

SBOS896-NOVEMBER 2017

INA317

INA317 Micro-Power (50-µA), Zero-Drift, Rail-to-Rail-Out Instrumentation Amplifier

Features

Low Offset Voltage: 75 µV (Maximum), G ≥ 100

Low Drift: 0.3 μ V/°C, G ≥ 100 Low Noise: 50 nV/√Hz. G ≥ 100

High CMRR: 100 dB (Minimum), G ≥ 10

Low Input Bias Current: 200 pA (Maximum)

Supply Range: 1.8 V to 5.5 V

Input Voltage: (V-) 0.1 V to (V+) -0.1 V

Output Range: (V-) 0.05 V to (V+) -0.05 V

Low Quiescent Current: 50 µA

Operating Temperature: -40°C to +125°C

RFI Filtered Inputs

8-Pin VSSOP Package

Applications

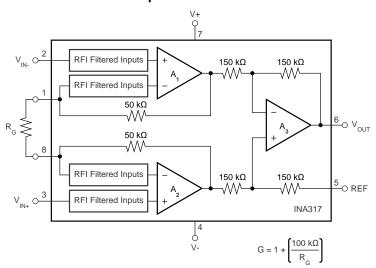
- **Bridge Amplifiers**
- **ECG** Amplifiers
- Pressure Sensors
- Medical Instrumentation
- Portable Instrumentation
- Weigh Scales
- Thermocouple Amplifiers
- **RTD Sensor Amplifiers**
- Data Acquisition

3 Description

The INA317 is a low-power, precision instrumentation amplifier offering excellent accuracy. The versatile 3operational amplifier design, small size and low power make the INA317 usable in a wide range of portable applications.

A single external resistor sets any gain from 1 to 1000, as defined by the industry-standard gain equation: $G = 1 + (100 \text{ k}\Omega / R_G)$.

The instrumentation amplifier provides low offset voltage (75 μ V, G \geq 100), excellent offset voltage drift (0.3 μ V/°C, G ≥ 100) and high common-mode rejection (100 dB at G ≥ 10). The INA317 operates with power supplies as low as 1.8 V (±0.9 V) and a quiescent current of 50 µA, making the device usable in battery-operated systems. Using autocalibration techniques to ensure precision over the extended industrial temperature range, the INA317 device offers low noise density (50 nV/\(\sqrt{Hz}\)) that extends down to DC.


The INA317 is available in an 8-pin VSSOP surfacemount package and is specified over the $T_A = -40$ °C to +125°C temperature range.

Device Information⁽¹⁾

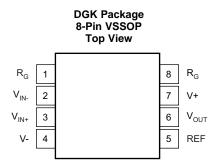
PART NUMBER	PACKAGE	BODY SIZE (NOM)
INA317	VSSOP (8)	3.00 mm x 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Copyright © 2017, Texas Instruments Incorporated

Table of Contents


1	Features 1		7.4 Device Functional Modes	1
2	Applications 1	8	Application and Implementation	14
3	Description 1		8.1 Application Information	14
4	Revision History2		8.2 Typical Application	14
5	Pin Configuration and Functions3	9	Power Supply Recommendations	19
6	Specifications4	10	Layout	20
•	6.1 Absolute Maximum Ratings		10.1 Layout Guidelines	
	6.2 ESD Ratings		10.2 Layout Example	2 ²
	6.3 Recommended Operating Conditions4	11	Device and Documentation Support	22
	6.4 Thermal Information		11.1 Device Support	2
	6.5 Electrical Characteristics5		11.2 Documentation Support	2
	6.6 Typical Characteristics		11.3 Trademarks	24
7	Detailed Description 13		11.4 Electrostatic Discharge Caution	2
•	7.1 Overview		11.5 Glossary	2
	7.2 Functional Block Diagram	12	Mechanical, Packaging, and Orderable	
	7.3 Feature Description		Information	20

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
November 2017	*	Initial release.

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION				
NAME	NO.	1/0	DESCRIPTION				
REF	5	I	Reference input. This pin must be driven by low impedance or connected to ground.				
R_{G}	1, 8	_	Gain setting pins. For gains greater than 1, place a gain resistor between pins 1 and 8.				
V ₊	7	_	Positive supply				
V_	4	_	Negative supply				
V_{IN+}	3	I	Positive input				
V_{IN-}	2	I	Negative input				
V _{OUT}	6	0	Output				

Copyright © 2017, Texas Instruments Incorporated

TEXAS INSTRUMENTS

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

	MIN	MAX	UNIT
Supply voltage	7		V
Analog input voltage ⁽²⁾	(V-) - 0.3	(V+) + 0.3	V
Output short-circuit (3)	Contir	nuous	
Operating temperature, T _A	-40	150	°C
Junction temperature, T _J		150	°C
Storage temperature, T _{stg}	-65	150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails must be current limited to 10 mA or less.
- (3) Short-circuit to ground.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±4000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V
		Machine model (MM)	±200	

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
VS	Supply voltage	1.8	5.5	V
	Specified temperature	-40	125	°C

6.4 Thermal Information

		INA317	
	THERMAL METRIC ⁽¹⁾	DGK (VSSOP)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	169.5	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	62.7	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	90.3	°C/W
ΨЈТ	Junction-to-top characterization parameter	7.6	°C/W
ΨЈВ	Junction-to-board characterization parameter	88.7	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	_	°C/W

 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: INA317

6.5 Electrical Characteristics

for $V_S = 1.8 \text{ V}$ to 5.5 V at $T_A = 25^{\circ}\text{C}$, $R_L = 10 \text{ k}\Omega$, $V_{REF} = V_S / 2$, and G = 1 (unless otherwise noted)

