

SN55LVCP22A-SP QML Class V 2×2 1-Gbps LVDS Crosspoint Switch

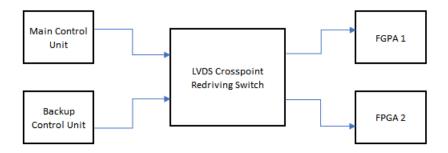
1 Features

- QML class V, RHA, SMD 5962-11242
- Radiation performance
 - RHA to 100 krad(Si)
 - ELDRS free to 100 krad(Si)
 - SEL immune to LET = 75 MeV⋅cm²/mg
 - SEE characterized to LET = 75 MeV⋅cm²/mg
- High-speed (up to 1000 Mbps)
- Low-jitter fully differential data path
- 50 ps (typ), of peak-to-peak jitter with PRBS = 2^{23} –1 pattern
- Less than 227 mW (typ), 313 mW (max) total power dissipation
- Output (channel-to-channel) skew is 80 ps (typ)
- Configurable as 2:1 mux, 1:2 demux, repeater or 1:2 signal splitter
- Inputs accept LVDS, LVPECL, and CML signals
- Fast switch time of 1.7 ns (typ)
- Fast propagation delay of 0.65 ns (typ)
- Inter-operates with TIA/EIA-644-A LVDS standard
- Supports defense, aerospace, and medical applications:
 - Controlled baseline
 - One assembly/test site and one fabrication site
 - Extended product life cycle and extended product-change notification
 - Product traceability

2 Applications

- Command & data handling (C&DH)
- Communications payload
- Radar imaging payload
- Optical imaging payload
- Satellite electrical power system (EPS)

3 Description


The SN55LVCP22A-SP is a 2×2 crosspoint switch providing greater than 1000 Mbps operation for each path. The dual channels incorporate wide commonmode (0 V to 4 V) receivers, allowing for the receipt of LVDS, LVPECL, and CML signals. The dual outputs are LVDS drivers to provide low-power, low-EMI, highspeed operation. The SN55LVCP22A-SP provides a single device supporting 2:2 buffering (repeating), 1:2 2:1 multiplexing, 2×2 switching, and LVPECL/CML to LVDS level translation on each channel. The flexible operation of the SN55LVCP22A-SP provides a single device to support the redundant serial bus transmission needs (working and protection switching cards) of fault-tolerant switch systems found in optical networking, wireless infrastructure, and data communications systems.

The SN55LVCP22A-SP uses a fully differential data path to ensure low-noise generation, fast switching times, low pulse width distortion, and low jitter. Output channel-to- channel skew is 80 ps (typ) to ensure accurate alignment of outputs in all applications.

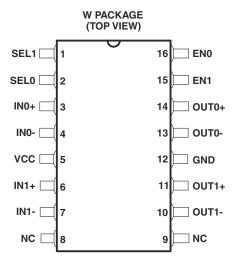
Device Information

PART NUMBER	GRADE	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
5962R11242 01VFA	QMLV RHA	CFP (16)	6.73 mm x 10.3 mm
SN55LVCP2 2W/EM	Engineering Samples ⁽²⁾	CFP (16)	6.73 mm x 10.3 mm

- For all available packages, see the orderable addendum at the end of the data sheet.
- These units are intended for engineering evaluation only. They are processed to a non-compliant flow (for example no burn-in) and are tested to temperature rating of 25°C only. These units are not suitable for qualification, production, radiation testing or flight use.

Simplified Application

Table of Contents


1 Features	1	8.2 Functional Block Diagram	14
2 Applications	1	8.3 Feature Description	14
3 Description		8.4 Device Functional Modes	14
4 Revision History	2	9 Application and Implementation	16
5 Pin Configuration and Functions	3	9.1 Application Information	16
6 Specifications	4	9.2 Typical Application	16
6.1 Absolute Maximum Ratings	4	10 Power Supply Recommendations	
6.2 Handling Ratings		11 Layout	<mark>2</mark> 0
6.3 Recommended Operating Conditions	4	11.1 Layout Guidelines	20
6.4 Thermal Information	4	11.2 Layout Example	
6.5 Electrical Characteristics	5	12 Device and Documentation Support	2
6.6 Switching Characteristics	6	12.1 Trademarks	2
6.7 Typical Characteristics	7	12.2 Electrostatic Discharge Caution	2
7 Parameter Measurement Information	10	12.3 Glossary	
8 Detailed Description	14	13 Mechanical, Packaging, and Orderable	
8.1 Overview	14	Information	<mark>2</mark>

