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LMV716 5 MHz, Low Noise, RRO, Dual Operational Amplifier with CMOS Input
Check for Samples: LMV716

1FEATURES DESCRIPTION
The LMV716 is a dual operational amplifier with both

2• (Typical Values, V+ = 3.3V, TA = 25°C, unless
low supply voltage and low supply current, making itOtherwise Specified)
ideal for portable applications. The LMV716 CMOS

• Input Noise Voltage 12.8 nV/√Hz input stage drives the IBIAS current down to 0.6 pA;
• Input Bias Current 0.6 pA this coupled with the low noise voltage of 12.8

nV/√Hz makes the LMV716 perfect for applications• Offset Voltage 1.6 mV
requiring active filters, transimpedance amplifiers,

• CMRR 80 dB and HDD vibration cancellation circuitry.
• Open Loop Gain 122 dB

Along with great noise sensitivity, small signal
• Rail-to-Rail Output applications will benefit from the large gain bandwidth
• GBW 5 MHz of 5 MHz coupled with the minimal supply current of

1.6 mA and a slew rate of 5.8 V/μs.• Slew Rate 5.8 V/µs
The LMV716 provides rail-to-rail output swing into• Supply Current 1.6 mA
heavy loads. The input common-mode voltage range• Supply Voltage Range 2.7V to 5V
includes ground, which is ideal for ground sensing

• Operating Temperature −40°C to 85°C applications.
• 8-pin VSSOP Package

The LMV716 has a supply voltage spanning 2.7V to
5V and is offered in an 8-pin VSSOP package thatAPPLICATIONS functions across the wide temperature range of
−40°C to 85°C. This small package makes it possible• Active Filters
to place the LMV716 next to sensors, thus reducing• Transimpedance Amplifiers
external noise pickup.

• Audio Preamp
• HDD Vibration Cancellation Circuitry

Typical Application Circuit

Figure 1. High Gain Band Pass Filter

1

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

2All trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Copyright © 2006–2013, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
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These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1) (2)

ESD Tolerance (3)

Human Body Model 2000V

Machine Model 200V

Supply Voltage (V+ – V−) 5.5V

Storage Temperature Range −65°C to 150°C

Junction Temperature (4) 150°C max

Mounting Temperature

Infrared or Convection (20 sec) 260°C

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test
conditions, see the Electrical Characteristics.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and
specifications.

(3) Human Body Model is 1.5 kΩ in series with 100 pF. Machine Model is 0Ω in series with 100 pF.
(4) The maximum power dissipation is a function of TJ(MAX), θJA and TA. The maximum allowable power dissipation at any ambient

temperature is PD = (TJ(MAX)-TA)/θJA. All numbers apply for packages soldered directly into a PC board.

Operating Ratings (1)

Supply Voltage 2.7V to 5V

Temperature Range −40°C to 85°C

Thermal Resistance (θJA)

8-Pin VSSOP 195°C/W

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test
conditions, see the Electrical Characteristics.
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3.3V Electrical Characteristics (1)

Unless otherwise specified, all limits are ensured for TJ = 25°C, V+ = 3.3V, V− = 0V. VCM = V+/2. Boldface limits apply at the
temperature extremes (2).

Symbol Parameter Condition Min (3) Typ (4) Max (3) Units

VOS Input Offset Voltage VCM = 1V 1.6 5 mV6

IB Input Bias Current (5) 0.6 115 pA130

IOS Input Offset Current 1 pA

CMRR Common Mode Rejection Ratio 0 ≤ VCM ≤ 2.1V 60 80 dB
50

PSRR Power Supply Rejection Ratio 2.7V ≤ V+ ≤ 5V, VCM = 1V 70 82 dB
60

CMVR Common Mode Voltage Range For CMRR ≥ 50 dB −0.2 2.2 V

AVOL Open Loop Voltage Gain Sourcing 80 122
RL = 10 kΩ to V+/2, 76
VO = 1.65V to 2.9V

Sinking 80 122
RL = 10 kΩ to V+/2, 76
VO = 0.4V to 1.65V

dB
Sourcing 80 105
RL = 600Ω to V+/2, 76
VO = 1.65V to 2.8V

Sinking 80 112
RL = 600Ω to V+/2, 76
VO = 0.5V to 1.65V

VO Output Swing High RL = 10 kΩ to V+/2 3.22 3.29
3.17

RL = 600Ω to V+/2 3.12 3.22
3.07

V
Output Swing Low RL = 10 kΩ to V+/2 0.03 0.12

0.16

RL = 600Ω to V+/2 0.07 0.23
0.27

IOUT Output Current Sourcing, VO = 0V 20 31
15

mA
Sinking, VO = 3.3V 30 41

25

IS Supply Current VCM = 1V 1.6 2.0 mA
3

SR Slew Rate (6) 5.8 V/µs

GBW Gain Bandwidth 5 MHz

en Input-Referred Voltage Noise f = 1 kHz 12.8 nV/√Hz

in Input-Referred Current Noise f = 1 kHz 0.01 pA/√Hz

(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factor testing conditions result in very
limited self-heating of the device such that TJ = TA. No ensured specification of parametric performance is indicated in the electrical
tables under conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond
which the device maybe permanently degraded, either mechanically or electrically.

(2) Boldface limits apply to temperature range of −40°C to 85°C.
(3) All limits are specified by testing or statistical analysis.
(4) Typical values represent the most likely parametric norm.
(5) Input bias current is specified by design.
(6) Number specified is the lower of the positive and negative slew rates.
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CONNECTION DIAGRAM

Figure 2. Top View - 8-Pin VSSOP

Simplified Schematic
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Typical Performance Characteristics
Unless otherwise specified, V+ 3.3V, TJ = 25°C.

Supply Current Offset Voltage
vs. vs.

Supply Voltage Common Mode

Figure 3. Figure 4.

Input Bias Current Input Bias Current
vs. vs.

Common Mode Common Mode

Figure 5. Figure 6.

Input Bias Current Output Positive Swing
vs. vs.

Common Mode Supply Voltage

Figure 7. Figure 8.
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Typical Performance Characteristics (continued)
Unless otherwise specified, V+ 3.3V, TJ = 25°C.

Output Negative Swing Output Positive Swing
vs. vs.

Supply Voltage Supply Voltage

Figure 9. Figure 10.

Output Negative Swing Sinking Current
vs. vs.

Supply Voltage VOUT

Figure 11. Figure 12.

Sourcing Current PSRR
vs. vs.

VOUT Frequency

Figure 13. Figure 14.
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Typical Performance Characteristics (continued)
Unless otherwise specified, V+ 3.3V, TJ = 25°C.

CMRR
vs.

Frequency Crosstalk Rejection

Figure 15. Figure 16.

Inverting Large Signal Pulse Response Inverting Small Signal Pulse Response

Figure 17. Figure 18.

Non-Inverting Large Signal Pulse Response Non-Inverting Small Signal Pulse Response

Figure 19. Figure 20.
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Typical Performance Characteristics (continued)
Unless otherwise specified, V+ 3.3V, TJ = 25°C.

Open Loop Frequency
vs.
RL Open Loop Frequency Response over Temperature

Figure 21. Figure 22.

Open Loop Frequency Response Open Loop Frequency Response
vs. vs.
CL CL

Figure 23. Figure 24.

Voltage Noise
vs.

Frequency

Figure 25.
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APPLICATION INFORMATION

With the low supply current of only 1.6 mA, the LMV716 offers users the ability to maximize battery life. This
makes the LMV716 ideal for battery powered systems. The LMV716’s rail-to-rail output swing provides the
maximum possible dynamic range at the output. This is particularly important when operating on low supply
voltages.

CAPACITIVE LOAD TOLERANCE

The LMV716, when in a unity-gain configuration, can directly drive large capacitive loads in unity-gain without
oscillation. The unity-gain follower is the most sensitive configuration to capacitive loading; direct capacitive
loading reduces the phase margin of amplifiers. The combination of the amplifier’s output impedance and the
capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation. To drive
a heavier capacitive load, the circuit in Figure 26 can be used.

Figure 26. Indirectly Driving a Capacitive Load using Resistive Isolation

In Figure 26, the isolation resistor RISO and the load capacitor CL form a pole to increase stability by adding more
phase margin to the overall system. The desired performance depends on the value of RISO. The bigger the RISO
resistor value, the more stable VOUT will be.

The circuit in Figure 27 is an improvement to the one in Figure 26 because it provides DC accuracy as well as
AC stability. If there were a load resistor in Figure 26, the output would be voltage divided by RISO and the load
resistor. Instead, in Figure 27, RF provides the DC accuracy by using feed-forward techniques to connect VIN to
RL. Due to the input bias current of the LMV716, the designer must be cautious when choosing the value of RF.
CF and RISO serve to counteract the loss of phase margin by feeding the high frequency component of the output
signal back to the amplifier’s inverting input, thereby preserving phase margin in the overall feedback loop.
Increased capacitive drive is possible by increasing the value of CF. This in turn will slow down the pulse
response.

Figure 27. Indirectly Driving a Capacitive Load with DC Accuracy
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DIFFERENCE AMPLIFIER

The difference amplifier allows the subtraction of two voltages or, as a special case, the cancellation of a signal
common to two inputs. It is useful as a computational amplifier in making a differential to single-ended conversion
or in rejecting a common mode signal.

Figure 28. Difference Amplifier

(1)

SINGLE-SUPPLY INVERTING AMPLIFIER

There may be cases where the input signal going into the amplifier is negative. Because the amplifier is
operating in single supply voltage, a voltage divider using R3 and R4 is implemented to bias the amplifier so the
inverting input signal is within the input common voltage range of the amplifier. The capacitor C1 is placed
between the inverting input and resistor R1 to block the DC signal going into the AC signal source, VIN. The
values of R1 and C1 affect the cutoff frequency, fc = ½π R1C1. As a result, the output signal is centered around
mid-supply (if the voltage divider provides V+/2 at the non-inverting input). The output can swing to both rails,
maximizing the signal-to-noise ratio in a low voltage system.

Figure 29. Single-supply Inverting Amplifier

(2)

INSTRUMENTATION AMPLIFIER

Measurement of very small signals with an amplifier requires close attention to the input impedance of the
amplifier, the overall signal gain from both inputs to the output, as well as, the gain from each input to the output.
This is because we are only interested in the difference of the two inputs and the common signal is considered
noise. A classic solution is an instrumentation amplifier. Instrumentation amplifiers have a finite, accurate, and
stable gain. Also they have extremely high input impedances and very low output impedances. Finally they have
an extremely high CMRR so that the amplifier can only respond to the differential signal.
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Three-Op-Amp Instrumentation Amplifier

A typical instrumentation amplifier is shown in Figure 30.

Figure 30. Three-Op-Amp Instrumentation Amplifier

There are two stages in this configuration. The last stage, the output stage, is a differential amplifier. In an ideal
case the two amplifiers of the first stage, the input stage, would be set up as buffers to isolate the inputs.
However they cannot be connected as followers due to the mismatch of real amplifiers. The circuit in Figure 30
utilizes a balancing resistor between the two amplifiers to compensate for this mismatch. The product of the two
stages of gain will be the gain of the instrumentation amplifier circuit. Ideally, the CMRR should be infinite.
However the output stage has a small non-zero common mode gain which results from resistor mismatch.

In the input stage of the circuit, current is the same across all resistors. This is due to the high input impedance
and low input bias current of the LMV716. With the node equations we have:

(3)

By Ohm’s Law:

(4)

However:

(5)

So we have:

(6)

Now looking at the output of the instrumentation amplifier:

(7)

Substituting from Equation 6:

(8)

Copyright © 2006–2013, Texas Instruments Incorporated Submit Documentation Feedback 11

Product Folder Links: LMV716

http://www.ti.com/product/lmv716?qgpn=lmv716
http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOSAT9B&partnum=LMV716
http://www.ti.com/product/lmv716?qgpn=lmv716


Vi

R1 R2

+

-
VOUT

C

LMV716

SNOSAT9B –APRIL 2006–REVISED MARCH 2013 www.ti.com

This shows the gain of the instrumentation amplifier to be:
−K(2a+1) (9)

Typical values for this circuit can be obtained by setting: a = 12 and K = 4. This results in an overall gain of −100.

Three LMV716 amplifiers are used along with 1% resistors to minimize resistor mismatch. Resistors used to build
the circuit are: R1 = 21.6 kΩ, R11 = 1.8 kΩ, R2 = 2.5 kΩ with K = 40 and a = 12. This results in an overall gain of
−K(2a+1) = −1000.

Two-Op-Amp Instrumentation Amplifier

A two-op-amp instrumentation amplifier can also be used to make a high-input impedance DC differential
amplifier Figure 31). As in the three op amp circuit, this instrumentation amplifier requires precise resistor
matching for good CMRR. R4 should be equal to R1, and R3 should equal R2.

Figure 31. Two-Op-Amp Instrumentation Amplifier

(10)

ACTIVE FILTERS

Active filters are circuits with amplifiers, resistors, and capacitors. The use of amplifiers instead of inductors,
which are used in passive filters, enhances the circuit performance while reducing the size and complexity of the
filter. The simplest active filters are designed using an inverting op amp configuration where at least one reactive
element has been added to the configuration. This means that the op amp will provide "frequency-dependent"
amplification, since reactive elements are frequency dependent devices.

Low Pass Filter

The following shows a very simple low pass filter.

Figure 32. Low Pass Filter
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The transfer function can be expressed as follows:

By KCL:

(11)

Simplifying this further results in:

(12)

or

(13)

Now, substituting ω=2πf, so that the calculations are in f(Hz) rather than in ω(rad/s), and setting the DC gain

and

(14)

set:

(15)

Low pass filters are known as lossy integrators because they only behave as integrators at higher frequencies.
The general form of the bode plot can be predicted just by looking at the transfer function. When the f/fO ratio is
small, the capacitor is, in effect, an open circuit and the amplifier behaves at a set DC gain. Starting at fO, which
is the −3 dB corner, the capacitor will have the dominant impedance and hence the circuit will behave as an
integrator and the signal will be attenuated and eventually cut. The bode plot for this filter is shown in Figure 33.

Figure 33. Low Pass Filter Transfer Function
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High Pass Filter

The transfer function of a high pass filter can be derived in much the same way as the previous example. A
typical first order high pass filter is shown below:

Figure 34. High Pass Filter

Writing the KCL for this circuit :

(V1 denotes the voltage between C and R1)

(16)

(17)

Solving these two equations to find the transfer function and using:

(18)

(high frequency gain) and

Which gives:

(19)

Looking at the transfer function, it is clear that when f/fO is small, the capacitor is open and therefore, no signal is
getting to the amplifier. As the frequency increases the amplifier starts operating. At f = fO the capacitor behaves
like a short circuit and the amplifier will have a constant, high frequency gain of HO. Figure 35 shows the transfer
function of this high pass filter.

Figure 35. High Pass Filter Transfer Function
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Band Pass Filter

Combining a low pass filter and a high pass filter will generate a band pass filter. Figure 36 offers an example of
this type of circuit.

Figure 36. Band Pass Filter

In this network the input impedance forms the high pass filter while the feedback impedance forms the low pass
filter. If the designer chooses the corner frequencies so that f1 < f2, then all the frequencies between, f1 ≤ f ≤ f2,
will pass through the filter while frequencies below f1 and above f2 will be cut off.

The transfer function can be easily calculated using the same methodology as before and is shown in Figure 37.

(20)

Where

(21)

Figure 37. Band Pass Filter Transfer Function

STATE VARIABLE ACTIVE FILTER

State variable active filters are circuits that can simultaneously represent high pass, band pass, and low pass
filters. The state variable active filter uses three separate amplifiers to achieve this task. A typical state variable
active filter is shown in Figure 38. The first amplifier in the circuit is connected as a gain stage. The second and
third amplifiers are connected as integrators, which means they behave as low pass filters. The feedback path
from the output of the third amplifier to the first amplifier enables this low frequency signal to be fed back with a
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finite and fairly low closed loop gain. This is while the high frequency signal on the input is still gained up by the
open loop gain of the first amplifier. This makes the first amplifier a high pass filter. The high pass signal is then
fed into a low pass filter. The outcome is a band pass signal, meaning the second amplifier is a band pass filter.
This signal is then fed into the third amplifiers input and so, the third amplifier behaves as a simple low pass
filter.

Figure 38. State Variable Active Filter

The transfer function of each filter needs to be calculated. The derivations will be more trivial if each stage of the
filter is shown on its own.

The three components are:

For A1 the relationship between input and output is:

(22)
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This relationship depends on the output of all the filters. The input-output relationship for A2 can be expressed
as:

(23)

And finally this relationship for A3 is as follows:

(24)

Re-arranging these equations, one can find the relationship between VO and VIN (transfer function of the low
pass filter), VO1 and VIN (transfer function of the high pass filter), and VO2 and VIN (transfer function of the band
pass filter) These relationships are as follows:

Low Pass Filter

(25)
(26)

High Pass Filter

(27)

Band Pass Filter

(28)

The center frequency and Quality Factor for all of these filters is the same. The values can be calculated in the
following manner:

(29)

Designing a band pass filter with a center frequency of 10 kHz and Quality Factor of 5.5

To do this, first consider the Quality Factor. It is best to pick convenient values for the capacitors. C2 = C3 = 1000
pF. Also, choose R1 = R4 = 30 kΩ. Now values of R5 and R6 need to be calculated. With the chosen values for
the capacitors and resistors, Q reduces to:

(30)
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or
R5 = 10R6 R6 = 1.5 kΩ R5 = 15 kΩ (31)

Also, for f = 10 kHz, the center frequency is ωc = 2πf = 62.8 kHz.

Using the expressions above, the appropriate resistor values will be R2 = R3 = 16 kΩ.

The DC gain of this circuit is:

(32)
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