n time to specified V _{OSI} lance ential non-mode non-mode voltage range CURRENT pias current nperature offset current nperature	vs temperature, $T_A = -40^{\circ}\text{C}$ to 125°C vs power supply,1.8 V \leq V _S \leq 5.5 V Long-term stability $T_A = -40^{\circ}\text{C}$ to 125°C V _O = 0 V DC to 60 Hz V _{CM} = (V-) + 0.1 V to (V+) - 0.1 V, G = 1 V _{CM} = (V-) + 0.1 V to (V+) - 0.1 V, G = 10 V _{CM} = (V-) + 0.1 V to (V+) - 0.1 V, G = 100, V _{CM} = (V-) + 0.1 V to (V+) - 0.1 V, G = 1000	(V-) + 0.1 80 100 100 100	±10 ±25 / G ±1 ±5 / G See ⁽³⁾ Dical Characteristi 100 3 100 3 90 110 115	±75 ±75 / G ±0.3 ±0.5 / G ±5 ±15 / G (V+) - 0.1	μV μV/°C μV/V GΩ pF GΩ pF V dB dB dB
n time to specified V _{OSI} lance ential non-mode non-mode voltage range current perature offset current	vs power supply, 1.8 $V \le V_S \le 5.5 V$ Long-term stability $T_A = -40^{\circ}C \text{ to } 125^{\circ}C$ $V_O = 0 V$ DC to 60 Hz $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 10$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 100$, $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 100$, $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1000$	(V-) + 0.1 80 100 100 100	±1 ±5 / G See ⁽³⁾ Dical Characteristi 100 3 100 3 90 110 115	±0.3 ±0.5 / G ±5 ±15 / G	μV/°C μV/V GΩ pF GΩ pF V dB dB
ance ential non-mode non-mode voltage range amon-mode rejection CURRENT plas current nperature poffset current	vs power supply, 1.8 $V \le V_S \le 5.5 V$ Long-term stability $T_A = -40^{\circ}C \text{ to } 125^{\circ}C$ $V_O = 0 V$ DC to 60 Hz $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 10$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 100$, $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 100$, $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1000$	(V-) + 0.1 80 100 100 100	See ⁽³⁾ 100 3 100 3 90 110 115 11	±5 ±15 / G	μV/V GΩ pF GΩ pF V dB dB
ance ential non-mode non-mode voltage range amon-mode rejection CURRENT plas current nperature poffset current	vs power supply, 1.8 $V \le V_S \le 5.5 V$ Long-term stability $T_A = -40^{\circ}C \text{ to } 125^{\circ}C$ $V_O = 0 V$ DC to 60 Hz $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 10$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 100$, $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 100$, $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1000$	(V-) + 0.1 80 100 100 100	See ⁽³⁾ 100 3 100 3 90 110 115 11	ics	μV/V GΩ pF GΩ pF V dB dB
ance ential non-mode non-mode voltage range amon-mode rejection CURRENT plas current nperature poffset current	Long-term stability $T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ $V_O = 0 \text{ V}$ $DC \text{ to } 60 \text{ Hz}$ $V_{CM} = (V-) + 0.1 \text{ V}$ $\text{ to } (V+) - 0.1 \text{ V}, \text{ G} = 1$ $V_{CM} = (V-) + 0.1 \text{ V}$ $\text{ to } (V+) - 0.1 \text{ V}, \text{ G} = 10$ $V_{CM} = (V-) + 0.1 \text{ V}$ $\text{ to } (V+) - 0.1 \text{ V}, \text{ G} = 100,$ $V_{CM} = (V-) + 0.1 \text{ V}$ $\text{ to } (V+) - 0.1 \text{ V}, \text{ G} = 100,$ $V_{CM} = (V-) + 0.1 \text{ V}$ $\text{ to } (V+) - 0.1 \text{ V}, \text{ G} = 1000$	(V-) + 0.1 80 100 100 100	See ⁽³⁾ 100 3 100 3 90 110 115 11	ics	GΩ pF GΩ pF V dB dB
ance ential non-mode non-mode voltage range amon-mode rejection CURRENT plas current nperature poffset current	$T_{A} = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ $V_{O} = 0 \text{ V}$ $DC \text{ to } 60 \text{ Hz}$ $V_{CM} = (V-) + 0.1 \text{ V}$ $\text{ to } (V+) - 0.1 \text{ V}, \text{ G} = 1$ $V_{CM} = (V-) + 0.1 \text{ V}$ $\text{ to } (V+) - 0.1 \text{ V}, \text{ G} = 10$ $V_{CM} = (V-) + 0.1 \text{ V}$ $\text{ to } (V+) - 0.1 \text{ V}, \text{ G} = 100,$ $V_{CM} = (V-) + 0.1 \text{ V}$ $\text{ to } (V+) - 0.1 \text{ V}, \text{ G} = 1000$	(V-) + 0.1 80 100 100 100	90 110 115		GΩ pF V dB dB
ance ential non-mode non-mode voltage range amon-mode rejection CURRENT plas current nperature poffset current	$V_{O} = 0 \text{ V}$ $DC \text{ to } 60 \text{ Hz}$ $V_{CM} = (V-) + 0.1 \text{ V}$ $\text{ to } (V+) - 0.1 \text{ V}, \text{ G} = 1$ $V_{CM} = (V-) + 0.1 \text{ V}$ $\text{ to } (V+) - 0.1 \text{ V}, \text{ G} = 10$ $V_{CM} = (V-) + 0.1 \text{ V}$ $\text{ to } (V+) - 0.1 \text{ V}, \text{ G} = 100,$ $V_{CM} = (V-) + 0.1 \text{ V}$ $\text{ to } (V+) - 0.1 \text{ V}, \text{ G} = 1000$	(V-) + 0.1 80 100 100 100	100 3 100 3 90 110 115		GΩ pF V dB dB
ential non-mode non-mode voltage range mon-mode rejection CURRENT Dias current nperature offset current	DC to 60 Hz $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 10$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 100$, $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1000$	80 100 100 100	90 110 115 115	(V+) - 0.1	GΩ pF V dB dB
non-mode non-mode voltage range non-mode voltage range non-mode rejection CURRENT Dias current negrature offset current	DC to 60 Hz $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 10$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 100$, $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1000$	80 100 100 100	90 110 115 115	(V+) - 0.1	GΩ pF V dB dB
current contact current contact current contact current contact current	DC to 60 Hz $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 10$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 100$, $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1000$	80 100 100 100	90 110 115 115	(V+) - 0.1	V dB dB
CURRENT Dias current Experience offset current	DC to 60 Hz $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 10$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 100$, $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1000$	80 100 100 100	110 115 115	(**)	dB dB
CURRENT Dias current Operature Opfset current	$\begin{split} &V_{\text{CM}} = (\text{V-}) + 0.1 \text{ V} \\ &\text{to } (\text{V+}) - 0.1 \text{ V}, \text{ G} = 1 \\ &V_{\text{CM}} = (\text{V-}) + 0.1 \text{ V} \\ &\text{to } (\text{V+}) - 0.1 \text{ V}, \text{ G} = 10 \\ &V_{\text{CM}} = (\text{V-}) + 0.1 \text{ V} \\ &\text{to } (\text{V+}) - 0.1 \text{ V}, \text{ G} = 100, \\ &V_{\text{CM}} = (\text{V-}) + 0.1 \text{ V} \\ &\text{to } (\text{V+}) - 0.1 \text{ V}, \text{ G} = 1000 \end{split}$	100 100 100	110 115 115		dB dB
CURRENT Dias current Operature Opfset current	to $(V+) - 0.1 V$, $G = 1$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 10$ $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 100$, $V_{CM} = (V-) + 0.1 V$ to $(V+) - 0.1 V$, $G = 1000$	100 100 100	110 115 115		dB dB
CURRENT Dias current Operature Opfset current	to $(V+) - 0.1 \text{ V}$, $G = 10$ $V_{CM} = (V-) + 0.1 \text{ V}$ to $(V+) - 0.1 \text{ V}$, $G = 100$, $V_{CM} = (V-) + 0.1 \text{ V}$ to $(V+) - 0.1 \text{ V}$, $G = 1000$	100	115 115		dB
pias current sperature offset current	to (V+) - 0.1 V, G = 100, V _{CM} = (V-) + 0.1 V to (V+) - 0.1 V, G = 1000	100	115		
pias current sperature offset current	to (V+) - 0.1 V, G = 1000				dВ
pias current sperature offset current	T _A = -40°C to 125°C	s			ab
nperature offset current	T _A = -40°C to 125°C	S			
offset current	T _A = -40°C to 125°C	S	±70	±200	pA
		See Figure 26			pA/°C
nperature			±50	±200	pА
	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$	S	ee Figure 28		pA/°C
AGE NOISE					
Input voltage noise	G = 100, $R_S = 0 \Omega$, $f = 10 Hz$	50			nV/√ Hz
	G = 100, R _S = 0 Ω, f = 100 Hz	50			nV/√ Hz
	$G = 100, R_S = 0 \Omega, f = 1 \text{ kHz}$	50			nV/√ Hz
	G = 100, $R_S = 0 \Omega$, $f = 0.1 Hz$ to 10 Hz		1		μV _{PP}
	f = 10 Hz		100		fA/√ Hz
current noise	f = 0.1 Hz to 10 Hz		2		pA _{PP}
equation		1 -	+ (100 kΩ / R _G)		V/V
e of gain		1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1000	V/V
	$V_S = 5.5 \text{ V}, (V-) + 100 \text{ mV}$ $\leq V_O \leq (V+) - 100 \text{ mV}$				
			±0.01%	±0.1%	
error					
	G = 100				
	G = 1000		±0.25%	±0.5%	
s temperature, G = 1					ppm/°C
s temperature, G > 1 ⁽⁴⁾				±50	ppm/°C
nonlinearity	V _S = 5.5 V, (V–) + 100 mV		<u> </u>		11
	- · · ·		10		ppm
nonlinearity. G = 1 to 1000					rr'''
nonlinearity, G = 1 to 1000			See Figure 20	50	mV
nonlinearity, G = 1 to 1000 t voltage swing from rail	V _S = 5.5 V R 10 kO		See Figure 23	l l	
er /s	temperature, G = 1 temperature, G > 1 ⁽⁴⁾ onlinearity	$\begin{array}{c} V_S = 5.5 \; V, (V-) + 100 \; mV \\ \leq V_O \leq (V+) - 100 \; mV \\ \end{array}$ ror $\begin{array}{c} G = 1 \\ G = 10 \\ G = 100 \\ \end{array}$ $\begin{array}{c} G = 1000 \\ \end{array}$ $\begin{array}{c} G = 1000 \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$ $\begin{array}{c} T_A = -40^{\circ}C \; to \; 125^{\circ}C \\ \end{array}$	$V_{S} = 5.5 \text{ V, (V-)} + 100 \text{ mV}$ $\leq V_{O} \leq (V+) - 100 \text{ mV}$ $G = 1$ $G = 10$ $G = 1000$ $G = 1000$ $T_{A} = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ $T_{A} = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ $V_{S} = 5.5 \text{ V, (V-)} + 100 \text{ mV}$ $\leq V_{O} \leq (V+) - 100 \text{ mV}$ Indinearity $V_{C} = 5.5 \text{ V, (V-)}$	$\begin{array}{c} V_S = 5.5 \text{ V, (V-)} + 100 \text{ mV} \\ \leq V_O \leq (V+) - 100 \text{ mV} \\ \hline G = 1 & \pm 0.01\% \\ \hline G = 10 & \pm 0.05\% \\ \hline G = 100 & \pm 0.07\% \\ \hline G = 1000 & \pm 0.25\% \\ \hline \text{Itemperature, G} = 1 & T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C} & \pm 1 \\ \hline \text{Itemperature, G} > 1^{(4)} & T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C} & \pm 15 \\ \hline \text{Inlinearity} & V_S = 5.5 \text{ V, (V-)} + 100 \text{ mV} \\ \leq V_O \leq (V+) - 100 \text{ mV} \\ \hline \text{Inlinearity, G} = 1 \text{ to } 1000 & R_L = 10 \text{ k}\Omega & 10 \\ \hline \end{array}$	$V_S = 5.5 \text{ V}, (V-) + 100 \text{ mV}$ $\leq V_O \leq (V+) - 100 \text{ mV}$ $G = 1$ $G = 10$ $G = 100$ $G = 1000$ $G = 1$

