

For most current data sheet and other product information, visit www.burr-brown.com

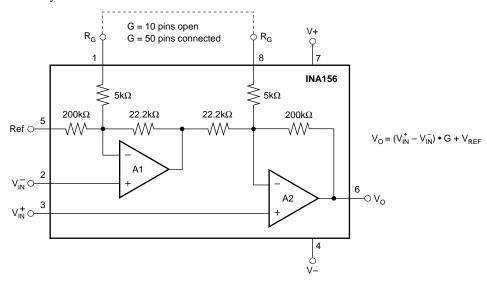
Single-Supply, Rail-to-Rail Output, CMOS INSTRUMENTATION AMPLIFIER

FEATURES

- RAIL-TO-RAIL OUTPUT SWING: Within 20mV
- LOW OFFSET DRIFT: ±5μV/°C
- INTERNAL FIXED GAIN = 10V/V OR 50V/V
- SPECIFIED TEMPERATURE RANGE: -55°C to +125°C
- LOW INPUT BIAS CURRENT: 1pA
- WIDE BANDWIDTH: 550kHz in G = 10
- HIGH SLEW RATE: 6.5V/µs
- LOW COST
- TINY MSOP-8 PACKAGES

APPLICATIONS

- INDUSTRIAL SENSOR AMPLIFIERS: Bridge, RTD, Thermocouple, Flow, Position
- MEDICAL EQUIPMENT:
 ECG, EEG, EMG Amplifiers
- DRIVING A/D CONVERTERS
- PCMCIA CARDS
- AUDIO PROCESSING
- COMMUNICATIONS
- TEST EQUIPMENT
- LOW COST AUTOMOTIVE INSTRUMENTATION


DESCRIPTION

The INA156 is a low-cost CMOS instrumentation amplifier with rail-to-rail output swing optimized for low-voltage, single-supply operation.

Wide bandwidth (550kHz in G=10) and high slew rate (6.5V/µs) make the INA156 suitable for driving sampling A/D converters as well as general purpose and audio applications. Fast settling time allows use with higher speed sensors and transducers, and rapid scanning data acquisition systems.

Gains between these two values can be obtained with the addition of a single resistor. The INA156 is fully specified over the supply range of +2.7V to +5.5V.

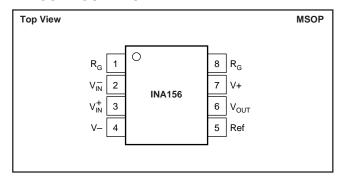
The INA156 is available in an MSOP-8 surface-mount package specified for operation over the temperature range -55°C to 125°C.

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111

Twx: 910-952-1111 • Internet: http://www.burr-brown.com/ • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS: $V_S = +2.7V$ to +5.5V

Boldface limits apply over the specified temperature range, $T_A = -55^{\circ}C$ to +125°C


At T_A = +25°C, R_L = 10k Ω connected to $V_S/2$. R_G pins open (G = 10), and Ref = $V_S/2$, unless otherwise noted.

