	1.2		
2.4	2.3	100	2.35		
2.3	2.4	-100	2.35		
0.1	0	100	0.05		
0	0.1	-100	0.05		
1.5	0.9	600	1.2		
0.9	1.5	-600	1.2		
2.4	1.8	600	2.1		
1.8	2.4	-600	2.1		
0.6	0	600	0.3		
0	0.6	-600	0.3		


⁽¹⁾ These voltages are applied for a minimum of $1.5 \mu s$.

- A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate(PRR) = 50 Mpps, pulse width = 10 ±0.2 ns.
- B. C_L includes instrumentation and fixture capacitance within 6 mm of the D.U.T.

Figure 3. Timing Test Circuit and Waveforms

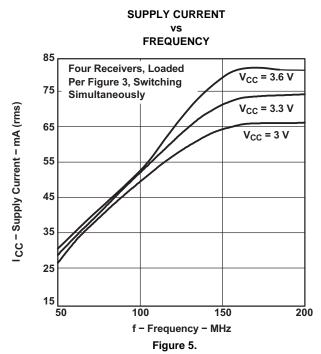
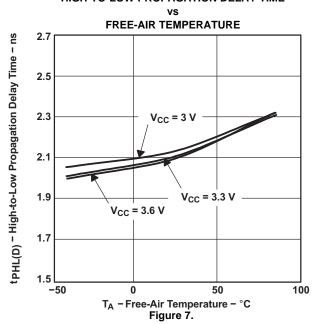

- A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate(PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns.
- B. C_L includes instrumentation and fixture capacitance within 6 mm of the D.U.T.

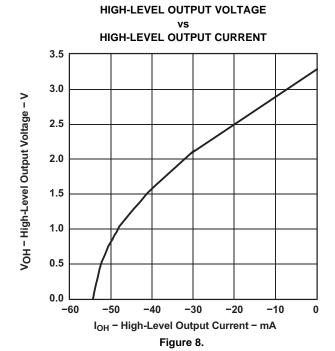
Figure 4. Enable- and Disable-Time Test Circuit and Waveforms

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

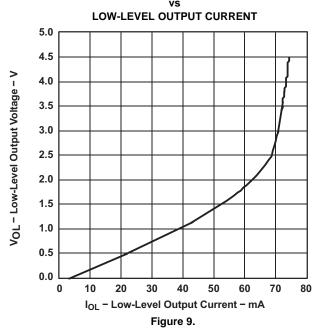


VS FREE-AIR TEMPERATURE 2.7 V_{CC} = 3.0 V_{CC} = 3.6 V V_{CC} = 3.6 V T_A - Free-Air Temperature - °C


Figure 6.

LOW-TO-HIGH PROPAGATION DELAY TIME

HIGH-TO-LOW PROPAGATION DELAY TIME



TYPICAL CHARACTERISTICS (continued)

HIGH-LEVEL OUTPUT VOLTAGE

ISTRUMENTS

APPLICATION INFORMATION

EQUIPMENT

- Hewlett Packard HP6624A DC power supply
- Tektronix TDS7404 Real Time Scope
- Agilent ParBERT E4832A

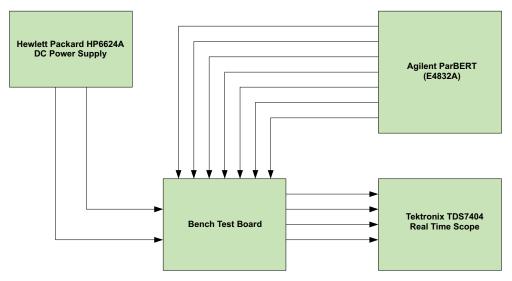
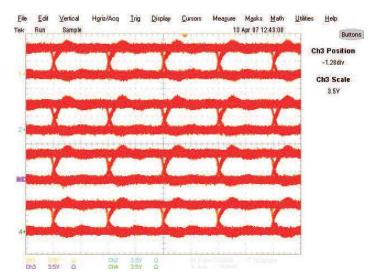
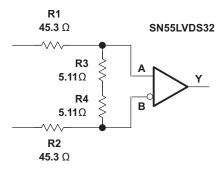



Figure 10. Equipment Setup

All Rx running at 100 Mbps; Channel 1: 1Y, Channel 2: 2Y; Channel 3: 3Y; Channel 4: 4Y

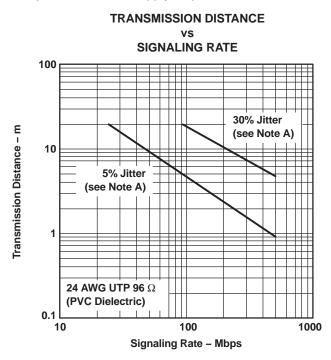
Figure 11. Typical Eye Patterns SN55LVDS32: (T = 25° C; V_{CC} = 3.6 V; PRBS = 2^{23-1})


USING AN LVDS RECEIVER WITH RS-422 DATA

Receipt of data from a TIA/EIA-422 line driver can be accomplished using a TIA/EIA-644 line receiver with the addition of an attenuator circuit. This technique gives the user a high-speed and low-power 422 receiver.