Total V_{OS} , referred-to-input = (V_{OSI}) + (V_{OSO} / G) RTI = Referred-to-input

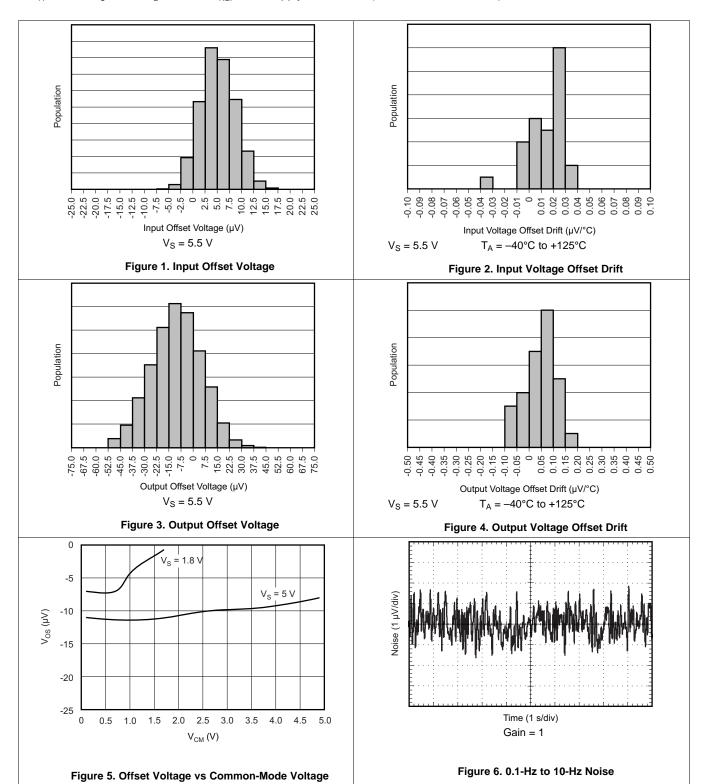
⁽²⁾

³⁰⁰⁻hour life test at 150°C demonstrated randomly distributed variation of approximately 1 μV