			INA156E, A			
PARAMETER		CONDITION	MIN	TYP	MAX	UNITS
INPUT Offset Voltage, RTI Over Temperature Drift vs Power Supply Over Temperature vs Time	V _{OS} dV _{OS} /d _T PSRR	$V_{S} = +5.0 \text{V}, \ V_{CM} = V_{S}/2$ $V_{S} = +2.7 \text{V to } +6 \text{V}, \ V_{CM} = 0.2 \bullet V_{S}$		±2.5 ± 5 ±50 ±0.4	±8 ± 9 ±200 ± 250	mV mV μV/°C μV/V μV/V
INPUT VOLTAGE RANGE Safe Input Voltage Common-Mode Range(1) Common-Mode Rejection Ratio Over Temperature Over Temperature	V _{CM}	$V_{S} = 5.5V$ $V_{S} = 2.7V$ $V_{S} = 5.5V, 0.6V < V_{CM} < 3.7V, G = 10$ $V_{S} = 5.5V, 0.6V < V_{CM} < 3.7V, G = 50$	(V-) - 0.5 0.3 0.2 66 65 74 73	78 87	(V+) + 0.5 5.2 ⁽²⁾ 2.5 ⁽²⁾	V V V dB dB dB
INPUT IMPEDANCE Differential Common-Mode				10 ¹³ 3 10 ¹³ 3		Ω pF Ω pF
INPUT BIAS CURRENT Input Bias Current Offset Current	I _B			±1 ±1	±10 ±10	pA pA
NOISE, RTI Voltage Noise: f = 0.1Hz to 10Hz Voltage Noise Density: f = 10Hz f = 100Hz f = 1kHz Current Noise: f = 1kHz		$R_S = 0\Omega$, $G = 10 \text{ or } 50$		4.5 260 99 40 2		μV/Vp-p nV/√Hz nV/√Hz nV/√Hz fA/√Hz
GAIN Gain Equation Gain Error ⁽³⁾ vs Temperature vs Temperature Nonlinearity Over Temperature		$V_S = 5.5V$, $V_O = 0.02V$ to 5.48V, $G = 10$ $V_S = 5.5V$, $V_O = 0.05V$ to 5.45V, $G = 50$ $V_S = 5.5V$, $G = 10$ or 50	10 G =	±0.08 ±2 ±0.1 ±15 ±0.005	50 R _G) V/V ±0.4 ±10 ±0.8 ±30 ±0.015 ±0.015	V/V % ppm/°C % ppm/°C % of FSR % of FSR
OUTPUT Voltage Output Swing from Rail Over Temperature Short-Circuit Current Capacitance Load (stable operation)		G = 10, R_L = 10k Ω , G_{ERR} < 0.4% Short-Circuit to Ground		5 ±50 See Typical Curve	20 20	mV mV mA
FREQUENCY RESPONSE Bandwidth, -3dB Slew Rate Settling Time: 0.1% 0.01% Overload Recovery Total Harmonic Distortion + Noise	BW SR t _S	$\begin{array}{c} G = 10 \\ G = 50 \\ V_S = 5.5 \text{V, } C_L = 100 \text{pF} \\ V_S = 5.5 \text{V, } V_O = 2 \text{V Step, } C_L = 100 \text{pF, } G = 10 \\ V_S = 5.5 \text{V, } V_O = 2 \text{V Step, } C_L = 100 \text{pF, } G = 50 \\ V_S = 5.5 \text{V, } V_O = 2 \text{V Step, } C_L = 100 \text{pF, } G = 10 \\ V_S = 5.5 \text{V, } V_O = 2 \text{V Step, } C_L = 100 \text{pF, } G = 50 \\ 50 \text{M Input Overload} \\ \end{array}$		550 110 6.5 5 11 8 15 0.2 See Typical Curve		kHz kHz V/μs μs μs μs μs
POWER SUPPLY Specified Voltage Range Operating Voltage Range Quiescent Current Over Temperature		$V_{IN} = 0, I_{O} = 0$ $V_{IN} = 0, I_{O} = 0$	+2.7	+2.5 to +6 1.8	+5.5 2.5 3.2	V V mA mA
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance MSOP-8 Surface Mount SO-8 Surface Mount	$ heta_{\sf JA}$		-55 -65 -65	150 150	+125 +150 +150	°C °C °C/W °C/W

NOTES: (1) For further information, refer to typical performance curves on common-mode input range. (2) Operation beyond (V+) - 1.8V (max) results in reduced common-mode rejection. See discussion and Figure 6 in the text of this data sheet. (3) Does not include error and TCR of additional optional gain-setting resistor in series with R_G , if used.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Supply Voltage, V+ to V	
Signal Input Terminals, Voltage ⁽²⁾	(V–) – 0.5V to (V+) + 0.5V
Current ⁽²⁾	10mA
Output Short-Circuit(3)	Continuous
Operating Temperature	65°C to +150°C
Storage Temperature	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied. (2) Input terminals are diode-clamped to the power supply rails. Input signals that can swing more that 0.5V beyond the supply rails should be current limited to 10mA or less. (3) Short circuit to ground.

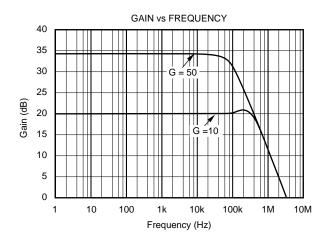
ELECTROSTATIC DISCHARGE SENSITIVITY

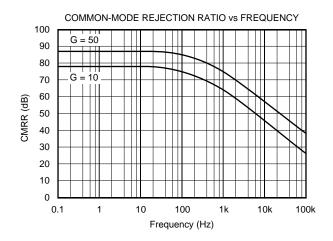
This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