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
February 2021	*	Initial Release

5 Pin Configuration and Functions

NC - No internal connection

Table 5-1. Pin Functions

	TERMINAL	1/0	DESCRIPTION		
NAME	NO.	1/0	DESCRIPTION		
SEL1	1	Input	Switch Selection Control 1		
SEL0	2	Input	Switch Selection Control 2		
IN0+	3	Input	LVDS Receiver Positive Input 0		
INO-	4	Input	LVDS Receiver Negative Input 0		
VCC	5	Power	3.3V Supply Voltage		
IN1+	6	Input	LVDS Receiver Positive Input 1		
IN1-	7	Input	LVDS Receiver Negative Input 1		
NC	8	N/A	No Internal Connection		
NC	9	N/A	No Internal Connection		
OUT1-	10	Output	LVDS Driver Negative Output 1		
OUT1+	11	Output	LVDS Driver Positive Output 1		
GND	12	Ground	Ground		
OUT0-	13	Output	LVDS Driver Negative Output 0		
OUT0+	14	Output	LVDS Driver Positive Output 0		
EN1	15	Input	Output Enable for Driver 1		
EN0	16	Input	Output Enable for Driver 0		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range unless otherwise noted⁽¹⁾

	UNIT
Supply voltage ⁽²⁾ , V _{CC}	–0.5 V to 4 V
CMOS/TTL input voltage (ENO, EN1, SEL0, SEL1)	–0.5 V to 4 V
LVDS receiver input voltage (IN+, IN-)	–0.7 V to 4.3 V
LVDS driver output voltage (OUT+, OUT-)	–0.5 V to 4 V
Maximum Junction temperature	150°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature range			125	°C
V		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	-5000	5000	V
V _(ESD) Electrostatic discharge		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	-500	500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	3	3.3	3.6	V
Receiver input voltage	0		4	V
Operating case (top) temperature, T _C ⁽¹⁾	-55		125	°C
Magnitude of differential input voltage, V _{ID}	0.1		3	V

⁽¹⁾ Maximum case temperature operation is allowed as long as the device maximum junction temperature is not exceeded.

6.4 Thermal Information

		SN55LVCP22A-SP	
	THERMAL METRIC ⁽¹⁾	W (CFP)	UNIT
		16 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	118.1	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	51.2	°C/W
R _{0JB}	Junction-to-board thermal resistance	107.2	°C/W
ΨЈТ	Junction-to-top characterization parameter	28.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	95.1	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Submit Document Feedback

⁽²⁾ All voltage values, except differential I/O bus voltages, are with respect to network ground terminals.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics

over recommended operating conditions unless otherwise noted

PARAMETER		TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
CMOS/T	TL DC SPECIFICATIONS (EN0, EN1, SEL0, SEL1)				'	
V _{IH}	High-level input voltage		2	1.5	V _{CC}	V
V _{IL}	Low-level input voltage		GND	1.5	0.8	V
I _{IH2}	High-level input current	V _{IN} = 3.6 V or 2.0 V, V _{CC} = 0 V	-250	±3	250	μA
I _{IH}	High-level input current	V _{IN} = 3.6 V or 2.0 V, V _{CC} = 3.6 V	-25	±3	25	μA
I _{IL2}	Low-level input current	V _{IN} = 0.0 V or 0.8 V, V _{CC} = 0 V	-150	±1	150	μA
I _{IL}	Low-level input current	V _{IN} = 0.0 V or 0.8 V, V _{CC} = 3.6 V	-15	±1	15	μA
V _{CL}	Input clamp voltage	I _{CL} = -18 mA		-0.8	-1.5	V
LVDS OL	JTPUT SPECIFICATIONS (OUT0, OUT1)				'	
		R_L = 75 Ω, See Figure 7-3	255	390	475	
V _{OD}	Differential output voltage	R_L = 75 Ω , V_{CC} = 3.3 V, T_A = 25°C, See Figure 7-3	320	390	430	mV
$\Delta V_{OD} $	Change in differential output voltage magnitude between logic states	V _{ID} = ±100 mV, See Figure 7-3	-25		25	mV
Vos	Steady-state offset voltage	See Figure 7-4	1	1.2	1.45	V
ΔV _{OS}	Change in steady-state offset voltage between logic states	See Figure 7-4	-25		25	mV
V _{OC(PP)}	Peak-to-peak common-mode output voltage	See Figure 7-4		50		mV
l _{oz}	High-impedance output current	V _{OUT} = GND or V _{CC}	-15		15	μA
I _{OFF}	Power-off leakage current	V _{CC} = 0 V, 1.5 V; V _{OUT} = 3.6 V or GND	-15		15	μA
I _{OZH}	High-impedance output current, after HDR 100 krad	V _{OUT} = V _{CC} , T _A = 25°C	-120		350	μΑ
I _{OFFH}	Power-off leakage current, after after HDR 100 krad	V _{CC} = 0 V, 1.5 V; V _{OUT} = 3.6 V, T _A = 25°C	-50		150	μA
Ios	Output short-circuit current	V _{OUT+} or V _{OUT-} = 0 V			-8	mA
I _{OSB}	Both outputs short-circuit current	V _{OUT+} and V _{OUT-} = 0 V	-8		8	mA
Co	Differential output capacitance	V _I = 0.4 sin(4E6πt) + 0.5 V		3		pF
LVDS RE	ECEIVER DC SPECIFICATIONS (IN0, IN1)					
V _{TH}	Positive-going differential input voltage threshold	See Figure 7-2 and Table 7-1			100	mV
V _{TL}	Negative-going differential input voltage threshold	See Figure 7-2 and Table 7-1	-100			mV
V _{ID(HYS)}	Differential input voltage hysteresis			20	150	mV
V _{CMR}	Common-mode voltage range	V _{ID} = 100 mV, V _{CC} = 3.0 V to 3.6 V	0.05		3.95	V
l	Input current	V _{IN} = 4 V, V _{CC} = 3.6 V or 0.0	-18	±1	18	μA
I _{IN}	input current	$V_{IN} = 0 \text{ V}, V_{CC} = 3.6 \text{V or } 0.0$ -18		±1	18	μА
C _{IN}	Differential input capacitance	V _I = 0.4 sin (4E6πt) + 0.5 V		3		pF
SUPPLY	CURRENT					
I _{CCQ}	Quiescent supply current	$R_L = 75 \Omega$, EN0=EN1=High		60	87	mA
I _{CCD}	Total supply current	$R_L = 75 \Omega$, $C_L = 5 pF$, 500 MHz (1000 Mbps), EN0=EN1=High		63	87	mA
I _{CCZ}	3-state supply current	EN0 = EN1 = Low		25	35	mA

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.