Does not include effects of external resistor R_G

TEXAS INSTRUMENTS

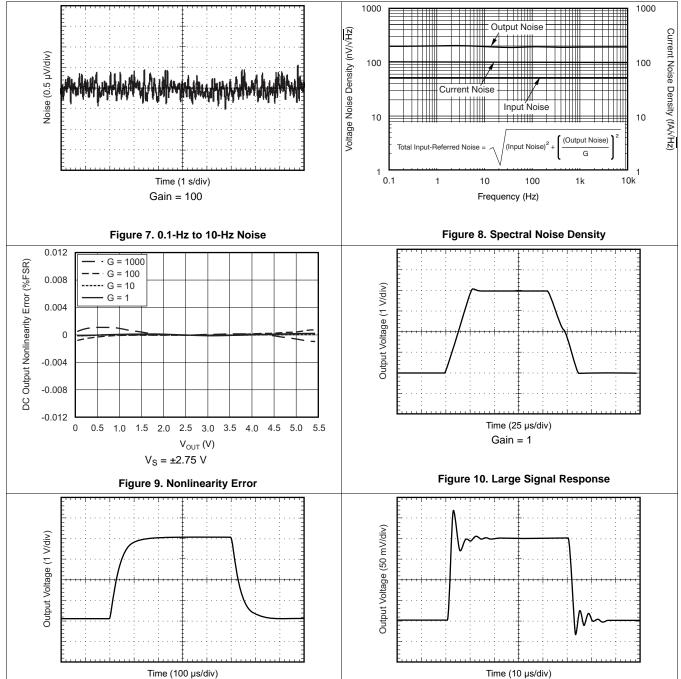
Electrical Characteristics (continued)


for $V_S = 1.8 \ V$ to 5.5 V at $T_A = 25 \ C$, $R_L = 10 \ k\Omega$, $V_{REF} = V_S / 2$, and G = 1 (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{SC}	Short-circuit current	Continuous to common		-40, 5		mA
FREC	QUENCY RESPONSE					
		G = 1		150		kHz
	Dan dwidth O dD	G = 10		35		kHz
	Bandwidth, -3 dB	G = 100		3.5		kHz
		G = 1000		350		Hz
CD.	Olassa nata	V _S = 5 V, V _O = 4-V step, G = 1		0.16		V/μs
SR	Slew rate	V _S = 5 V, V _O = 4-V step, G = 100		0.05		V/μs
	Cattling time to 0.049/	V _{STEP} = 4 V, G = 1			μS	
ts	Settling time to 0.01%	V _{STEP} = 4 V, G = 100		400		μS
	Settling time to 0.001%	V _{STEP} = 4 V, G = 1		60		μS
ts	Settling time to 0.001%	V _{STEP} = 4 V, G = 100		500		μS
	Overload recovery	50% overdrive		75		μS
REFE	RENCE INPUT					
	R _{IN}			300		kΩ
	Voltage range		V–		V+	V
POW	ER SUPPLY					
	Voltogo rongo	Single voltage range	1.8		5.5	V
	Voltage range	Dual voltage range	±0.9		±2.75	V
	Ouisseent surrent va temperature	V _{IN} = V _S / 2		50	75	μΑ
IQ	Quiescent current vs temperature	T _A = -40°C to 125°C			80	μΑ
TEM	PERATURE RANGE				*	
	Specified temperature range		-40		125	°C
	Operating temperature range		-40		150	°C

6.6 Typical Characteristics

at T_A = 25°C, V_S = 5 V, R_L = 10 k Ω , V_{REF} = midsupply, and G = 1, (unless otherwise noted)



Copyright © 2017, Texas Instruments Incorporated

TEXAS INSTRUMENTS

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = 5$ V, $R_L = 10$ k Ω , $V_{REF} =$ midsupply, and G = 1, (unless otherwise noted)

Gain = 100

Figure 11. Large-Signal Step Response

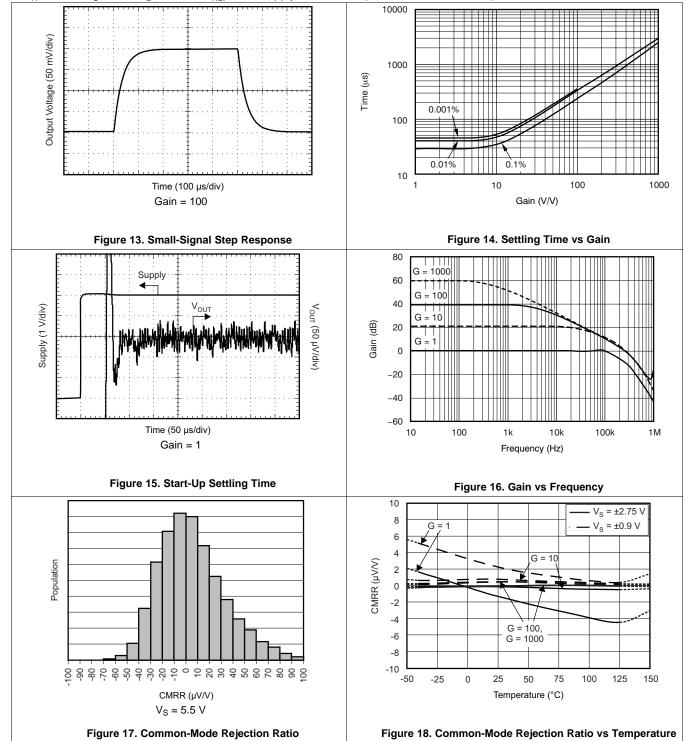
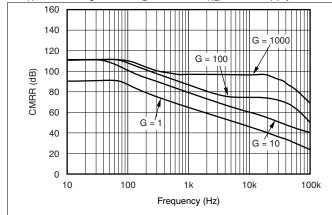

Gain = 1

Figure 12. Small-Signal Step Response

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = 5$ V, $R_L = 10$ k Ω , $V_{REF} =$ midsupply, and G = 1, (unless otherwise noted)



Copyright © 2017, Texas Instruments Incorporated

TEXAS INSTRUMENTS

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = 5$ V, $R_L = 10$ k Ω , $V_{REF} =$ midsupply, and G = 1, (unless otherwise noted)

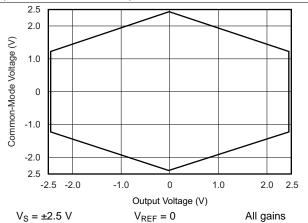
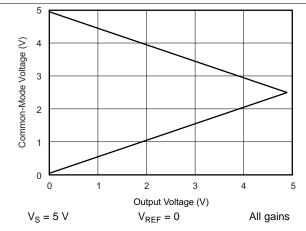



Figure 19. Common-Mode Rejection Ratio vs Frequency

Figure 20. Typical Common-Mode Range vs Output Voltage

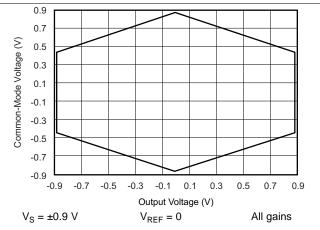
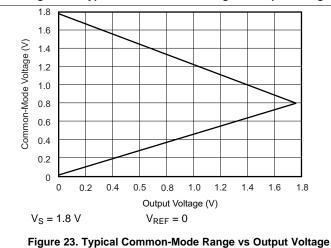



Figure 21. Typical Common-Mode Range vs Output Voltage

Figure 22. Typical Common-Mode Range vs Output Voltage

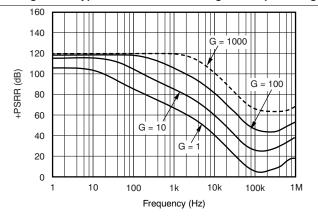
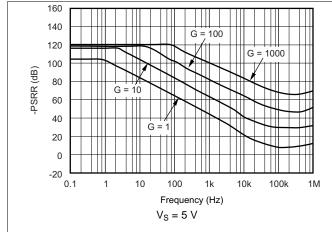