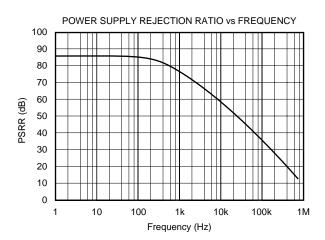
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

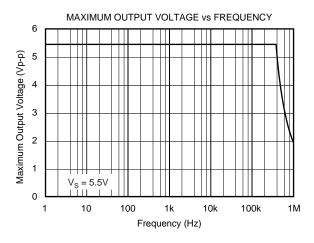
PACKAGE/ORDERING INFORMATION

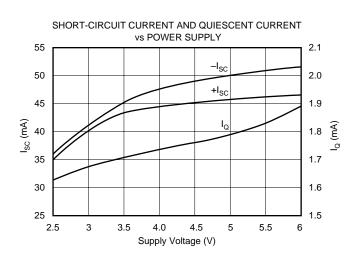
PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ⁽¹⁾	TRANSPORT MEDIA
INA156 EA	MSOP-8	337	−55°C to +125°C	A56	INA156EA/250 INA156EA/2K5	Tape and Reel Tape and Reel

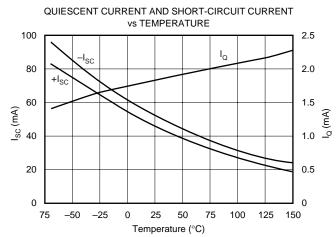

NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of "INA156EA/2K5" will get a single 2500-piece Tape and Reel.

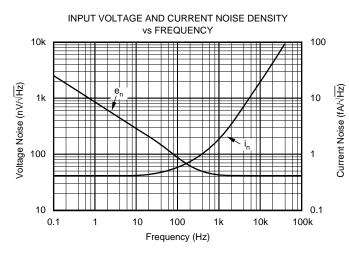

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

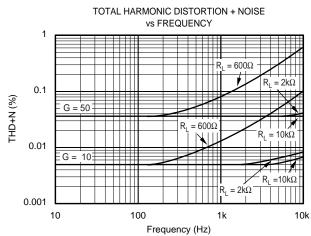


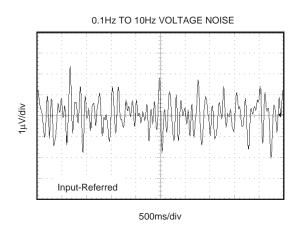

TYPICAL PERFORMANCE CURVES

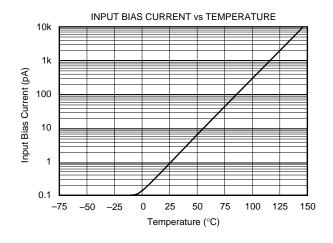

At $T_A = +25^{\circ}C$, $V_S = 5.5V$, $R_L = 10k\Omega$ connected to $V_S/2$. R_G pins open (G = 10), and Ref = $V_S/2$, unless otherwise noted.

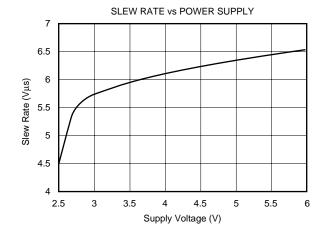


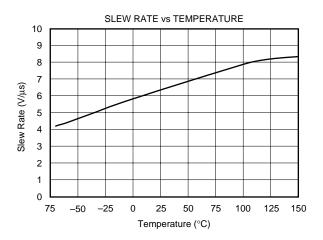


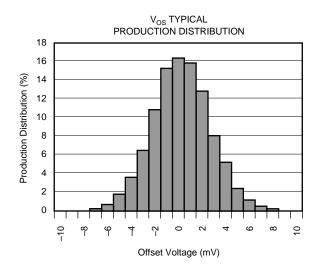


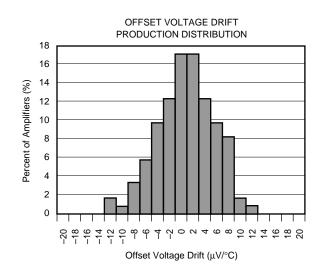


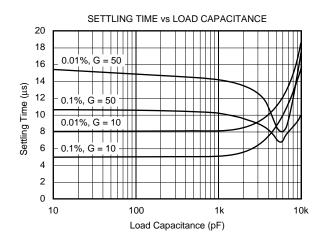

TYPICAL PERFORMANCE CURVES (Cont.)