If the ground noise between the transmitter and receiver is not a concern (less than ± 1 V), the answer can be as simple as shown in Figure 12. A resistor divider circuit in front of the LVDS receiver attenuates the 422 differential signal to LVDS levels.

The resistors present a total differential load of $100~\Omega$ to match the characteristic impedance of the transmission line and to reduce the signal 10:1. The maximum 422 differential output signal, or 6 V, is reduced to 600 mV. The high input impedance of the LVDS receiver prevents input bias offsets and maintains a greater than 200-mV differential input voltage threshold at the inputs to the divider. This circuit is used in front of each LVDS channel that also receives 422 signals.

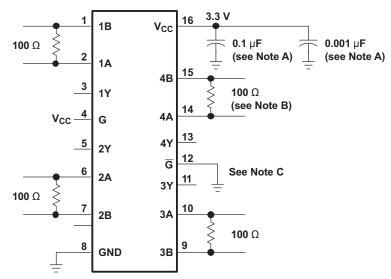


NOTE: The components used were standard values. (1) R1, R2 = NRC12F45R3TR, NIC components, 45.3 Ω , 1/8 W, 1%, 1206 package (2) R3, R4 = NRC12F5R11TR, NIC components, 5.11 Ω , 1/8 W, 1%, 1206 package (3) The resistor values do not need to be 1% tolerance. However, it can be difficult locating a supplier of resistors having values less than 100 Ω in stock and readily available. The user may find other suppliers with comparable parts having tolerances of 5% or even 10%. These parts are adequate for use in this circuit.

Figure 12. RS-422 Data Input to an LVDS Receiver Under Low Ground-Noise Conditions

If ground noise between the RS-422 driver and LVDS receiver is a concern, the common-mode voltage must be attenuated. The circuit must then be modified to connect the node between R3 and R4 to the LVDS receiver ground. This modification to the circuit increases the common-mode voltage from ±1 V to greater than ±4.5 V.

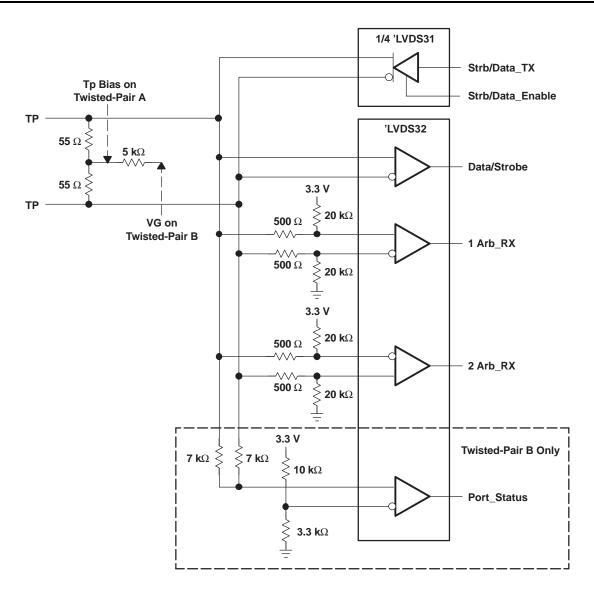
The devices are generally used as building blocks for high-speed point-to-point data transmission where ground differences are less than 1 V. Devices can interoperate with RS-422, PECL, and IEEE-P1596. Drivers/receivers approach ECL speeds without the power and dual-supply requirements.



A. This parameter is the percentage of distortion of the unit interval (UI) with a pseudorandom data pattern.

Figure 13. Typical Transmission Distance Versus Signaling Rate

12



- A. Place a 0.1-μF and a 0.001-μF Z5U ceramic, mica, or polystyrene dielectric, 0805 size, chip capacitor between VCC and the ground plane. The capacitors should be located as close as possible to the device terminals.
- B. The termination resistance value should match the nominal characteristic impedance of the transmission media with ±10%.
- C. Unused enable inputs should be tied to $V_{\mbox{\footnotesize CC}}$ or GND as appropriate.