Figure 24. Positive Power-Supply Rejection Ratio


Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = 5$ V, $R_L = 10$ k Ω , $V_{REF} =$ midsupply, and G = 1, (unless otherwise noted)

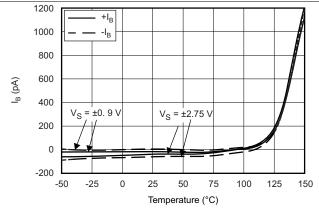
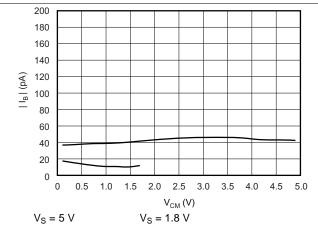



Figure 25. Negative Power-Supply Rejection Ratio

Figure 26. Input Bias Current vs Temperature

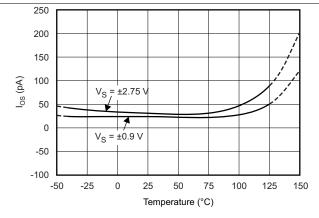


Figure 27. Input Bias Current vs Common-Mode Voltage

Figure 28. Input Offset Current vs Temperature

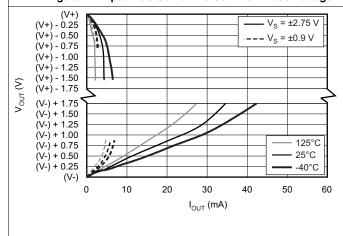
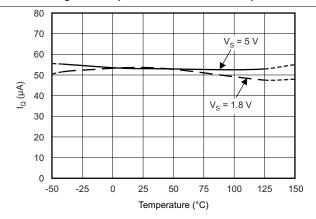
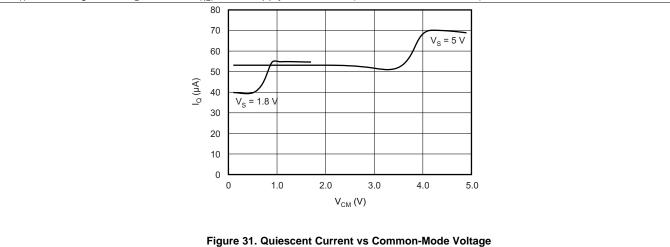


Figure 29. Output Voltage Swing vs Output Current



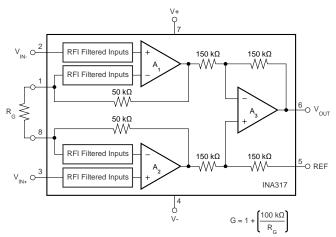

Figure 30. Quiescent Current vs Temperature

Copyright © 2017, Texas Instruments Incorporated

TEXAS INSTRUMENTS

Typical Characteristics (continued)

at T_A = 25°C, V_S = 5 V, R_L = 10 k Ω , V_{REF} = midsupply, and G = 1, (unless otherwise noted)


7 Detailed Description

7.1 Overview

www.ti.com

The INA317 is a monolithic instrumentation amplifier (INA) based on the precision zero-drift OPA333 (operational amplifier) core. The INA317 integrates laser-trimmed resistors to ensure excellent common-mode rejection and low gain error. The combination of the zero-drift amplifier core and the precision resistors allows this device to achieve outstanding DC precision and is designed for 3.3-V and 5-V industrial applications.

7.2 Functional Block Diagram

Copyright © 2017, Texas Instruments Incorporated

7.3 Feature Description

The INA317 is a low-power, zero-drift instrumentation amplifier that offers accuracy. The versatile three-operational-amplifier design and small size makes the amplifier designed for a wide range of applications. Zero-drift chopper circuitry provides DC specifications. A single external resistor sets any gain from 1 to 10,000. The INA317 is laser trimmed for high common-mode rejection (100 dB at $G \ge 100$). Typically, the INA317 operates with power supplies as low as 1.8 V and quiescent current of 50 μ A.

7.4 Device Functional Modes

7.4.1 Internal Offset Correction

INA317 internal operational amplifiers use an autocalibration technique with a time-continuous 350-kHz operational amplifier in the signal path. The amplifier is zero-corrected every 8 μ s using a proprietary technique. Upon power up, the amplifier requires approximately 100 μ s to achieve specified VOS accuracy. This design has no aliasing or flicker noise.

7.4.2 Input Common-Mode Range

The linear input voltage range of the input circuitry of the INA317 is from approximately 0.1 V below the positive supply voltage to 0.1 V above the negative supply. However, as a differential input voltage causes the output voltage to increase, the output voltage swing of amplifiers A1 and A2 limits the linear input range. As a result, the linear common-mode input range is related to the output voltage of the complete amplifier. This behavior depends on supply voltage; see Figure 20.

Input overload conditions can produce an output voltage that appears normal. For example, if an input overload condition drives the input amplifiers to the respective positive output swing limit, the difference voltage measured by the output amplifier is approximately zero. The output of the INA317 is approximately 0 V even though the inputs are overloaded.

Copyright © 2017, Texas Instruments Incorporated

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The INA317 measures small differential voltage with high common-mode voltage that develops between the noninverting and inverting input. The high input impedance makes the INA317 designed for a wide range of applications. The ability to set the reference pin to adjust the functionality of the output signal offers additional flexibility that is practical for multiple configurations.

8.2 Typical Application

Figure 32 shows the basic connections required for operation of the INA317 device. Good layout practice mandates the use of bypass capacitors placed close to the device pins as shown.

The output of the INA317 device is referred to the output reference (REF) pin, which is normally grounded. This connection must be low-impedance to ensure good common-mode rejection. Although 15 Ω or less of stray resistance is tolerated while maintaining specified CMRR, small stray resistances of tens of ohms in series with the REF pin causes noticeable degradation in CMRR.

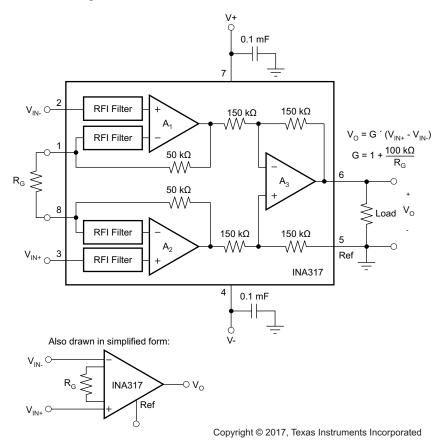


Figure 32. Basic Connections

Typical Application (continued)

8.2.1 Design Requirements

The device is configured to monitor the input differential voltage when the gain of the external resistor R_G sets the input signal. The output signal references to the REF pin. The most common application is where the output is referenced to ground when no input signal is present by connecting the REF pin to ground. When the input signal increases, the output voltage at the OUT pin increases.