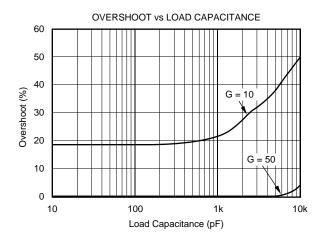

At $T_A = +25^{\circ}C$, $V_S = 5.5V$, $R_L = 10k\Omega$ connected to $V_S/2$. R_G pins open (G = 10), and Ref = $V_S/2$, unless otherwise noted.

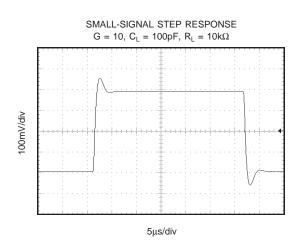


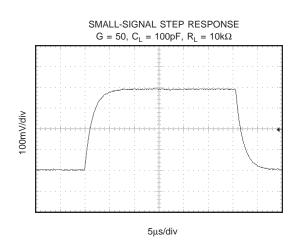


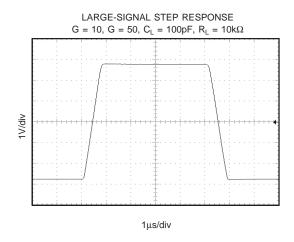


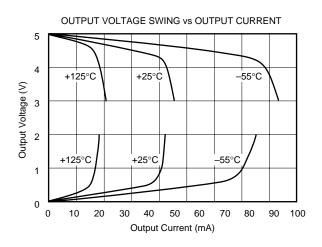


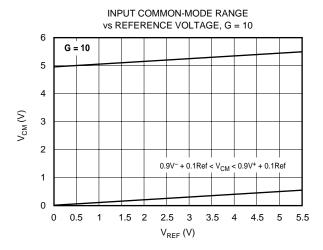

TYPICAL PERFORMANCE CURVES (Cont.)

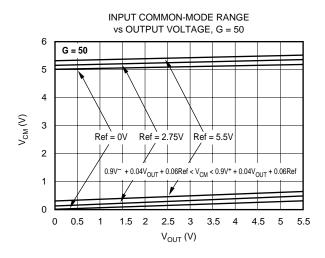

At T_A = +25°C, V_S = 5.5V, R_L = 10k Ω connected to $V_S/2$. R_G pins open (G = 10), and Ref = $V_S/2$, unless otherwise noted.

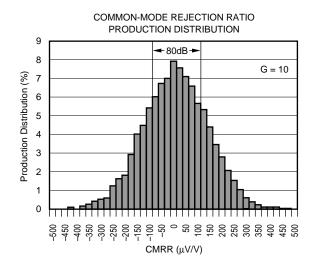


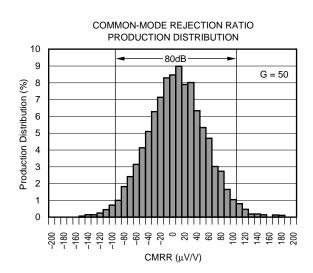







TYPICAL PERFORMANCE CURVES (Cont.)


At T_A = +25°C, V_S = 5.5V, R_L = 10k Ω connected to $V_S/2$. R_G pins open (G = 10), and Ref = $V_S/2$, unless otherwise noted.



APPLICATIONS INFORMATION

Figure 1 shows the basic connections required for operation of the INA156. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins, as shown.

The output is referred to the output reference terminal, Ref, which is normally set to $V_S/2$. This must be a low-impedance connection to ensure good common-mode rejection.

In addition, for the G=50 configuration, the connection between pins 1 and 8 must be low-impedance. A connection impedance of 20Ω can cause a 0.2% shift in gain error.

OPERATING VOLTAGE

The INA156 is fully specified and guaranteed over the supply range +2.7V to +5.5V, with key parameters guaranteed over the temperature range of -55°C to +125°C. Parameters that vary significantly with operating voltages, load conditions or temperature are shown in the Typical Performance Curves.

The INA156 can be operated from either single or dual power supplies. By adjusting the voltage applied to the reference terminal, the input common-mode voltage range and the output range can be adjusted within the bounds shown in the Typical Performance Curves. Figure 2 shows a bridge amplifier circuit operated from a single +5V power supply. The bridge provides a relatively small differential voltage on top of an input common-mode voltage near 2.5V.