Figure 14. Typical Application Circuit Schematic

NOTES: A. Resistors are leadless, thick film (0603), 5% tolerance.

- B. Decoupling capacitance is not shown, but recommended.
- C. V_{CC} is 3 V to 3.6 V.
- D. The differential output voltage of the 'LVDS31 can exceed that specified by IEEE1394.

Figure 15. 100-Mbps IEEE 1394 Transceiver

FAIL-SAFE

One of the most common problems with differential signaling applications is how the system responds when no differential voltage is present on the signal pair. The LVDS receiver is like most differential line receivers in that its output logic state can be indeterminate when the differential input voltage is between -100 mV and100 mV if it is within its recommended input common-mode voltage range. However, TI LVDS receivers handle the openinput circuit situation differently.

Open-input circuit means that there is little or no input current to the receiver from the data line itself. This could be when the driver is in a high-impedance state or the cable is disconnected. When this occurs, the LVDS receiver pulls each line of the signal pair to near V_{CC} through 300-k Ω resistors (see Figure 16). The fail-safe feature uses an AND gate with input voltage thresholds at about 2.3 V to detect this condition and force the output to a high level, regardless of the differential input voltage.

Submit Documentation Feedback

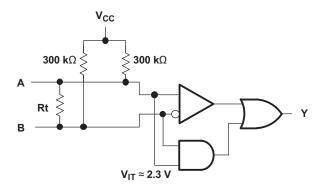
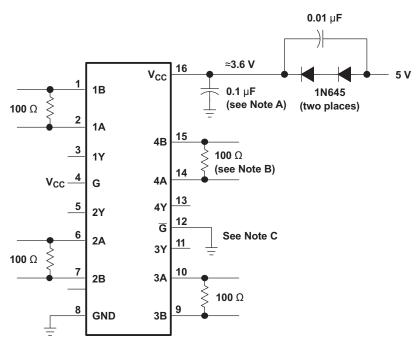



Figure 16. Open-Circuit Fail-Safe of LVDS Receiver

It is only under these conditions that the output of the receiver is valid with less than a 100-mV differential input voltage magnitude. The presence of the termination resistor, Rt, does not affect the fail-safe function as long as it is connected as shown in Figure 16. Other termination circuits may allow a dc current to ground that could defeat the pullup currents from the receiver and the fail-safe feature.

- A. Place a 0.1-μF Z5U ceramic, mica, or polystyrene dielectric, 0805 size, chip capacitor between V_{CC} and the ground plane. The capacitor should be located as close as possible to the device terminals.
- B. The termination resistance value should match the nominal characteristic impedance of the transmission media with ±10%.
- C. Unused enable inputs should be tied to V_{CC} or GND, as appropriate.

Figure 17. Operation With 5-V Supply

COLD SPARING

Systems using cold sparing have a redundant device electrically connected without power supplied. To support this configuration, the spare must present a high-input impedance to the system so that it does not draw appreciable power. In cold sparing, voltage may be applied to an I/O before and during power up of a device. When the device is powered off, V_{CC} must be clamped to ground and the I/O voltages applied must be within the specified recommended operating conditions.

RELATED INFORMATION

IBIS modeling is available for this device. Contact the local TI sales office or the TI Web site at www.ti.com for more information.

For more application guidelines, see the following documents:

- Low-Voltage Differential Signaling Design Notes (SLLA014)
- Interface Circuits for TIA/EIA-644 (LVDS) (SLLA038)
- Reducing EMI With LVDS (SLLA030)
- Slew Rate Control of LVDS Circuits (SLLA034)
- Using an LVDS Receiver With RS-422 Data (SLLA031)

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
5962-9762201VFA	Active	Production	CFP (W) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-9762201VF A SNV55LVDS32W

⁽¹⁾ Status: For more details on status, see our product life cycle.

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

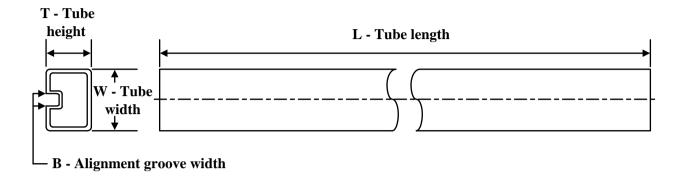
OTHER QUALIFIED VERSIONS OF SN55LVDS32-SP:

Catalog: SN55LVDS32

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025


NOTE: Qualified Version Definitions:

 $_{\bullet}$ Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 21-May-2025

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-9762201VFA	W	CFP	16	25	506.98	26.16	6220	NA

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025