8.2.2 Detailed Design Procedure

8.2.2.1 Setting the Gain

A single external resistor (R_G) that is connected between pins 1 and 8 sets the gain of the INA317. The value of R_G is selected according to Equation 1:

$$G = 1 + (100 \text{ k}\Omega / R_G)$$
 (1)

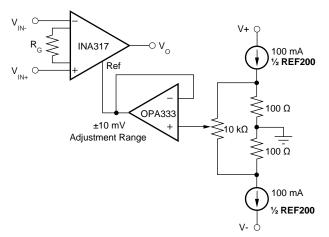
Table 1 lists several commonly-used gains and resistor values. The 100 $k\Omega$ in Equation 1 is a result of the sum of the two internal feedback resistors (A₁ and A₂.) These on-chip resistors are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA317 device.

The stability and temperature drift of the external gain setting resistor (R_G) also affects gain. The contribution of R_G to gain accuracy and drift is inferred from the gain in Equation 1. Low resistor values required for high gain make wiring resistance important. Sockets add to the wiring resistance and contribute additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater. To ensure stability, avoid parasitic capacitance of more than a few picofarads at the R_G connections. Careful matching of any parasitics on R_G pins maintains optimal CMRR over frequency.

DESIRED GAIN	R _G (Ω)	NEAREST 1% R _G (Ω)
1	NC ⁽¹⁾	NC
2	100 k	100 k
5	25 k	24.9 k
10	11.1 k	11 k
20	5.26 k	5.23 k
50	2.04 k	2.05
100	1.01 k	1 k
200	502.5	499
500	200.4	200
1000	100.1	100

Table 1. Commonly-Used Gains and Resistor Values

8.2.2.2 Internal Offset Correction


The INA317 device internal operational amplifiers use an autocalibration technique with a time-continuous 350-kHz operational amplifier in the signal path. The amplifier is zero-corrected every 8 μ s using a proprietary technique. At power-up, the amplifier requires approximately 100 μ s to achieve specified V_{OS} accuracy. This design has no aliasing or flicker noise.

8.2.2.3 Offset Trimming

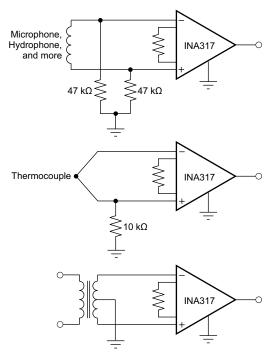
Most applications require no external offset adjustment. However, apply a voltage to the REF pin to make adjustments if necessary. Figure 33 shows an optional circuit for trimming the output offset voltage. The voltage applied to REF pin is added at the output. The operational amplifier buffer provides low impedance at the REF pin to preserve good common-mode rejection.

Product Folder Links: INA317

⁽¹⁾ NC denotes no connection. When using the SPICE model, the simulation does not converge unless a resistor is connected to the R_G pins; use a large resistor value.

Copyright © 2017, Texas Instruments Incorporated

Figure 33. Optional Trimming of Output Offset Voltage


8.2.2.4 Noise Performance

The autocalibration technique used by the INA317 device results in reduced low-frequency noise, typically only $50 \text{ nV/}\sqrt{\text{Hz}}$ (G = 100). The spectral noise density is shown in Figure 8. Low-frequency noise of the INA317 device is approximately 1 μV_{PP} measured from 0.1 Hz to 10 Hz (G = 100).

8.2.2.5 Input Bias Current Return Path

The input impedance of the INA317 device is extremely high(approximately 100 G Ω .) However, a path must be provided for the input bias current of the inputs. This input bias current is typically ± 70 pA. High-input impedance means that this input bias current changes very little with varying input voltage.

For proper operation, input circuitry must provide a path for the input bias current. Figure 34 shows various provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds the common-mode range of the INA317 device, and the input amplifiers saturate. If the differential source resistance is low, the bias current return path connects to one input (see the thermocouple example in Figure 34). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage as a result of bias current and better high-frequency common-mode rejection.

Copyright © 2017, Texas Instruments Incorporated

Figure 34. Providing an Input Common-Mode Current Path

8.2.2.6 Input Common-Mode Range

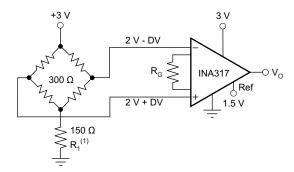
The linear input voltage range of the input circuitry of the INA317 device is from approximately 0.1 V below the positive supply voltage to 0.1 V above the negative supply. As a differential input voltage causes the output voltage to increase, however, the linear input range is limited by the output voltage swing of amplifiers A_1 and A_2 . The linear common-mode input range is related to the output voltage of the complete amplifier. This behavior depends on supply voltage(see Figure 20 to Figure 23 in the *Typical Characteristics* section.)

Input overload conditions can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to the respective positive output swing limit, the difference voltage measured by the output amplifier is near zero. The output of the INA317 is near 0 V even though both inputs are overloaded.

8.2.2.7 Operating Voltage

The INA317 operates over a power-supply range of 1.8 V to 5.5 V (± 0.9 V to ± 2.75 V). Supply voltages higher than 7 V (absolute maximum) can permanently damage the device. Parameters that vary over supply voltage or temperature are shown in the *Typical Characteristics* section of this data sheet.

8.2.2.8 Low Voltage Operation


The INA317 device operates on power supplies as low as ±0.9 V. Most parameters vary only slightly throughout this supply voltage range; see the *Typical Characteristics* section. Operation at very low supply voltage requires careful attention to ensure that the input voltages remain within the linear range. Voltage swing requirements of internal nodes limit the input common-mode range with low power supply voltage. Figure 20 to Figure 23 show the range of linear operation for various supply voltages and gains.

8.2.2.9 Single-Supply Operation

The INA317 device can be used on single power supplies of 1.8 V to 5.5 V. Figure 35 shows a basic single-supply circuit. The output REF pin is connected to midsupply. Zero differential input voltage demands an output voltage of midsupply. Actual output voltage swing is limited to approximately 50 mV more than ground when the load is referred to ground as shown. Figure 29 shows how the output voltage swing varies with output current.

With single-supply operation, V_{IN+} and V_{IN-} must be 0.1 V more than ground for linear operation. For instance, the inverting input cannot connect to ground to measure a voltage that is connected to the noninverting input.

To show the issues affecting low voltage operation, see Figure 35. Figure 35 shows the INA317 device operating from a single 3-V supply. A resistor in series with the low side of the bridge ensures that the bridge output voltage is within the common-mode range of the amplifier inputs.

Copyright © 2017, Texas Instruments Incorporated

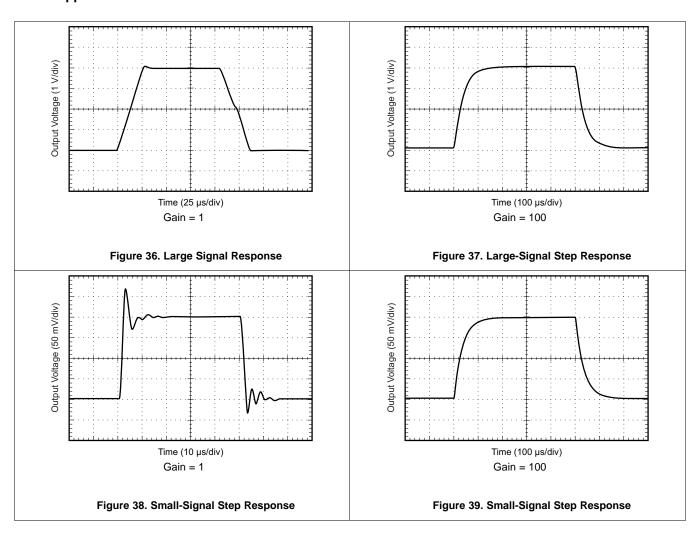

(1) R₁ creates proper common-mode voltage only for low-voltage operation; see Single-Supply Operation.