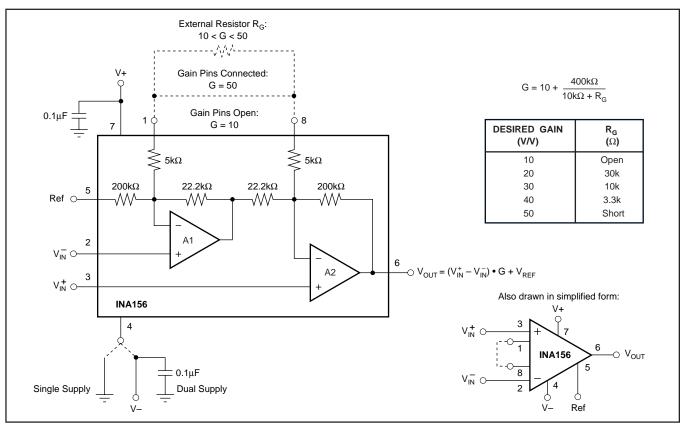


FIGURE 1. Basic Connections.

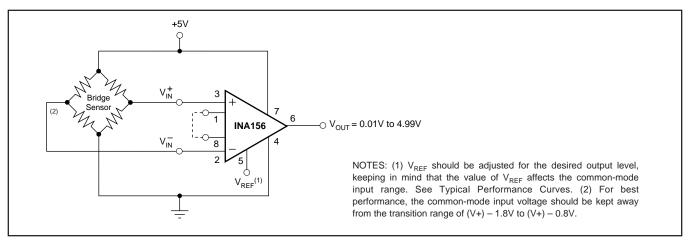


FIGURE 2. Single-Supply Bridge Amplifier.

SETTING THE GAIN

Gain of 10 is achieved simply by leaving the two gain pins (1 and 8) open. Gain of 50 is achieved by connecting the gain pins together directly. In the G=10 configuration, the gain error is less than 0.4%. In the G=50 configuration, the gain error is less than 0.8%.

Gain can be set to any value between 10 and 50 by connecting a resistor R_G between the gain pins according to the following equation:

$$10 + 400k\Omega/(10k\Omega + R_G) \tag{1}$$

This is demonstrated in Figure 1 and is shown with the commonly used gains and resistor $R_{\rm G}$ values. However, because the absolute value of internal resistors is not guaranteed, using the INA156 in this configuration will increase the gain error and gain drift with temperature, as shown in Figure 3.

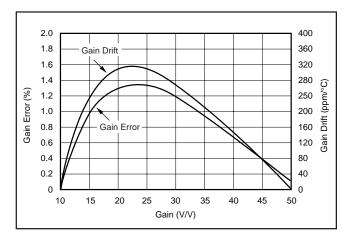


FIGURE 3. Typical Gain Error and Gain Error Drift with External Resistor.

OFFSET TRIMMING

Offset voltage can be adjusted by applying a correction voltage to the reference terminal. Figure 4 shows an optional circuit for trimming the output offset voltage. The voltage applied to the Ref terminal is added to the output signal. An op amp buffer is used to provide low impedance at the Ref terminal to preserve good common-mode rejection.

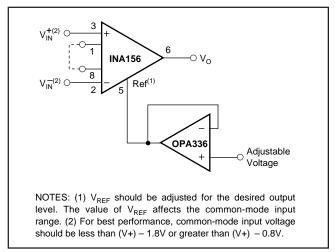


FIGURE 4. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN

The input impedance of the INA156 is extremely high—approximately $10^{13}\Omega$, making it ideal for use with high-impedance sources. However, a path must be provided for the input bias current of both inputs. This input bias current is less than 10pA and is virtually independent of the input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 5 shows various provisions for an input bias current path. Without a bias current path, the inputs will float to a potential that exceeds the commonmode range and the input amplifier will saturate.

If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple in Figure 5). With higher source impedance, using two equal resistors provides a balanced input with advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.

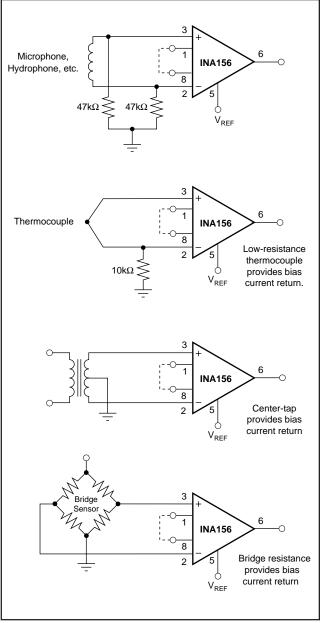


FIGURE 5. Providing an Input Common-Mode Current Path.

