
OPA4H838-SEP Precision, Zero-Drift, Zero-Crossover, True Rail-to-Rail Input/Output **Operational Amplifiers**

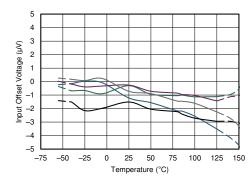
1 Features

- Radiation tolerant
 - Single Event Latch-up (SEL) immune to 43MeV-cm²/mg at 125°C
 - ELDRS free to 30krad(Si)
 - Total Ionizing Dose (TID) RLAT for every wafer lot up to 30krad(Si)
- Supports Defense and Aerospace Applications
 - Controlled baseline
 - One fabrication, assembly, and test site
 - Extended product life cycle
 - Product traceability
 - Outgassing test performed per ASTM E595
- Ultra-low offset voltage: ±0.25µV
- Zero drift: ±0.005µV/°C
- Zero crossover: 140dB CMRR true RRIO
- Low noise: 7.0nV√Hz at 1kHz
- No 1/f noise: $140nV_{PP}$ (0.1Hz to 10Hz)
- Fast settling: 2µs (1V to 0.01%)
- Gain bandwidth: 10MHz
- Supply Voltage: ±1.25V to ±2.75V, 2.5V to 5.5V
- True rail-to-rail input and output
- EMI/RFI filtered inputs

2 Applications

- Satellite health monitoring and telemetry
- Scientific exploration payload
- Altitude and orbit control system (AOCS)
- Satellite electrical power system (EPS)
- Communications payload
- Radar imaging payload

The OPA4H838-SEP in a Bridge Sensor Front End


3 Description

The OPA4H838-SEP precision amplifier is an ultralow noise, fast-settling, zero-drift, zero-crossover device that provide rail-to-rail input and output operation. These features and excellent performance, combined with only 0.25µV of offset and 0.005µV/°C of drift over temperature, makes the OPA4H838-SEP a great choice for driving high-precision, analog-to-digital converters (ADCs) or buffering the output of high-resolution, digital-toanalog converters (DACs). This design results in excellent performance when driving analog-to-digital converters (ADCs) without degradation of linearity. The OPA4H838-SEP is offered in a TSSOP-14 package. The OPA4H838-SEP is specified from -55°C to +125°C.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
OPA4H838-SEP	TSSOP (14)	5.00mm x 4.40mm

- For all available packages, see the package option addendum at the end of the data sheet.
- The package size (length × width) is a nominal value and includes pins, where applicable

Ultra-Low Offset Voltage Drift

Table of Contents

1 Features1	6.4 Device Functional Modes
2 Applications 1	7 Application and Implementation10
3 Description1	7.1 Application Information10
4 Pin Configuration and Functions3	7.2 Typical Applications10
5 Specifications4	7.3 Power Supply Recommendations14
5.1 Absolute Maximum Ratings4	7.4 Layout14
5.2 ESD Ratings4	8 Device and Documentation Support16
5.3 Recommended Operating Conditions4	8.1 Device Support
5.4 Thermal Information4	8.2 Documentation Support16
5.5 Electrical Characteristics: V _S = ±1.25V to ±2.75V	8.3 Receiving Notification of Documentation Updates16
(V _S = 2.5 to 5.5V)5	8.4 Support Resources16
6 Detailed Description7	8.5 Trademarks16
6.1 Overview7	8.6 Electrostatic Discharge Caution16
6.2 Functional Block Diagram7	8.7 Glossary10
6.3 Feature Description8	9 Mechanical, Packaging, and Orderable Information. 1

4 Pin Configuration and Functions

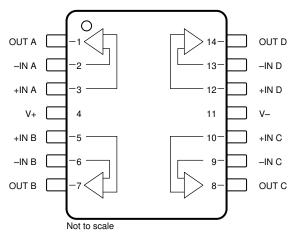


Figure 4-1. OPA4H838-SEP PW Package, 14-Pin TSSOP-14 (Top View)