Figure 35. Single-Supply Bridge Amplifier

8.2.2.10 Input Protection

The input pins of the INA317 device are protected with internal diodes that are connected to the power-supply rails. These diodes clamp the applied signal to prevent the signal from damaging the input circuitry. If the input signal voltage exceeds the power supplies by more than 0.3 V, the input signal current must be limited to less than 10 mA to protect the internal clamp diodes. Limit the current with a series input resistor. Some signal sources are inherently current limited and do not require limiting resistors.

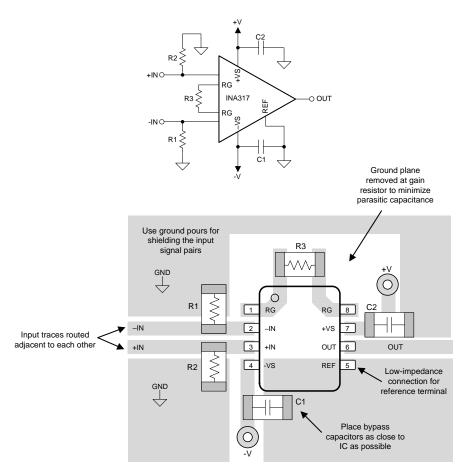
8.2.3 Application Curves

9 Power Supply Recommendations

The minimum power supply voltage for INA317 is 1.8 V and the maximum power supply voltage is 5.5 V. For optimum performance, 3.3 V to 5 V is recommended. TI recommends adding a bypass capacitor at the input to compensate for the layout and power supply source impedance.

TEXAS INSTRUMENTS

10 Layout


10.1 Layout Guidelines

TI recommends paying attention to good layout practices. Keep traces short and use a printed-circuit-board (PCB) ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1-µF bypass capacitor as close as possible the supply pins. Apply these guidelines throughout the analog circuit to improve performance and reduce electromagnetic interference (EMI) susceptibility.

Instrumentation amplifiers vary in the susceptibility to radio-frequency interference (RFI). RFI is identified as a variation in offset voltage or DC signal levels with changes in the interfering RF signal. The INA317 device is designed to minimize susceptibility to RFI by incorporating passive RC filters with an 8-MHz corner frequency at the $V_{\text{IN+}}$ and $V_{\text{IN-}}$ inputs. As a result, the INA317 device demonstrates low sensitivity compared to previous generation devices. However, strong RF fields can cause varied offset levels and may require additional shielding.

10.2 Layout Example

Copyright © 2017, Texas Instruments Incorporated

Figure 40. INA317 Layout

SBOS896 – NOVEMBER 2017 www.ti.com

TEXAS INSTRUMENTS

11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support

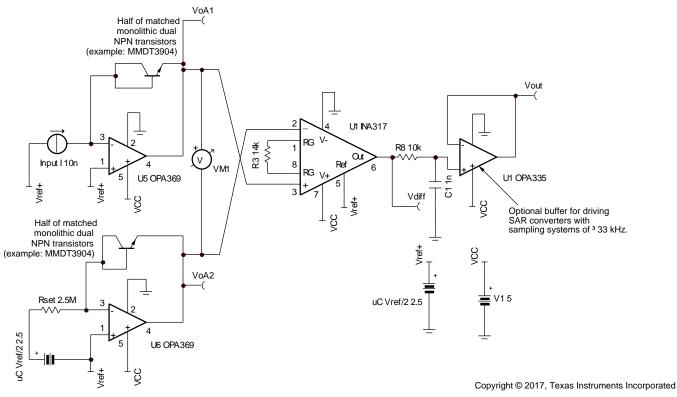
11.1.1.1 TINA-TI (Free Download Software)

Using TINA-TI SPICE-Based Analog Simulation Program With The INA317

TINA is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a free, fully functional version of the TINA software, preloaded with a library of macromodels in addition to a range of both passive and active models. It provides all the conventional DC, transient, and frequency domain analysis of SPICE as well as additional design capabilities.

Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways.

Virtual instruments offer users the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.

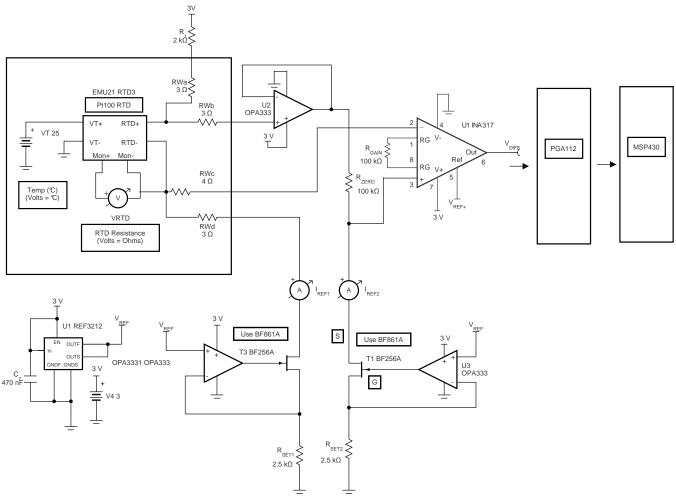

Figure 41 and Figure 42 show example TINA-TI circuits for the INA317 device that can be used to develop, modify, and assess the circuit design for specific applications. Links to download these simulation files are given below.

NOTE

These files require that either the TINA software (from DesignSoft) or TINA-TI software be installed. Download the free TINA-TI software from the TINA-TI folder.

Device Support (continued)

- (1) The following link launches the TI logarithmic amplifiers web page: Logarithmic Amplifier Products Home Page
 - (2) Temperature compensation of logging transistors is not shown.
 - (3) For monolithic logarithmic amplifiers (such as LOG112 or LOG114), see the link in Note 1.


Figure 41. Low-Power Log Function Circuit for Portable Battery-Powered Systems (Example Glucose Meter)

To download a compressed file that contains the TINA-TI simulation file for this circuit, click the following link: Log Circuit.

Copyright © 2017, Texas Instruments Incorporated

TEXAS INSTRUMENTS

Device Support (continued)

Copyright © 2017, Texas Instruments Incorporated

RWa, RWb, RWc, and RWd simulate wire resistance. These resistors are included to show the 4-wire sense technique immunity to line mismatches. This method assumes the use of a 4-wire RTD.