INPUT COMMON-MODE RANGE

The input common-mode range of the INA156 for various operating conditions is shown in the Typical Performance Curves. The common-mode input range is limited by the output voltage swing of A1, an internal circuit node. For the G = 10 configuration, output voltage of A1 can be expressed as:

$$V_{OUTA1} = -\frac{1}{9}V_{REF} + (1 + \frac{1}{9})V_{IN}$$
 (2)

The input common-mode voltage range can be calculated using this equation, given that the output of A1 can swing to within 20mV of either rail. When the input common-mode range is exceeded (A1's output is saturated), A2 can still be in linear operation and respond to changes in the non-inverting input voltage. However, the output voltage will be invalid.

The common-mode range for the G=50 configuration is included in the typical performance curve, "Input Common-Mode Range vs Output Voltage."

INPUT RANGE FOR BEST ACCURACY

The internal amplifiers have rail-to-rail input stages, achieved by using complementary n-channel and p-channel input pairs. The common-mode input voltage determines whether the p-channel or the n-channel input stage is operating. The transition between the input stages is gradual and occurs between (V+) - 1.8V to (V+) - 1V. Due to these characteristics, operating the INA156 with input voltages within the transition region of (V+) - 1.8V to (V+) - 0.8V results in a shift in input offset voltage, and reduced common-mode and power supply rejection performance. Typical patterns of the offset voltage change throughout the input common-mode range are illustrated in Figure 6. The INA156 can be operated below or above the transition region with excellent results. Figure 7 demonstrates the use of the INA156 in a single-supply, high-side current monitor. In this application, the INA156 is operated above the transition region.

RAIL-TO-RAIL OUTPUT

A class AB output stage with common-source transistors is used to achieve rail-to-rail output. For resistive loads greater than $10k\Omega$, the output voltage can swing to within a few millivolts of the supply rail while maintaining low gain error. For heavier loads and over temperature, see the typical performance curve "Output Voltage Swing vs Output Current." The INA156's low output impedance at high frequencies makes it suitable for directly driving Capacitive Digital-to-Analog (CDAC) input A/D converters, as shown in Figure 9.

INPUT PROTECTION

Device inputs are protected by ESD diodes that will conduct if the input voltages exceed the power supplies by more than 500mV. Momentary voltages greater than 500mV beyond the power supply can be tolerated if the current on the input pins is limited to 10mA. This is easily accomplished with input resistors R_{LIM} , as shown in Figure 8. Many input signals are inherently current-limited to less than 10mA. Therefore, a limiting resistor is not required.

FIGURE 6. Input Offset Voltage Changes with Common-Mode Voltage.

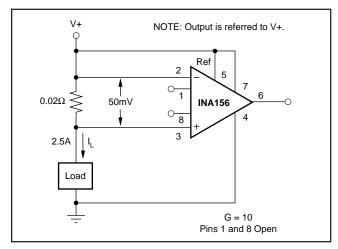


FIGURE 7. Single-Supply, High-Side Current Monitor.

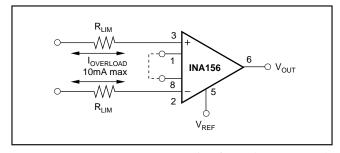


FIGURE 8. Input Current Protection for Voltages Exceeding the Supply Voltage.

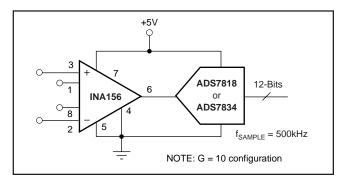


FIGURE 9. Driving Capacitive-Input A/D Converter.

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
INA156EA/250	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	Call TI Nipdauag	Level-2-260C-1 YEAR	-40 to 85	A56
INA156EA/250.B	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	Call TI	Level-2-260C-1 YEAR	-40 to 85	A56
INA156EA/250G4	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	Call TI	Level-2-260C-1 YEAR	-40 to 85	A56
INA156EA/2K5	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	Call TI Nipdauag	Level-2-260C-1 YEAR	-	A56
INA156EA/2K5.B	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	Call TI	Level-2-260C-1 YEAR	-40 to 85	A56

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025