Pin Functions: OPA4H838-SEP

PIN NAME PW (TSSOP)		I/O	DESCRIPTION		
		1/0	DESCRIPTION		
–IN A	2	I	Inverting input, channel A		
–IN B	6	I	Inverting input, channel B		
–IN C	9	I	Inverting input, channel C		
–IN D	13	I	Inverting input, channel D		
+IN A	3	I	Noninverting input, channel A		
+IN B	5	I	Noninverting input, channel B		
+IN C	10	I	Noninverting input, channel C		
+IN D	12	I	Noninverting input, channel D		
OUT A	1	0	Output, channel A		
OUT B	7	0	Output, channel B		
OUT C	8	0	Output, channel C		
OUT D	14	0	Output, channel D		
V-	11	_	Negative (lowest) power supply		
V+	4	_	Positive (highest) power supply		

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT	
Supply voltage	V _S = (V+) - (V-)	Single-supply		6	V	
Supply voltage	VS - (V+) - (V-)	Dual-supply		±3	V	
	Voltage	Common-mode	(V-) - 0.5	(V+) + 0.5	V	
Signal input pins	Voltage	Differential		(V+) - (V-) + 0.2	V	
	Current			±10	mA	
Output short circuit ⁽²⁾			Continuous	Continuous		
	Operating, T _A		-55	150		
Temperature	Junction, T _J			150	°C	
	Storage, T _{stg}		-65	150		

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) Short-circuit to ground, one amplifier per package.

5.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±4000	V	
V _(ESD)		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	1 V

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT	
Supply voltage \(\(- \lambda \tau \)	Single-supply	2.5	5.5	V	
Supply voltage, $V_S = (V+) - (V-)$	Dual-supply	±1.25	±2.75	V	
Specified temperature		-40	125	°C	

5.4 Thermal Information

		OPA4H838-SEP	
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	UNIT
		14 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	91.2	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	24.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	50.0	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.8	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	49.1	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

5.5 Electrical Characteristics: $V_S = \pm 1.25V$ to $\pm 2.75V$ ($V_S = 2.5$ to 5.5V)

at T_A = 25°C, V_{CM} = V_{OUT} = V_S / 2, and R_{LOAD} = 10k Ω connected to V_S / 2 (unless otherwise noted)

	PARAMETER	TEST CONDITIO	INS	MIN	TYP	MAX	UNIT
OFFSET	VOLTAGE						
	land offer the self-	V _S = 5.5V			±2.25	±8	
V _{OS}	Input offset voltage	$T_A = -55^{\circ}\text{C to } +125^{\circ}\text{C}, V_S = 5.5\text{V}^{(1)}$				±10.5	μV
dV _{OS} /dT	Input offset voltage drift	$T_A = -55^{\circ}\text{C to } +125^{\circ}\text{C}, V_S = 5.5\text{V}^{(1)}$			±0.005	±0.05	μV/°C
PSRR	Power-supply rejection ratio	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C^{(1)}$			±1.25	±3.5	μV/V
INPUT BI	AS CURRENT						
L	Input bias current	P 100kO			±30	±500	
I _B	Input bias current	$R_{IN} = 100k\Omega$	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C^{(1)}$			±800	pА
l	Input offset current	R _{IN} = 100kΩ				±1000	рΑ
l _{OS}	input onset current	17(N - 100K22	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C^{(1)}$			±1100	
NOISE							
E _N	Input voltage noise	f = 0.1Hz to 10Hz			0.14		μV_{PP}
		f = 10Hz			7		
0	Input voltage noise density	f = 100Hz			7		nV/√ Hz
e _N	input voltage noise density	f = 1kHz	f = 1kHz				110/ 1112
		f = 10kHz		7			
I _N	Input current noise density	f = 1kHz			100		fA/√ Hz
INPUT V	OLTAGE						
V _{CM}	Common-mode voltage range			(V-) - 0.1		(V+) + 0.1	V
			V _S = ±1.25V	102	110		
		$(V-) - 0.1V < V_{CM} < (V+) + 0.1V$	V _S = ±2.75V	124	140		dB
CMRR	Common-mode rejection ratio	$(V-) < V_{CM} < (V+) + 0.1V,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C^{(1)}$	V _S = ±1.25V	102	107		
		$(V-) - 0.05V < V_{CM} < (V+) + 0.1V, T_A = -55^{\circ}C \text{ to } +125^{\circ}C^{(1)}$	V _S = ±2.75V	124 140			
INPUT IN	IPEDANCE						
Z _{id}	Differential input impedance				100 2		MΩ pF
z _{ic}	Common-mode input impedance				60 4.5		TΩ pF
OPEN-LO	OOP GAIN						
		$(V-) + 0.15V < V_O < (V+) - 0.15 V$, R_{LOA}	_D = 10kΩ	126	148		
		$(V-) + 0.15V < V_O < (V+) - 0.15V,$ $R_{LOAD} = 10k\Omega, V_S = 5.5V$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C^{(1)}$		120	126		
A _{OL}	Open-loop voltage gain	$(V-) + 0.25V < V_O < (V+) - 0.25V, R_{LOAI}$	= 2kΩ	126	148		dB
		$(V-) + 0.30V < V_0 < (V+) - 0.30V,$ $R_{LOAD} = 2k\Omega, V_S = 5.5V$ $T_A = -55^{\circ}C$ to +125°C ⁽¹⁾	120	126			
FREQUE	NCY RESPONSE						
GBW	Unity-gain bandwidth				10		MHz
SR	Slew rate	G = 1, 4V step			5		V/µs
THD+N	Total harmonic distortion + noise	G = 1, f = 1kHz, V _O = 1V _{RMS}			0.0005%		
te te	Settling time	To 0.1%	V _S = ±2.5V, G = 1, 1V step		0.75		μs
ts	Settling time	To 0.01% $V_S = \pm 2.5V$, $G = 1$, $1V$ step			2		μs
t _{OR}	Overload recovery time	$V_{IN} \times G = V_{S}$			10		μs
OUTPUT	·						

5.5 Electrical Characteristics: $V_S = \pm 1.25V$ to $\pm 2.75V$ ($V_S = 2.5$ to 5.5V) (continued)

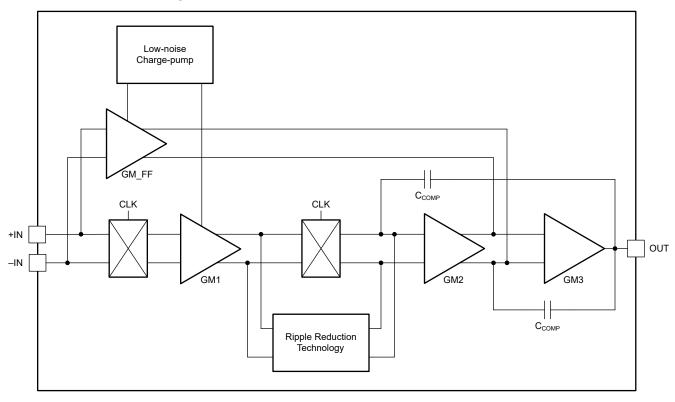
at T_A = 25°C, V_{CM} = V_{OUT} = V_S / 2, and R_{LOAD} = 10k Ω connected to V_S / 2 (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT	
			No load		1	15		
		Positive rail	$R_{LOAD} = 10k\Omega$		5	20		
			$R_{LOAD} = 2k\Omega$		20	50		
Vo	Voltage output swing from rail		No load		5	15	mV	
	13	Negative rail	$R_{LOAD} = 10k\Omega$		10	20		
			$R_{LOAD} = 2k\Omega$		40	60		
		R_{LOAD} = 10kΩ, both rails, T_A = -5		10	25			
	Short-circuit current	V _S = 5.5V		±60		mA		
I _{SC}	Short-circuit current	V _S = 2.5V		±30		mA		
Zo	Open-loop output impedance	f = 1MHz, I _O = 0A			100		Ω	
POWE	R SUPPLY					'		
			I _O = 0A		1.7	2.4		
	Quiescent current per	$V_S = \pm 1.25 V (V_S = 2.5 V)$	$I_O = 0A$, $T_A = -55^{\circ}C$ to $+125^{\circ}C^{(1)}$		1.7	2.4	A	
IQ	amplifier		I _O = 0A		1.9	2.6	- mA	
		$V_S = \pm 2.75V (V_S = 5.5V)$			1.9	2.6		

¹⁾ Specification established from device population bench system measurements across multiple lots.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated



6 Detailed Description

6.1 Overview

The OPA4H838-SEP zero-drift amplifier is engineered with the unique combination of a proprietary precision auto-calibration technique paired with a low-noise, low-ripple, input charge pump. These offers an ultra-low input offset voltage and drift and achieves excellent input and output dynamic linearity. The OPA4H838-SEP operates from 2.5V to 5.5V, is unity-gain stable, and is designed for a wide range of general-purpose and precision applications. The integrated, low-noise charge pump allows true rail-to-rail input common-mode operation without distortion associated with complementary rail-to-rail input topologies (input crossover distortion). The OPA4H838-SEP strengths also include a 10MHz bandwidth, 7 nV/ $\sqrt{\text{Hz}}$ noise spectral density, and no 1/f noise, making the OPA4H838-SEP an excellent choice for interfacing with sensor modules and buffering high-fidelity, digital-to-analog converters (DACs).

6.2 Functional Block Diagram

6.3 Feature Description

6.3.1 Operating Voltage

The OPA4H838-SEP can be used with single or dual supplies from an operating range of $V_S = 2.5V$ (±1.25V) up to 5.5 V (±2.75V). Supply voltages greater than 7V can permanently damage the device (see the *Absolute Maximum Ratings* table).

6.3.2 Input Voltage and Zero-Crossover Functionality

The OPA4H838-SEP input common-mode voltage range extends 0.1V beyond the supply rails. This amplifier is designed to cover the full range without the troublesome transition region found in some other rail-to-rail amplifiers. Operating a complementary rail-to-rail input amplifier with signals traversing the transition region results in unwanted non-linear behavior and polluted spectral content. Figure 6-1 and Figure 6-2 contrast the performance of a traditional complementary rail-to-rail input stage amplifier with the performance of the zero-crossover OPA4H838-SEP. Significant harmonic content and distortion is generated during the differential pair transition (such a transition does not exist in the OPA4H838-SEP. Crossover distortion is eliminated through the use of a single differential pair coupled with an internal low-noise charge pump. The OPA4H838-SEP maintains noise, bandwidth, and offset performance throughout the input common-mode range, thus reducing printed circuit board (PCB) and bill of materials (BOM) complexity through the reduction of power-supply rails.

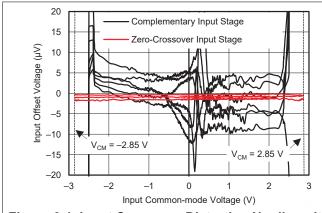
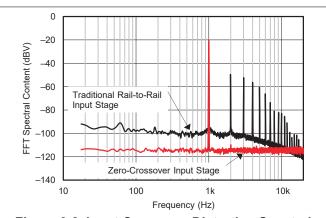
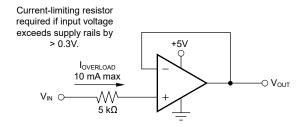


Figure 6-1. Input Crossover Distortion Nonlinearity




Figure 6-2. Input Crossover Distortion Spectral Content

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

Typically, input bias current is approximately ±30 pA. Input voltages exceeding the power supplies, however, can cause excessive current to flow into or out of the input pins. Momentary voltages greater than the power supply can be tolerated if the input current is limited to 10mA. This limitation is easily accomplished with an input resistor, as shown in Figure 6-3.

Figure 6-3. Input Current Protection

6.3.3 Input Differential Voltage

The typical input bias current of the OPA4H838-SEP during normal operation is approximately 30pA. In overdriven conditions, the bias current can increase significantly. The most common cause of an overdriven condition occurs when the operational amplifier is outside of the linear range of operation. When the output of the operational amplifier is driven to one of the supply rails, the feedback loop requirements cannot be satisfied and a differential input voltage develops across the input pins. This differential input voltage results in activation of parasitic diodes inside the front-end input chopping switches that combine with $10k\Omega$ electromagnetic interference (EMI) filter resistors to create the equivalent circuit shown in Figure 6-4. Notice that the input bias current remains within specification in the linear region.

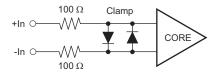


Figure 6-4. Equivalent Input Circuit

6.3.4 Internal Offset Correction

The OPA4H838-SEP family of operational amplifiers uses an auto-calibration technique with a time-continuous, 200kHz operational amplifier in the signal path. This amplifier is zero-corrected every 5μ s using a proprietary technique. At power-up, the amplifier requires approximately 1ms to achieve the specified V_{OS} accuracy. This design has no aliasing or flicker noise.

6.3.5 EMI Susceptibility and Input Filtering

Operational amplifiers vary in susceptibility to EMI. If conducted EMI enters the operational amplifier, the dc offset at the amplifier output can shift from its nominal value when EMI is present. This shift is a result of signal rectification associated with the internal semiconductor junctions. Although all operational amplifier pin functions can be affected by EMI, the input pins are likely to be the most susceptible. The OPA4H838-SEP operational amplifier family incorporates an internal input low-pass filter that reduces the amplifier response to EMI. Both common-mode and differential-mode filtering are provided by the input filter. The filter is designed for a cutoff frequency of approximately 20MHz (–3dB), with a rolloff of 20dB per decade.

6.4 Device Functional Modes

The OPA4H838-SEP has a single functional mode and is operational when the power-supply voltage is greater than 2.5 V ($\pm 1.25 \text{ V}$). The maximum specified power-supply voltage for the OPA4H838-SEP is 5.5 V ($\pm 2.75 \text{ V}$).

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

7.1 Application Information

The OPA4H838-SEP is a unity-gain stable, precision operational amplifier family free from unexpected output and phase reversal. The use of proprietary zero-drift circuitry gives the benefit of low input offset voltage over time and temperature, as well as lowering the 1/f noise component. As a result of the high PSRR, these devices work well in applications that run directly from battery power without regulation. The OPA4H838-SEP family is optimized for full rail-to-rail input, allowing for low-voltage, single-supply operation or split-supply use. These miniature, high-precision, low-noise amplifiers offer high-impedance inputs that have a common-mode range 100mV beyond the supplies without input crossover distortion and a rail-to-rail output that swings within 5mV of the supplies under normal test conditions. The OPA4H838-SEP series of precision amplifiers is designed for upstream analog signal chain applications in low or high gains, as well as downstream signal chain functions such as DAC buffering.

7.2 Typical Applications

7.2.1 Bidirectional Current-Sensing

This single-supply, low-side, bidirectional current-sensing solution detects load currents from -1A to +1A. The single-ended output spans from 110mV to 3.19V. This design uses the OPA4H838-SEP because of its low offset voltage and rail-to-rail input and output. One of the amplifiers is configured as a difference amplifier and the other amplifier provides the reference voltage.

Figure 7-1 shows the solution.

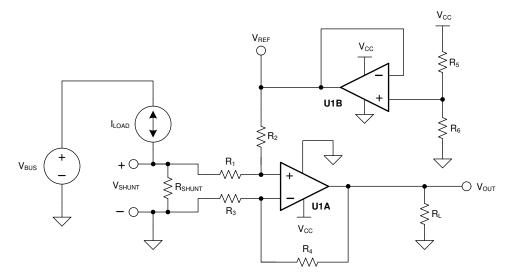


Figure 7-1. Bidirectional Current-Sensing Schematic

7.2.1.1 Design Requirements

This solution has the following requirements:

Supply voltage: 3.3VInput: -1A to 1A

Output: 1.65V ±1.54V (110mV to 3.19V)

7.2.1.2 Detailed Design Procedure

The load current, I_{LOAD} , flows through the shunt resistor (R_{SHUNT}) to develop the shunt voltage, V_{SHUNT} . The shunt voltage is then amplified by the difference amplifier consisting of U1A and R_1 through R_4 . The gain of the difference amplifier is set by the ratio of R_4 to R_3 . To minimize errors, set $R_2 = R_4$ and $R_1 = R_3$. The reference voltage, V_{REE} , is supplied by buffering a resistor divider using U1B. The transfer function is given by Equation 1.

$$V_{OUT} = V_{SHUNT} \times Gain_{Diff_Amp} + V_{REF}$$
 (1)

where

• $V_{SHUNT} = I_{LOAD} \times R_{SHUNT}$

$$Gain_{Diff_Amp} = \frac{R_4}{R_3}$$

$$V_{REF} = V_{CC} \times \left[\frac{R_6}{R_5 + R_6} \right]$$

There are two types of errors in this design: offset and gain. Gain errors are introduced by the tolerance of the shunt resistor and the ratios of R_4 to R_3 and, similarly, R_2 to R_1 . Offset errors are introduced by the voltage divider (R_5 and R_6) and how closely the ratio of R_4 / R_3 matches R_2 / R_1 . The latter value affects the CMRR of the difference amplifier, ultimately translating to an offset error.

The value of V_{SHUNT} is the ground potential for the system load because V_{SHUNT} is a low-side measurement. Therefore, a maximum value must be placed on V_{SHUNT} . In this design, the maximum value for V_{SHUNT} is set to 100mV. Equation 2 calculates the maximum value of the shunt resistor given a maximum shunt voltage of 100 mV and maximum load current of 1A.

$$R_{SHUNT(Max)} = \frac{V_{SHUNT(Max)}}{I_{LOAD(Max)}} = \frac{100 \text{ mV}}{1 \text{ A}} = 100 \text{ m}\Omega$$
(2)

The tolerance of R_{SHUNT} is directly proportional to cost. For this design, a shunt resistor with a tolerance of 0.5% was selected. If greater accuracy is required, select a 0.1% resistor or better.

The load current is bidirectional; therefore, the shunt voltage range is -100mV to 100mV. This voltage is divided down by R_1 and R_2 before reaching the operational amplifier, U1A. Make sure that the voltage present at the noninverting node of U1A is within the common-mode range of the device. Therefore, use an operational amplifier, such as the OPA4H838-SEP, that has a common-mode range that extends below the negative supply voltage. Finally, to minimize offset error, note that the OPA4H838-SEP has a typical offset voltage of merely $\pm 0.25 \ \mu V$ ($\pm 5 \ \mu V$ maximum).

Given a symmetric load current of -1A to 1A, the voltage divider resistors (R_5 and R_6) must be equal. To be consistent with the shunt resistor, a tolerance of 0.5% was selected. To minimize power consumption, $10k\Omega$ resistors were used.

To set the gain of the difference amplifier, the common-mode range and output swing of the OPA4H838-SEP must be considered. Equation 3 and Equation 4 depict the typical common-mode range and maximum output swing, respectively, of the OPA4H838-SEP given a 3.3V supply.

$$-100 \text{mV} < \text{V}_{\text{CM}} < 3.4 \text{V}$$
 (3)

$$100\text{mV} < V_{\text{OUT}} < 3.2\text{V} \tag{4}$$

The gain of the difference amplifier can now be calculated as shown in Equation 5.

$$Gain_{Diff_Amp} = \frac{V_{OUT_Max} - V_{OUT_Min}}{R_{SHUNT} \times (I_{MAX} - I_{MIN})} = \frac{3.2 \text{ V} - 100 \text{ mV}}{100 \text{ m}\Omega \times [1 \text{ A} - (-1 \text{A})]} = 15.5 \frac{\text{V}}{\text{V}}$$
(5)

The resistor value selected for R_1 and R_3 was $1k\Omega$. $15.4k\Omega$ was selected for R_2 and R_4 because this number is the nearest standard value. Therefore, the ideal gain of the difference amplifier is 15.4V/V.

The gain error of the circuit primarily depends on R_1 through R_4 . As a result of this dependence, 0.1% resistors were selected. This configuration reduces the likelihood that the design requires a two-point calibration. A simple one-point calibration, if desired, removes the offset errors introduced by the 0.5% resistors.

7.2.1.3 Application Curve

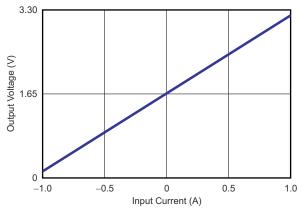


Figure 7-2. Bidirectional Current-Sensing Circuit Performance: Output Voltage vs Input Current

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

7.2.2 Single Operational Amplifier Bridge Amplifier

Figure 7-3 shows the basic configuration for a bridge amplifier.

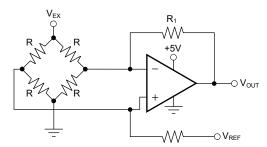


Figure 7-3. Single Operational Amplifier Bridge Amplifier Schematic

7.2.3 Precision, Low-Noise, DAC Buffer

The OPA4H838-SEP can be used for a precision DAC buffer, as shown in Figure 7-4, in conjunction with the DAC8830.

The OPA4H838-SEP provides an ultra-low drift, precision output buffer for the DAC. A wide range of DAC codes can be used in the linear region because the OPA4H838-SEP employs zero-crossover technology. A precise reference is essential for maximum accuracy because the DAC8830 is a 16-bit converter.

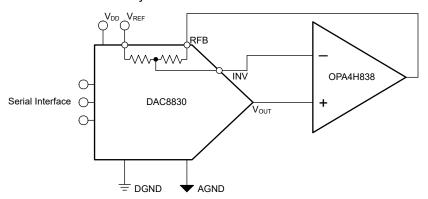


Figure 7-4. Precision DAC Buffer

7.2.4 Load Cell Measurement

Figure 7-5 shows the OPA4H838-SEP in a high-CMRR dual-op amp instrumentation amplifier with a trim resistor and 6-wire load cell for precision measurement. Figure 7-6 illustrates the output voltage as a function of load cell resistance change, along with the nonlinearity of the system.



Figure 7-5. Load Cell Measurement Schematic

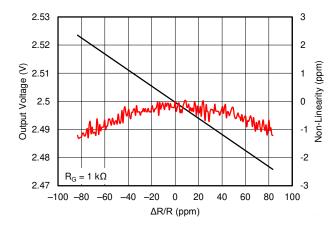


Figure 7-6. Load Cell Measurement Output

7.3 Power Supply Recommendations

The OPA4H838-SEP family of devices is specified for operation from 2.5V to 5.5V (±1.25V to ±2.75V).

7.4 Layout

7.4.1 Layout Guidelines

Paying attention to good layout practice is always recommended. Keep traces short and, when possible, use a printed-circuit board (PCB) ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1µF capacitor closely across the supply pins. These guidelines must be applied throughout the analog circuit to improve performance and provide benefits such as reducing the electromagnetic interference (EMI) susceptibility.

For lowest offset voltage and precision performance, circuit layout and mechanical conditions must be optimized. Avoid temperature gradients that create thermoelectric (Seebeck) effects in the thermocouple junctions formed

from connecting dissimilar conductors. These thermally-generated potentials can be made to cancel by assuring they are equal on both input terminals. Other layout and design considerations include:

- Use low thermoelectric-coefficient conditions (avoid dissimilar metals).
- Thermally isolate components from power supplies or other heat sources.
- Shield operational amplifier and input circuitry from air currents, such as cooling fans.

Following these guidelines reduces the likelihood of junctions being at different temperatures, which can cause thermoelectric voltage drift of 0.1µV/°C or higher, depending on materials used.

7.4.2 Layout Example

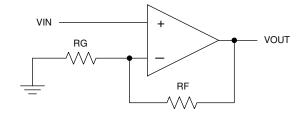


Figure 7-7. Schematic Representation

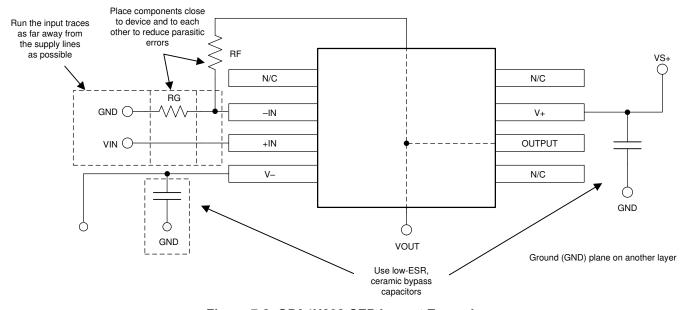


Figure 7-8. OPA4H838-SEP Layout Example

8 Device and Documentation Support

8.1 Device Support

8.1.1 Development Support

8.1.1.1 TINA-TI™ Simulation Software (Free Download)

TINA-TI™ simulation software is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI simulation software is a free, fully-functional version of the TINA™ software, preloaded with a library of macromodels, in addition to a range of both passive and active models. TINA-TI simulation software provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities.

Available as a free download from the Analog eLab Design Center, TINA-TI simulation software offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.

Note

These files require that either the TINA software or TINA-TI software be installed. Download the free TINA-TI simulation software from the TINA-TI™ software folder.

8.2 Documentation Support

8.2.1 Related Documentation

For related documentation see the following:

- Texas Instruments, Circuit board layout techniques
- Texas Instruments, DAC883x 16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters data sheet

8.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Notifications to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.4 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the guick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.5 Trademarks

TINA-TI[™] and TI E2E[™] are trademarks of Texas Instruments.

TINA[™] is a trademark of DesignSoft, Inc.

All trademarks are the property of their respective owners.

8.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.7 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 14-Nov-2025

PACKAGING INFORMATION

Orderab	le part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
							(4)	(5)		
POPA4H	1838MPWTSEP	Active	Preproduction	TSSOP (PW) 14	250 SMALL T&R	-	Call TI	Call TI	-55 to 125	

⁽¹⁾ Status: For more details on status, see our product life cycle.

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025