6.6 Switching Characteristics

over recommended operating conditions unless otherwise noted

	parameter	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
t _{SET}	Input to SEL setup time	See Figure 7-7		0.8	2.2	ns		
t _{HOLD}	Input to SEL hold time	See Figure 7-7		1.0	2.2	ns		
t _{SWITCH}	SEL to switched output	See Figure 7-7		1.7	2.6	ns		
t _{PHZ}	Disable time, high-level-to-high-impedance	See Figure 7-6		2	8	ns		
t _{PLZ}	Disable time, low-level-to-high-impedance	See Figure 7-6		2	8	ns		
t _{PZH}	Enable time, high-impedance -to-high-level output	See Figure 7-6		2	8	ns		
t _{PZL}	Enable time, high-impedance-to-low-level output	See Figure 7-6		2	8	ns		
t _{LHT}	Differential output signal rise time (20%-80%) ⁽¹⁾	C _L = 5 pF, See Figure 7-5		280	620	ps		
t _{HLT}	Differential output signal fall time (20%-80%) ⁽¹⁾	C _L = 5 pF, See Figure 7-5		280	620	ps		
		V _{ID} = 200 mV, 50% duty cycle, V _{CM} = 1.2 V, 50 MHz, C _L = 5 pF		13.7	22.2			
		V _{ID} = 200 mV, 50% duty cycle, V _{CM} = 1.2 V, 240 MHz, C _L = 5 pF		13.4	4 24.5 ps			
t _{JIT}	Added peak-to-peak jitter ⁽³⁾	V _{ID} = 200 mV, 50% duty cycle, V _{CM} = 1.2 V, 500 MHz, C _L = 5 pF		14.4	35.7			
		V_{ID} = 200 mV, PRBS = 2 ¹⁵ -1 data pattern, V_{CM} = 1.2 V, 240 Mbps, C_L = 5 pF	68.3 204 73.2 282					
		V_{ID} = 200 mV, PRBS = 2 ¹⁵ -1 data pattern, V_{CM} = 1.2 V, 1000 Mbps, C_L = 5 pF			ps			
		V _{ID} = 200 mV, 50% duty cycle, V _{CM} = 1.2 V, 50 MHz, C _L = 5 pF		0.97	1.5			
t _{Jrms}	Added random jitter (rms) ⁽³⁾	V _{ID} = 200 mV, 50% duty cycle, V _{CM} = 1.2 V, 240 MHz, C _L = 5 pF		0.85 1.53		ps _{RMS}		
		V _{ID} = 200 mV, 50% duty cycle, V _{CM} = 1.2 V, 500 MHz, C _L = 5 pF	0.86		1.79			
t _{PLHD}	Propagation delay time, low-to-high-level output ⁽¹⁾		200	650	2350	ps		
t _{PHLD}	Propagation delay time, high-to-low-level output ⁽¹⁾		200	650	2350	ps		
t _{skew} (5)	Pulse skew (t _{PLHD} - t _{PHLD}) ⁽²⁾	C _L = 5 pF, See Figure 7-5		45	160	ps		
t _{CCS}	Output channel-to-channel skew, splitter mode	C _L = 5 pF, See Figure 7-5		80		ps		
f _{MAX} (5)	Maximum operating frequency ⁽⁴⁾		1			GHz		

⁽¹⁾ Input: V_{IC} = 1.2 V, V_{ID} = 200 mV, 50% duty cycle, 1 MHz, t_r/t_f = 500 ps

(5) t_{skew} and f_{MAX} parameters are guaranteed by characterization, but not production tested.

⁽²⁾ t_{skew} is the magnitude of the time difference between the t_{PLHD} and t_{PHLD} of any output of a single device.

⁽³⁾ Not production tested.

⁽⁴⁾ Signal generator conditions: 50% duty cycle, t_r or $t_f \le 100$ ps (10% to 90%), transmitter output criteria: duty cycle = 45% to 55% $V_{OD} \ge 300$ mV.

6.7 Typical Characteristics

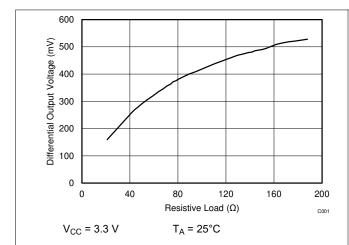


Figure 6-1. Differential Output Voltage vs Resistive Load

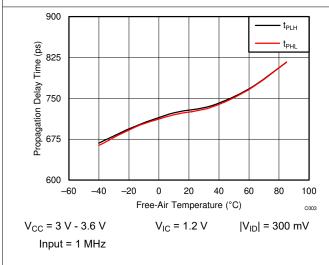


Figure 6-3. Propagation Delay Time bs Ffree-Air Temperature

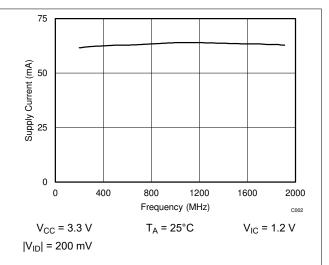
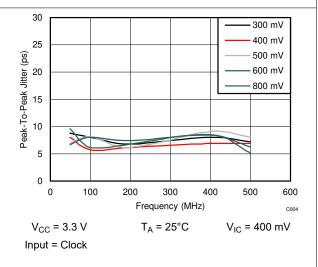


Figure 6-2. Supply Current vs Frequency



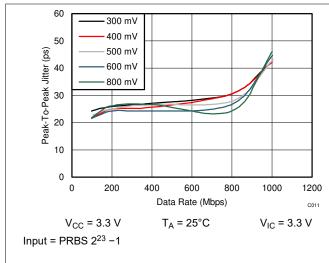


Figure 6-4. Peak-To-Peak Jitter vs Frequency

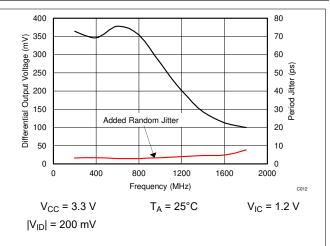
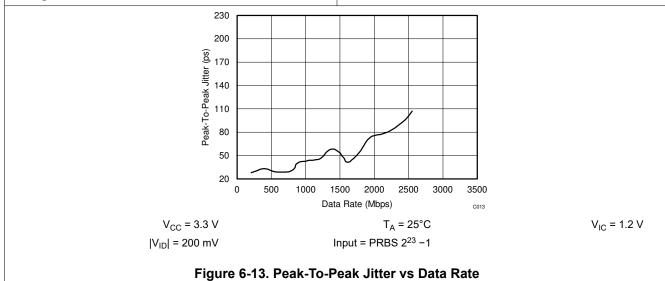



Figure 6-11. Peak-To-Peak Jitter vs Data Rate

Figure 6-12. Differential Output Voltage vs Frequency

7 Parameter Measurement Information

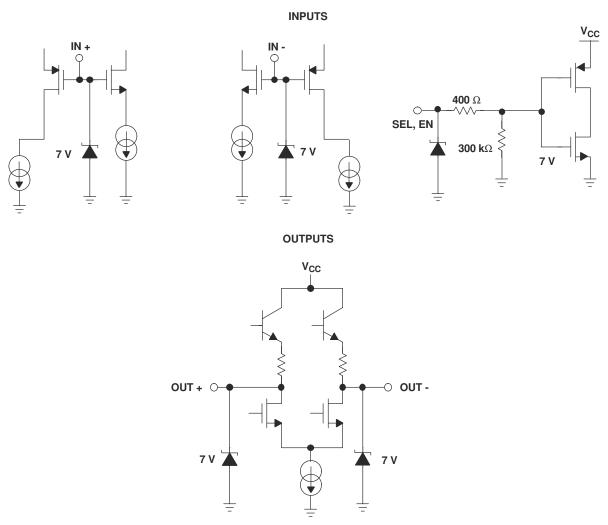


Figure 7-1. Equivalent Input and Output Schematic Diagrams

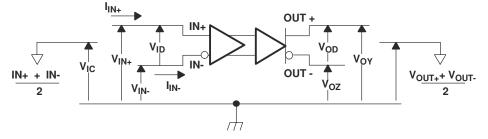


Figure 7-2. Voltage And Current Definitions

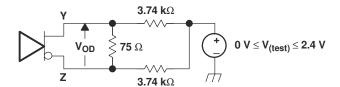
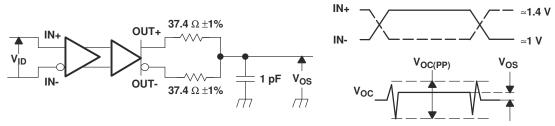
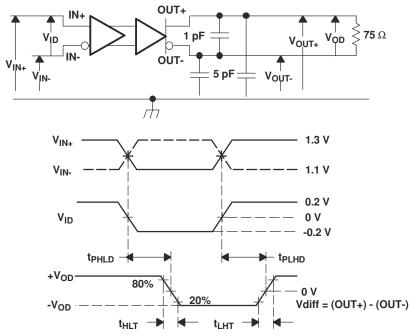



Figure 7-3. Differential Output Voltage (V_{OD}) Test Circuit

Submit Document Feedback


Copyright © 2021 Texas Instruments Incorporated

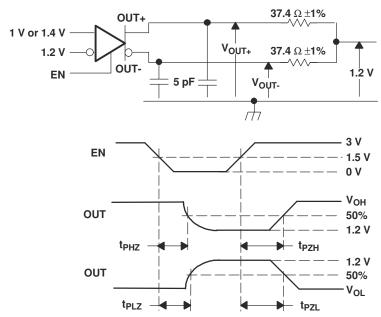

All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse-repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns; $R_L = 100 \ \Omega$; C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.; the measurement of $V_{OC(PP)}$ is made on test equipment with a -3 dB bandwidth of at least 300 MHz.

Figure 7-4. Test Circuit And Definitions For The Driver Common-Mode Output Voltage

All input pulses are supplied by a generator having the following characteristics: t_f or $t_f \le .25$ ns, pulse-repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns. C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.

Figure 7-5. Timing Test Circuit And Waveforms

All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse-repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns. C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.

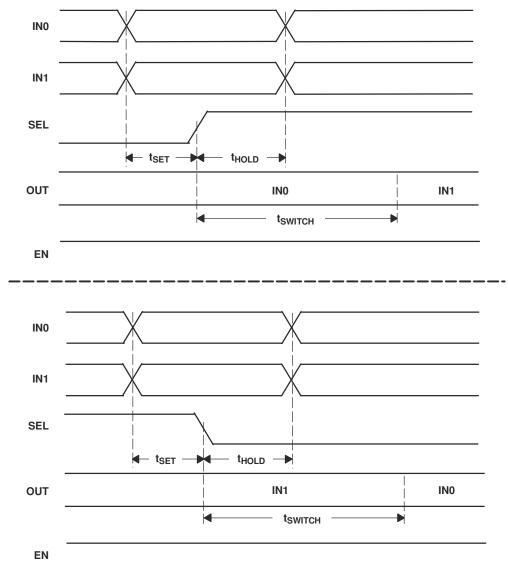

Figure 7-6. Enable And Disable Time Circuit And Definitions

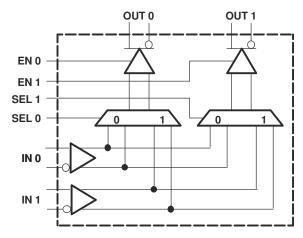
Table 7-1. Receiver Input Voltage Threshold Test

APPLIED \	PLIED VOLTAGES RESULTING DIFF INPUT VOLT		RESULTING COMMON- MODE INPUT VOLTAGE	OUTPUT ⁽¹⁾
VIA	V _{IB}	V _{ID}	V _{IC}	
1.25 V	1.15 V	100 mV	1.2 V	Н
1.15 V	1.25 V	–100 mV	1.2 V	L
4.0 V	3.9 V	100 mV	3.95 V	Н
3.9 V	4. 0 V	–100 mV	3.95 V	L
0.1 V	0.0 V	100 mV	0.05 V	Н
0.0 V	0.1 V	–100 mV	0.05 V	L
1.7 V	0.7 V	1000 mV	1.2 V	Н
0.7 V	1.7 V	-1000 mV	1.2 V	L
4.0 V	3.0 V	1000 mV	3.5 V	Н
3.0 V	4.0 V	–1000 mV	3.5 V	L
1.0 V	0.0 V	1000 mV	0.5 V	Н
0.0 V	1.0 V	-1000 mV	0.5 V	L

(1) H = high level, L = low level

 t_{SET} and t_{HOLD} times specify that data must be in a stable state before and after mux control switches.

Figure 7-7. Input To Select For Both Rising And Falling Edge Setup And Hold Times



8 Detailed Description

8.1 Overview

The SN55LVCP22A-SP is a high-speed 1-Gbps 2x2 LVDS redriving cross-point switch that can be used in mux or demux or splitter configurations. The SN55LVCP22A-SP provides multiple signal switching options that allow system implementation flexibility as described in Table 8-1. The SN55LVCP22A-SP incorporates wide common-mode (0 V to 4 V) receivers, allowing for the receipt of LVDS, LVPECL, and CML signals and low-power LVDS drivers to provide high-speed operations. The SN55LVCP22A-SP uses a fully differential data path to ensure low-noise generation, fast switching times, low pulse width distortion, and low jitter.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Input Select Pins

SEL0 pin selects which differential input lane will be routed to Lane 0 driver differential output OUT0 and SEL1 pin selects which differential input lane will be routed to Lane 1 driver differential output OUT1

8.3.2 Output Enable Pins

EN0 pin is an active high enable for OUT0 driver differential output and EN1 pin is an active high enable for OUT1 driver differential output.

8.4 Device Functional Modes

Table 8-1. Function Table

SEL0	SEL1	EN0	EN1	OUT0	OUT1	FUNCTION	SIGNAL FLOW
							1:2 Splitter
0	0	1	1	IN0	IN0	1:2 Splitter Input IN0	OUT0 + OUT0 - OUT1 +
							OUT1 -
1	1	1	1	IN1	IN1	1:2 Splitter Input IN1	1:2 Splitter OUT0 + OUT0 - IN1 - OUT1 -

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

Table 8-1. Function Table (continued)

	Table 6-1. Function Table (Continued)										
SEL0	SEL1	EN0	EN1	OUT0	OUT1	FUNCTION	SIGNAL FLOW				
0	1	1	1	INO	IN1	2-lane Repeater	Dual Repeater IN0 +				
1	0	1	1	IN1	INO	Cross-switch	2 X 2 Crosspoint IN0 + OUT0 + IN1 + OUT1 + IN1 - OUT1 -				
0				IN0	I limb 7	2:1 Mux Output	2:1 Mux IN0 + OUT0 +				
1	X	1	0	IN1	High-Z	OUTO	IN1 + OUT0 -				
X	0		4	Himb 7	IN0	2:1 Mux	2:1 Mux IN0 + OUT1 +				
^	1	0	1	High-Z	IN1	Output OUT1	IN1 + OUT1 -				

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The SN55LVCP22A-SP can support different kind of signaling at the receiver with proper termination network. The output drivers will output LVDS differential signals.

9.2 Typical Application

9.2.1 Low-Voltage Positive Emitter-Coupled Logic (LVPECL)

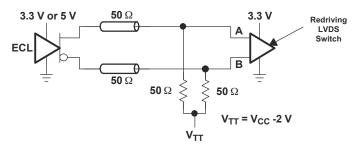


Figure 9-1. Low-Voltage Positive Emitter-Coupled Logic (LVPECL)

9.2.1.1 Design Requirements

Table 9-1. Design Parameters

100100 112	
DESIGN PARAMETER	EXAMPLE VALUE
Single-ended termination	50 Ω
V _{TT} termination voltage	V _{CC} -2 V

9.2.1.2 Detailed Design Procedure

Use two 50 Ω termination resistors (as close to the input pins as possible) with termination voltage of V_{TT} as described in Figure 9-1 to receive LVPECL input signals.

9.2.2 Current-Mode Logic (CML)

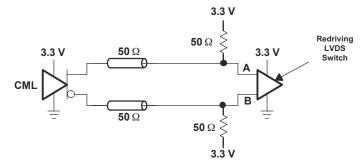


Figure 9-2. Current-Mode Logic (CML)

9.2.2.1 Design Requirements

Table 9-2. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Single-ended termination	50 Ω
Termination Voltage	V _{CC} = 3.3V

9.2.2.2 Detailed Design Procedure

Use two 50 Ω termination resistors (as close to the input pin as possible) with termination voltage of V_{CC} as described in Figure 9-2 to receive CML input signals.

9.2.3 Single-Ended (LVPECL)

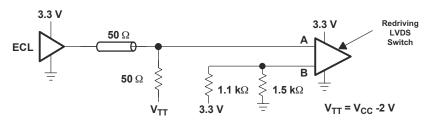


Figure 9-3. Single-Ended (LVPECL)

9.2.3.1 Design Requirements

Table 9-3. Design Parameters

1440.000	= 0 0 · g · · · · · · · · · · · · · ·
DESIGN PARAMETER	EXAMPLE VALUE
Single-ended termination for input used	50 Ω
V _{TT} termination voltage	V _{CC} - 2 V
Unused input pull-up termination to V _{CC}	1.1 kΩ
Unused input pull-down termination to Gound	1.5 kΩ

9.2.3.2 Detailed Design Procedure

Use a 50 Ω termination resistor (as close to the input pin as possible) with termination voltage of V_{TT} as described in Figure 9-3 to receive Single-ended LVPECL input signals. Terminate Unused input pin with 1.1 k Ω pull-up to V_{CC} and 1.5 k Ω pull-down to ground.

9.2.4 Low-Voltage Differential Signaling (LVDS)

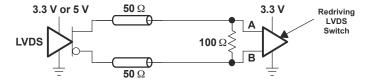


Figure 9-4. Low-Voltage Differential Signaling (LVDS)

9.2.4.1 Design Requirements

Table 9-4. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Differential Termination	100 Ω

9.2.4.2 Detailed Design Procedure

Use a 100 Ω differential termination resistor (as close to the input pins as possible) as described in Figure 9-4 to receive LVDS input signals.

9.2.5 Cold Sparing

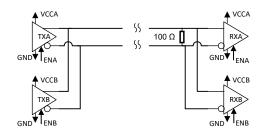


Figure 9-5. LVDS Cold sparing example

SN55LVCP22A-SP can be used in cold sparing application where a redundant device is on the data bus without drawing additional power. One of the devices TXA or TXB form transmitter redundant pair can be powered down in cold spare mode. Similarly, one for the devices RXA or RXB from receiver redundant pair can be powered down in cold spare mode.

SN55LVCP22A-SP remains in a high impedance power-off state, when VCC is grounded at 0V (within 250mV of GND).

Table 9-5. Cold sparing TX configuration example

Transmitter redundant pair	Operating state	VCCA	VCCB	
TXA	Active	3.3 V	0 V	
TXB	Cold spare	3.5 V		
TXA	Cold spare	0 V	3.3 V	
TXB	Active	, 0 V	3.3 V	

Table 9-6. Cold sparing RX configuration example

Receiver redundant pair	Operating state	VCCA	VCCB	
RXA	Active	3.3 V	0 V	
RXB	Cold spare	3.3 V	0 V	
RXA	Cold spare	0 V	3.3 V	
RXB	Active	UV	3.3 V	

9.2.6 Application Curves

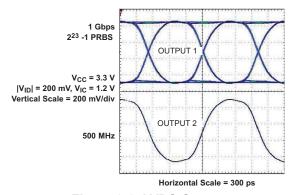


Figure 9-6. LVDS Output

10 Power Supply Recommendations

There is no power supply sequence required for SN55LVCP22A-SP. It is recommended that at least a 0.1uF decoupling capacitor is placed at the device VCC near the pin.

11 Layout

11.1 Layout Guidelines

High performance layout practices are paramount for board layout for high speed signals to ensure good signal integrity. Even minor imperfection can cause impedance mismatch resulting reflection. Special care is warranted for traces, connections to device, and connectors.

11.2 Layout Example

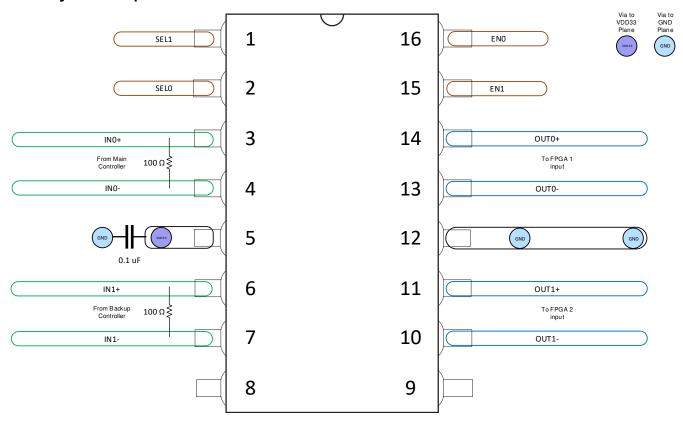


Figure 11-1. Layout Example with LVDS input signals

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.3 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

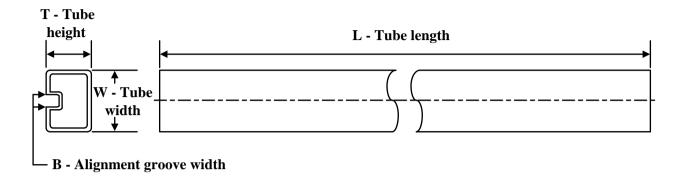
Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
5962R1124201VFA	Active	Production	CFP (W) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962R1124201VF A LVCP22W-SP

⁽¹⁾ Status: For more details on status, see our product life cycle.

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

PACKAGE MATERIALS INFORMATION

www.ti.com 21-May-2025

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962R1124201VFA	W	CFP	16	25	506.98	26.16	6220	NA

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025