Figure 42. 4-Wire, 3-V Conditioner for a PT100 RTD With Programmable Gain Acquisition System

To download a compressed file that contains the TINA-TI simulation file for this circuit, click the following link: PT100 RTD.

11.2 Documentation Support

11.2.1 Related Documentation

For related documentation see the following:

- Precision, Low-Noise, Rail-to-Rail Output, 36-V, Zero-Drift Operational Amplifiers
- 50 μV VOS, 0.25 μV/°C, 35 μA CMOS OPERATIONAL AMPLIFIERS Zerø-Drift Series
- 4ppm/°C, 100 μA, SOT23-6 SERIES VOLTAGE REFERENCE
- Circuit Board Layout Techniques

11.3 Trademarks

All trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

Copyright © 2017, Texas Instruments Incorporated

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 7-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
INA317IDGKR	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAUAG SN	Level-2-260C-1 YEAR	-40 to 125	I317
INA317IDGKR.A	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	l317
INA317IDGKT	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	NIPDAUAG SN	Level-2-260C-1 YEAR	-40 to 125	I317
INA317IDGKT.A	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	I317

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

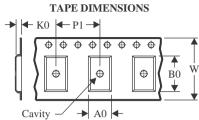
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

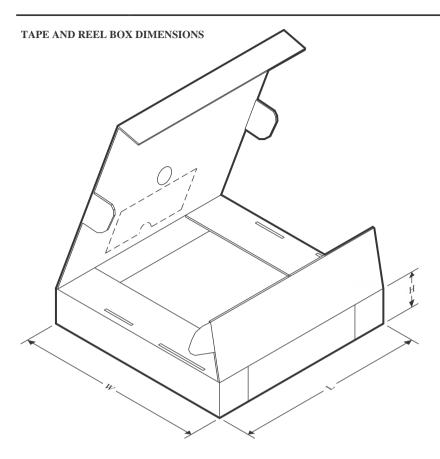

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Nov-2024

TAPE AND REEL INFORMATION

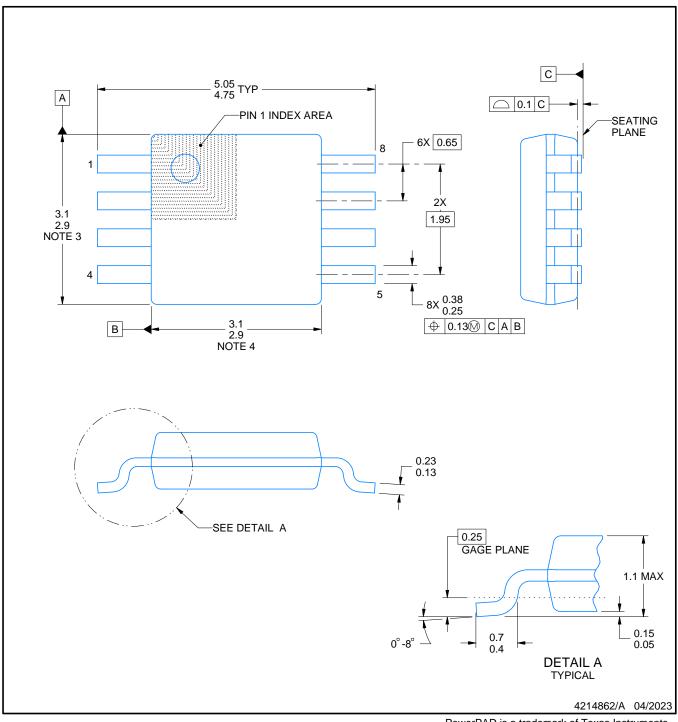
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
INA317IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1
INA317IDGKT	VSSOP	DGK	8	250	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1

www.ti.com 5-Nov-2024



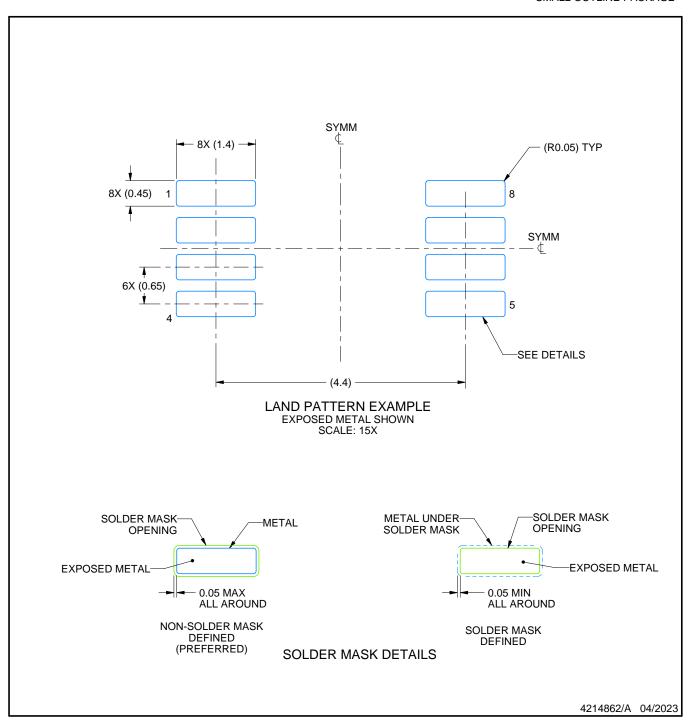
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
INA317IDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
INA317IDGKT	VSSOP	DGK	8	250	366.0	364.0	50.0

SMALL OUTLINE PACKAGE

NOTES:

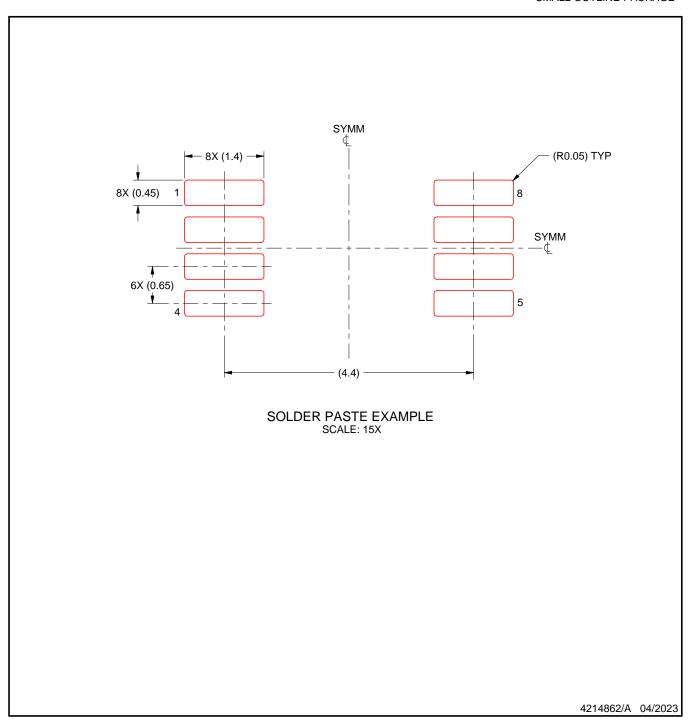
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated