

INA12x Precision, Low-Power Instrumentation Amplifiers

1 Features

- Low offset voltage: 50 μ V, maximum
- Low drift: 0.5 μ V/ $^{\circ}$ C, maximum
- Low input bias current:
 - 5nA, maximum (CSO: SHE)
 - 0.7nA, maximum (CSO: FRE)
- Low noise: 8nV/ $\sqrt{\text{Hz}}$, 0.2 μ V_{pp}
- High CMR: 120dB, minimum
- Bandwidth: 1.3MHz (G = 1)
- Inputs protected to ± 40 V
- Wide supply range: ± 2.25 V to ± 18 V
- Low quiescent current: 700 μ A
- Packages: 8-pin plastic DIP, SO-8

2 Applications

- Pressure transmitter
- Temperature transmitter
- Weigh scale
- Electrocardiogram (ECG)
- Analog input module
- Data acquisition (DAQ)

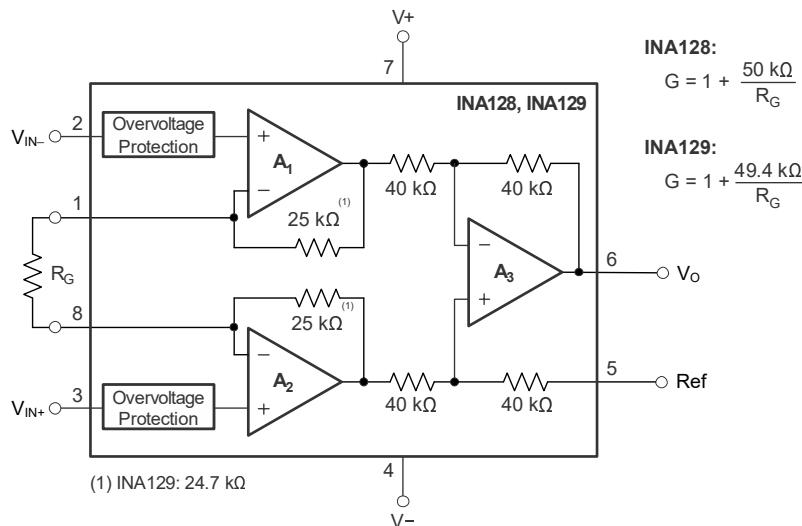
3 Description

The INA128 and INA129 (INA12x) are low-power, general-purpose instrumentation amplifiers that offer excellent accuracy. The versatile three op amp design and small size make these amplifiers an excellent choice for a wide range of applications. Current-feedback input circuitry provides wide bandwidth even at high gain (200kHz at G = 100).

A single external resistor sets any gain from 1 to 10,000. The INA128 provides an industry-standard gain equation with a 50k Ω resistor. The INA129 gain equation uses a 49.4k Ω resistor to allow for drop-in replacements of comparable devices.

The INA12x are available in plastic DIP and surface-mount packages, specified for the -40° C to $+85^{\circ}$ C temperature range. The INA128 is also available in a dual configuration, the [INA2128](#).

The upgraded [INA828](#) offers a lower input bias current (0.6nA, maximum) and lower noise (7nV/ $\sqrt{\text{Hz}}$) at the same quiescent current. See the [Device Comparison Table](#) for a selection of precision instrumentation amplifiers from Texas Instruments.


Device Information

PART NUMBER ⁽³⁾	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
INA128,	D (SOIC, 8)	4.9mm \times 6mm
INA129	P (PDIP, 8)	9.81mm \times 9.43mm

(1) For more information, see [Section 11](#).

(2) The package size (length \times width) is a nominal value and includes pins, where applicable.

(3) See the [Device Comparison Table](#).

INA128:

$$G = 1 + \frac{50 \text{ k}\Omega}{R_G}$$

INA129:

$$G = 1 + \frac{49.4 \text{ k}\Omega}{R_G}$$

Simplified Schematic

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features	1	8 Application and Implementation	18
2 Applications	1	8.1 Application Information.....	18
3 Description	1	8.2 Typical Application.....	19
4 Device Comparison Table	3	8.3 System Examples.....	24
5 Pin Configuration and Functions	3	8.4 Power Supply Recommendations.....	25
6 Specifications	4	8.5 Layout.....	25
6.1 Absolute Maximum Ratings.....	4	9 Device and Documentation Support	27
6.2 ESD Ratings	4	9.1 Device Support.....	27
6.3 Recommended Operating Conditions.....	4	9.2 Documentation Support.....	27
6.4 Thermal Information.....	5	9.3 Receiving Notification of Documentation Updates.....	27
6.5 Electrical Characteristics.....	5	9.4 Support Resources.....	27
6.6 Typical Characteristics.....	9	9.5 Trademarks.....	28
7 Detailed Description	16	9.6 Electrostatic Discharge Caution.....	28
7.1 Overview.....	16	9.7 Glossary.....	28
7.2 Functional Block Diagram.....	16	10 Revision History	28
7.3 Feature Description.....	17	11 Mechanical, Packaging, and Orderable Information	30
7.4 Device Functional Modes.....	17		

4 Device Comparison Table

DEVICE	DESCRIPTION	GAIN EQUATION	RG PINS AT PIN
INA818	35- μ V offset, 0.4- μ V/ $^{\circ}$ C V_{OS} drift, 8nV/ $\sqrt{\text{Hz}}$ noise, low-power, precision instrumentation amplifier	$G = 1 + 50 \text{ k}\Omega / RG$	1, 8
INA821	35- μ V offset, 0.4- μ V/ $^{\circ}$ C V_{OS} drift, 7nV/ $\sqrt{\text{Hz}}$ noise, high-bandwidth, precision instrumentation amplifier	$G = 1 + 49.4\text{k}\Omega / RG$	2, 3
INA828	50- μ V offset, 0.5- μ V/ $^{\circ}$ C V_{OS} drift, 7nV/ $\sqrt{\text{Hz}}$ noise, low-power, precision instrumentation amplifier	$G = 1 + 50 \text{ k}\Omega / RG$	1, 8
INA333	25- μ V V_{OS} , 0.1- μ V/ $^{\circ}$ C V_{OS} drift, 1.8V to 5V, RRO, 50- μ A I_Q , chopper-stabilized INA	$G = 1 + 100\text{k}\Omega / RG$	1, 8
PGA280	20mV to \pm 10V programmable gain IA with 3V or 5V differential output; analog supply up to \pm 18V	Digital programmable	N/A
INA159	$G = 0.2\text{V/V}$ differential amplifier for \pm 10V to 3V and 5V conversion	$G = 0.2 \text{ V/V}$	N/A
PGA112	Precision programmable gain op amp with SPI	Digital programmable	N/A

5 Pin Configuration and Functions

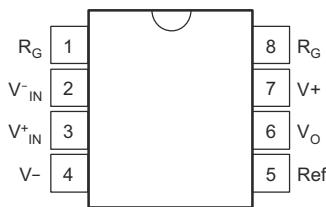


Figure 5-1. D (8-Pin SOIC) and P (8-Pin PDIP) Packages, Top View

Table 5-1. Pin Functions

PIN		TYPE	DESCRIPTION
NAME	NO.		
REF	5	Input	Reference input. This pin must be driven by low impedance or connected to ground.
R_G	1,8	—	Gain setting pin. For gains greater than 1, place a gain resistor between pin 1 and pin 8.
V_-	4	Power	Negative supply
V_+	7	Power	Positive supply
V_{IN-}	2	Input	Negative input
V_{IN+}	3	Input	Positive input
V_O	6	Output	Output

6 Specifications

Note

TI has qualified multiple fabrication flows for this device. Differences in performance are labeled by chip site origin (CSO). For system robustness, designing for all flows is highly recommended. For more information, please see [Section 9.1.1](#).

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT	
V _S	Supply voltage	Dual supply, V _S = (V+) – (V–)		±18	V	
		Single supply, V _S = (V+) – 0V		36		
Analog input voltage				±40	V	
Output short-circuit ⁽²⁾			Continuous			
T _A	Operating temperature		–40	125	°C	
Junction temperature				150	°C	
Lead temperature (soldering, 10s)				300	°C	
T _{stg}	Storage temperature		–55	125	°C	

(1) Operation outside the *Absolute Maximum Ratings* may cause permanent device damage. *Absolute Maximum Ratings* do not imply functional operation of the device at these or any other conditions beyond those listed under *Recommended Operating Conditions*. If used outside the *Recommended Operating Conditions* but within the *Absolute Maximum Ratings*, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) Short-circuit to V_S / 2.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±50	

(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	TYP	MAX	UNIT
V _S	Supply voltage	Single-supply	4.5	30	36	V
		Dual-supply	±2.25	±15	±18	
Input common-mode voltage range for V _O = 0V			(V–) + 2		(V+) – 2	V
T _A	Specified temperature		–40		85	°C

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		INA12x		UNIT
		D (SOIC)	P (PDIP)	
		8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	110	46.1	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	57	34.1	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	54	23.4	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	11	11.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	53	23.2	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application note.

6.5 Electrical Characteristics

at $T_A = 25^\circ\text{C}$, $V_S = \pm 15 \text{ V}$, $R_L = 10 \text{ k}\Omega$, $V_{\text{REF}} = 0 \text{ V}$, $V_{\text{CM}} = V_S / 2$, and $G = 1$, all chips site origins (CSO) (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
INPUT								
V_{OS}	Offset voltage (RTI)	$1 \leq G \leq 10000$	CSO: SHE	INA12xP, INA12xU	$\pm 10 \pm 100 / G$	$\pm 50 \pm 500 / G$	μV	
				INA12xPA, INA12xUA	$\pm 25 \pm 100 / G$	$\pm 125 \pm 1000 / G$		
	Offset voltage drift (RTI)		CSO: FRE	INA12xU	$\pm 20 \pm 50 / G$	$\pm 50 \pm 500 / G$		
				INA12xUA	$\pm 20 \pm 50 / G$	$\pm 125 \pm 1000 / G$		
PSRR	Power-supply rejection ratio (RTI)	$V_S = \pm 2.25 \text{ V to } \pm 18 \text{ V}$	CSO: SHE	INA12xP, INA12xU	$\pm 0.2 \pm 2 / G$	$\pm 0.5 \pm 20 / G$	$\mu\text{V}/^\circ\text{C}$	
				INA12xPA, INA12xUA	$\pm 0.2 \pm 5 / G$	$\pm 1 \pm 20 / G$		
			CSO: FRE	INA12xU	$\pm 0.1 \pm 1 / G$	$\pm 0.4 \pm 3.2 / G$		
				INA12xUA	$\pm 0.8 \pm 6.4 / G$			
	Long-term stability		CSO: SHE		$\pm 0.1 \pm 3 / G$		$\mu\text{V}/\text{mo}$	
			CSO: FRE		$\pm 0.2 \pm 3 / G$			
	Input impedance		Differential		10 2		$\text{G}\Omega \parallel \text{pF}$	
			Common-mode		100 9			
V_{CM}	Common-mode voltage ⁽²⁾	$V_O = 0 \text{ V}$		$(V-) + 2$		$(V+) - 2$	V	
	Safe input voltage	$R_S = 0\Omega$				± 40	V	
CMRR	Common-mode rejection ratio	$\Delta R_S = 1 \text{ k}\Omega$, $V_{\text{CM}} = \pm 13 \text{ V}$, CSO: SHE	G = 1	INA12xP, INA12xU	80	86	dB	
				INA12xPA, INA12xUA	73			
			G = 10	INA12xP, INA12xU	100	106		
				INA12xPA, INA12xUA	93			
			G = 100	INA12xP, INA12xU	120	125		
				INA12xPA, INA12xUA	110			
			G = 1000	INA12xP, INA12xU	120	130		
				INA12xPA, INA12xUA	110			
		$\Delta R_S = 1 \text{ k}\Omega$, $V_{\text{CM}} = \pm 13 \text{ V}$, CSO: FRE	G = 1	INA12xU	90	100		
				INA12xUA	83			
			G = 10	INA12xU	110	120		
				INA12xUA	103			
			G = 100	INA12xU	130	140		
				INA12xUA	120			
			G = 1000	INA12xU	140	145		
				INA12xUA	130			

6.5 Electrical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_S = \pm 15 \text{ V}$, $R_L = 10 \text{ k}\Omega$, $V_{\text{REF}} = 0 \text{ V}$, $V_{\text{CM}} = V_S / 2$, and $G = 1$, all chips site origins (CSO) (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
INPUT BIAS CURRENT								
I_B	Input bias current	CSO: SHE	INA12xP, INA12xU		± 2	± 5	nA	
			INA12xPA, INA12xUA			± 10		
		CSO: FRE	INA12xU		± 0.15	± 0.6		
			INA12xUA			± 1.2		
	Input bias current drift	$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$			± 30		pA/ $^\circ\text{C}$	
I_{os}	Input offset current	CSO: SHE	INA12xP, INA12xU		± 1	± 5	nA	
			INA12xPA, INA12xUA			± 10		
		CSO: FRE	INA12xU		± 0.15	± 0.6		
			INA12xUA			± 1.2		
	Input offset current drift	$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$			± 30		pA/ $^\circ\text{C}$	
NOISE								
e_N	Voltage noise (RTI)	$G = 1000$, $R_S = 0\Omega$	$f = 10\text{Hz}$	CSO: SHE	10		nV/ $\sqrt{\text{Hz}}$	
				CSO: FRE	7			
			$f = 100\text{Hz}$	CSO: SHE	8			
				CSO: FRE	6.9			
			$f = 1\text{kHz}$	CSO: SHE	8			
				CSO: FRE	6.9			
			$f_B = 0.1\text{Hz}$ to 10Hz		0.2		μV_{PP}	
I_n	Current noise	$f = 10\text{Hz}$			0.9		pA/ $\sqrt{\text{Hz}}$	
					0.3			
		$f = 1\text{kHz}$	CSO: SHE		0.17			
			CSO: FRE					
		$f_B = 0.1\text{Hz}$ to 10Hz	CSO: SHE		30		pA_{PP}	
			CSO: FRE		4.7			

6.5 Electrical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_S = \pm 15 \text{ V}$, $R_L = 10 \text{ k}\Omega$, $V_{\text{REF}} = 0 \text{ V}$, $V_{\text{CM}} = V_S / 2$, and $G = 1$, all chips site origins (CSO) (unless otherwise noted)

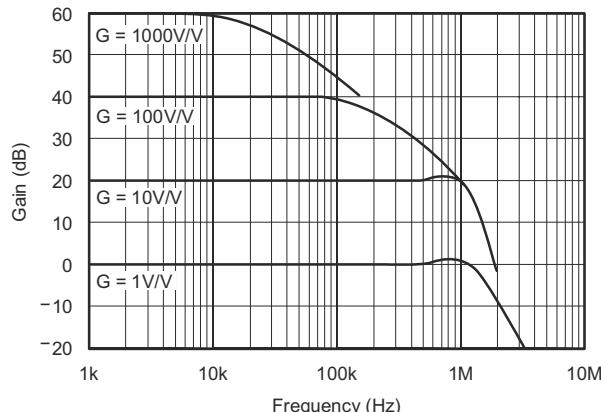
PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT		
GAIN										
Gain equation		INA128			$1 + (50 \text{ k}\Omega / R_G)$		V/V			
		INA129			$1 + (49.4 \text{ k}\Omega / R_G)$					
G	Gain				1	10000		V/V		
Gain error	Gain error	G = 1	CSO: SHE	INA12xP, INA12xU	± 0.01		% %			
				INA12xPA, INA12xUA	± 0.1					
			CSO: FRE	INA12xU	± 0.005					
				INA12xUA	± 0.1					
		G = 10	CSO: SHE	INA12xP, INA12xU	± 0.02					
				INA12xPA, INA12xUA	± 0.5					
			CSO: FRE	INA12xU	± 0.025					
				INA12xUA	± 0.2					
	Gain drift ⁽⁴⁾	G = 100	CSO: SHE	INA12xP, INA12xU	± 0.05					
				INA12xPA, INA12xUA	± 0.7					
			CSO: FRE	INA12xU	± 0.025					
				INA12xUA	± 0.25					
		G = 1000	CSO: SHE	INA12xP, INA12xU	± 0.5					
				INA12xPA, INA12xUA	± 2					
			CSO: FRE	INA12xU	± 0.05					
				INA12xUA	± 2					
Gain nonlinearity ⁽¹⁾		T _A = -40°C to +85°C	CSO: SHE			± 1	± 10	ppm/°C		
			CSO: FRE			± 5				
			50kΩ or 49.4kΩ resistance ⁽³⁾	CSO: SHE	± 25		± 100			
				CSO: FRE	± 50					
		G = 1, V _O = ±13.6V	INA12xP, INA12xU	± 0.0001		± 0.001	% of FSR			
Gain nonlinearity ⁽¹⁾			INA12xPA, INA12xUA	± 0.002						
	G = 10	INA12xP, INA12xU	± 0.0003		± 0.002					
		INA12xPA, INA12xUA	± 0.004							
	G = 100	INA12xP, INA12xU	± 0.0005		± 0.002					
		INA12xPA, INA12xUA	± 0.004							
OUTPUT										
Positive output voltage swing		CSO: SHE				(V+) - 1.4	V			
			CSO: FRE			(V+) - 0.15				
Negative output voltage swing		CSO: SHE				(V-) + 1.4	V			
			CSO: FRE			(V-) + 0.15				
C _L	Load capacitance	Stable operation			1000		pF			
I _{SC}	Short-circuit current	Continuous to V _S / 2	CSO: SHE				+6/-15	mA		
				CSO: FRE			+18/-18			

6.5 Electrical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_S = \pm 15\text{ V}$, $R_L = 10\text{ k}\Omega$, $V_{\text{REF}} = 0\text{ V}$, $V_{\text{CM}} = V_S / 2$, and $G = 1$, all chips site origins (CSO) (unless otherwise noted)

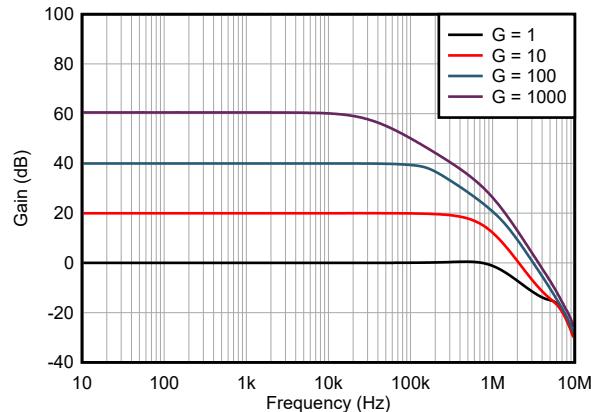
PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
FREQUENCY RESPONSE							
BW	Bandwidth, $-\text{3dB}$	G = 1 G = 10 G = 100			1.3		MHz
					640		kHz
					200		
		G = 1000	CSO: SHE		20		V/ μs
			CSO: FRE		33		
SR	Slew rate	G = 5, $V_O = \pm 10\text{V}$	CSO: SHE		4		μs
			CSO: FRE		1.2		
t_S	Settling time	To 0.01%	G = 1	CSO: SHE	7		μs
				CSO: FRE	12		
			G = 10	CSO: SHE	7		
				CSO: FRE	12		
			G = 100	CSO: SHE	9		
				CSO: FRE	12		
			G = 1000		80		
			Overload recovery		4		
POWER SUPPLY							
I_Q	Quiescent current	$V_{\text{IN}} = 0\text{V}$			± 700	± 750	μA

(1) Nonlinearity measurements in $G = 1000$ are dominated by noise. Typical nonlinearity is $\pm 0.001\%$


(2) Input common-mode voltage varies with output voltage; see *Typical Characteristics*.

(3) Temperature coefficient of the $50\text{-k}\Omega$ or $49.4\text{-k}\Omega$ term in the gain equation.

(4) Specified by wafer test.


6.6 Typical Characteristics

at $T_A = 25^\circ\text{C}$, $V_S = \pm 15\text{V}$, $R_L = 10\text{k}\Omega$, $V_{\text{REF}} = 0\text{V}$, $V_{\text{CM}} = V_S / 2$, and $G = 1$, all chips site origins (CSO) (unless otherwise noted)

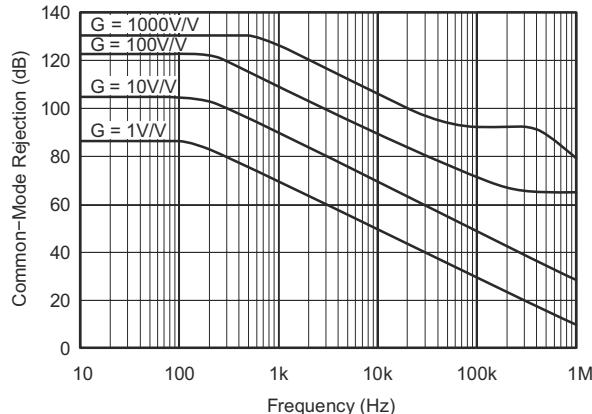

CSO: SHE

Figure 6-1. Gain vs Frequency

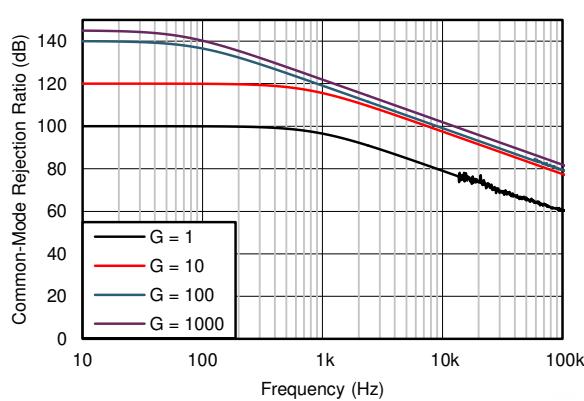

CSO: FRE

Figure 6-2. Gain vs Frequency

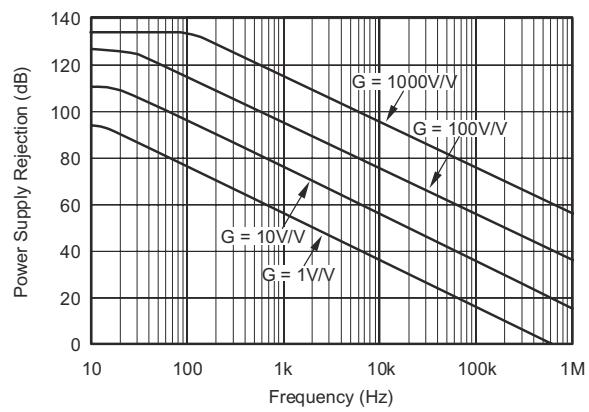

CSO: SHE

Figure 6-3. Common-Mode Rejection vs Frequency

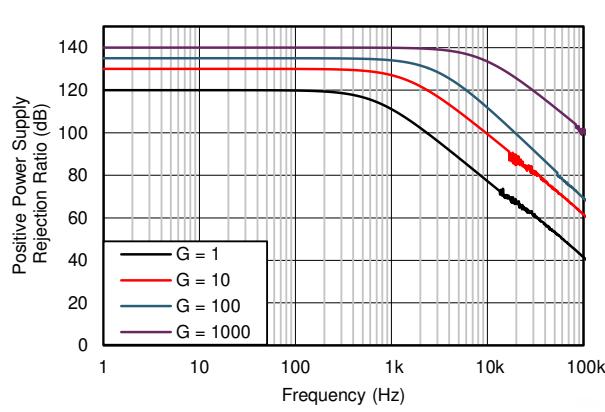
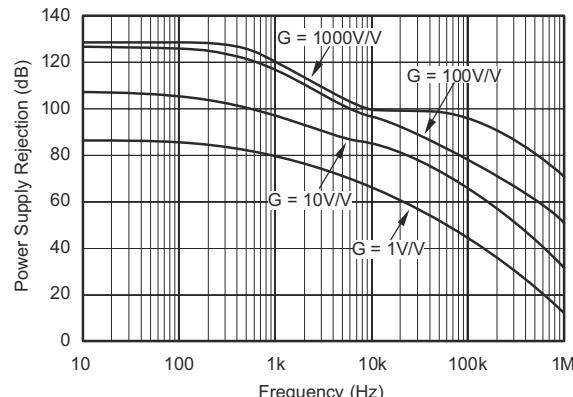

CSO: FRE

Figure 6-4. Common-Mode Rejection vs Frequency

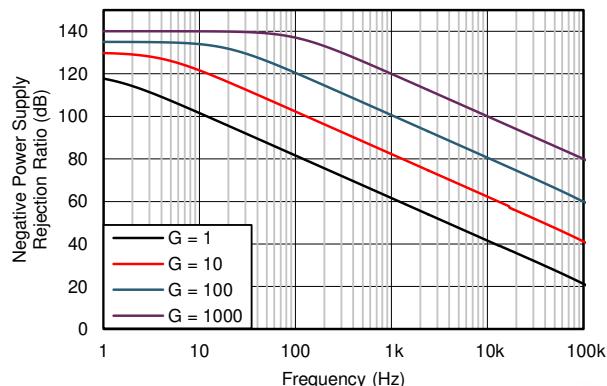
CSO: SHE

Figure 6-5. Positive Power Supply Rejection vs Frequency



CSO: FRE

Figure 6-6. Positive Power Supply Rejection vs Frequency


6.6 Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_S = \pm 15\text{V}$, $R_L = 10\text{k}\Omega$, $V_{\text{REF}} = 0\text{V}$, $V_{\text{CM}} = V_S / 2$, and $G = 1$, all chips site origins (CSO) (unless otherwise noted)

CSO: SHE

Figure 6-7. Negative Power Supply Rejection vs Frequency

CSO: FRE

Figure 6-8. Negative Power Supply Rejection vs Frequency

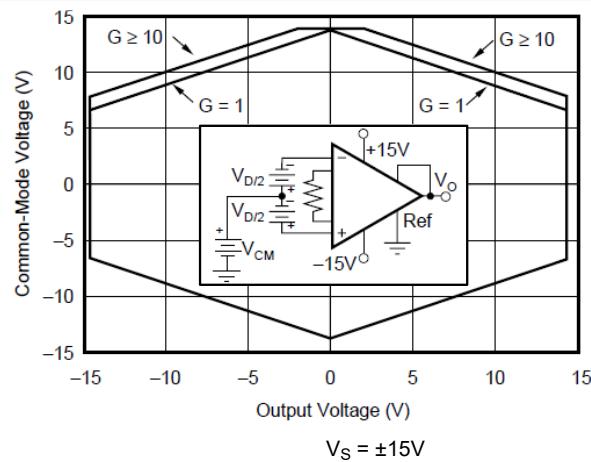


Figure 6-9. Input Common-Mode Range vs Output Voltage

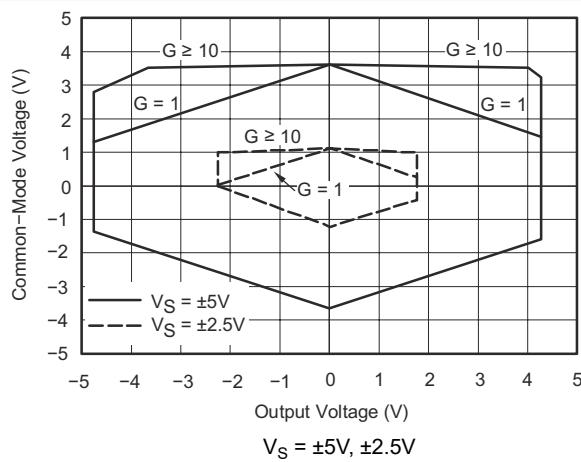
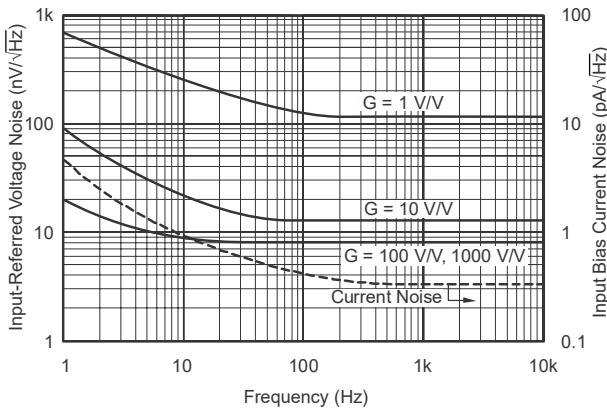
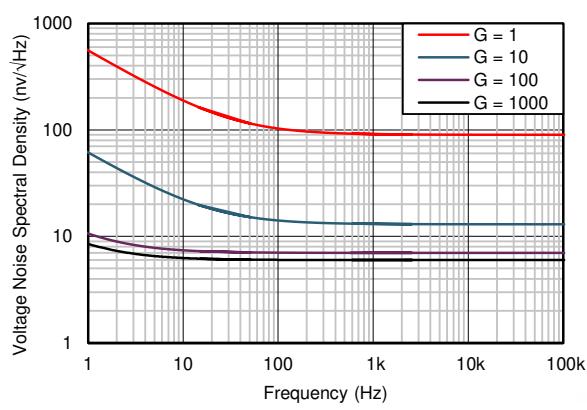
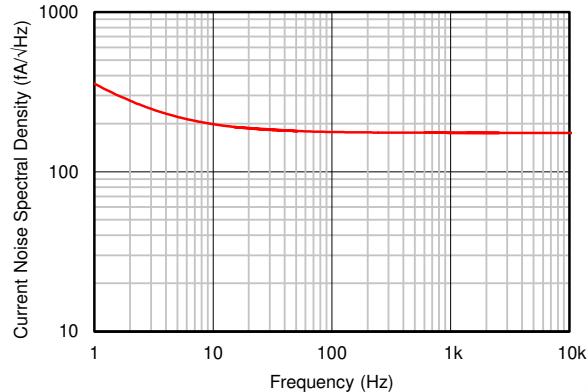




Figure 6-10. Input Common-Mode Range vs Output Voltage

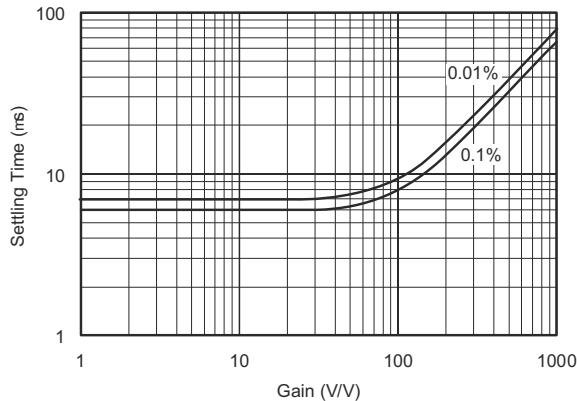
CSO: SHE

Figure 6-11. Input-Referred Noise vs Frequency



CSO: FRE

Figure 6-12. Input-Referred Voltage Noise vs Frequency


6.6 Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_S = \pm 15\text{V}$, $R_L = 10\text{k}\Omega$, $V_{\text{REF}} = 0\text{V}$, $V_{\text{CM}} = V_S / 2$, and $G = 1$, all chips site origins (CSO) (unless otherwise noted)

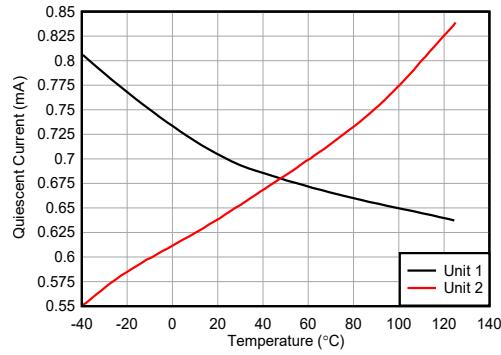
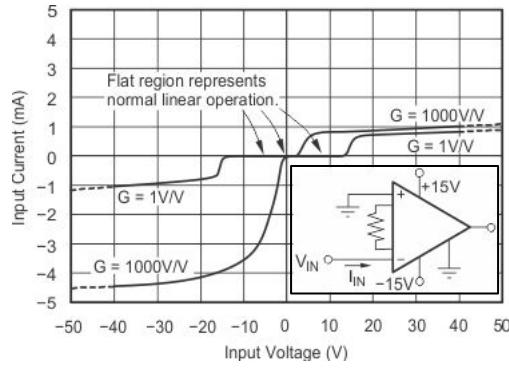

CSO: FRE

Figure 6-13. Input-Referred Current Noise vs Frequency



CSO: SHE

Figure 6-14. Settling Time vs Gain

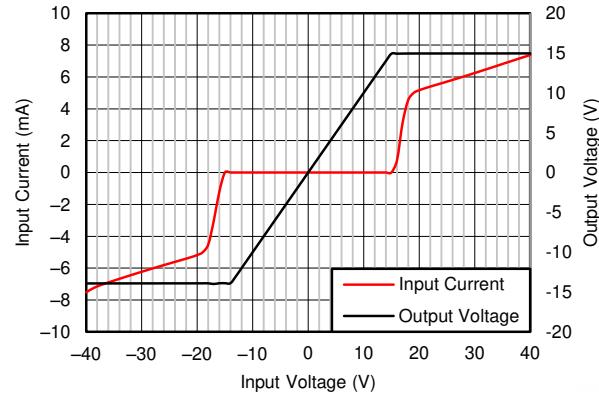


Figure 6-15. Quiescent Current vs Temperature

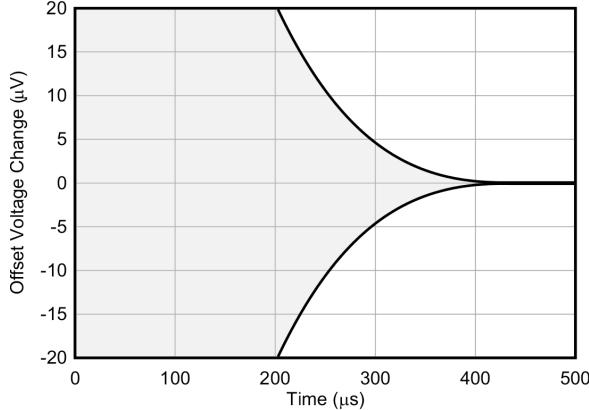

CSO: SHE

Figure 6-16. Input Overvoltage V/I Characteristics

CSO: FRE

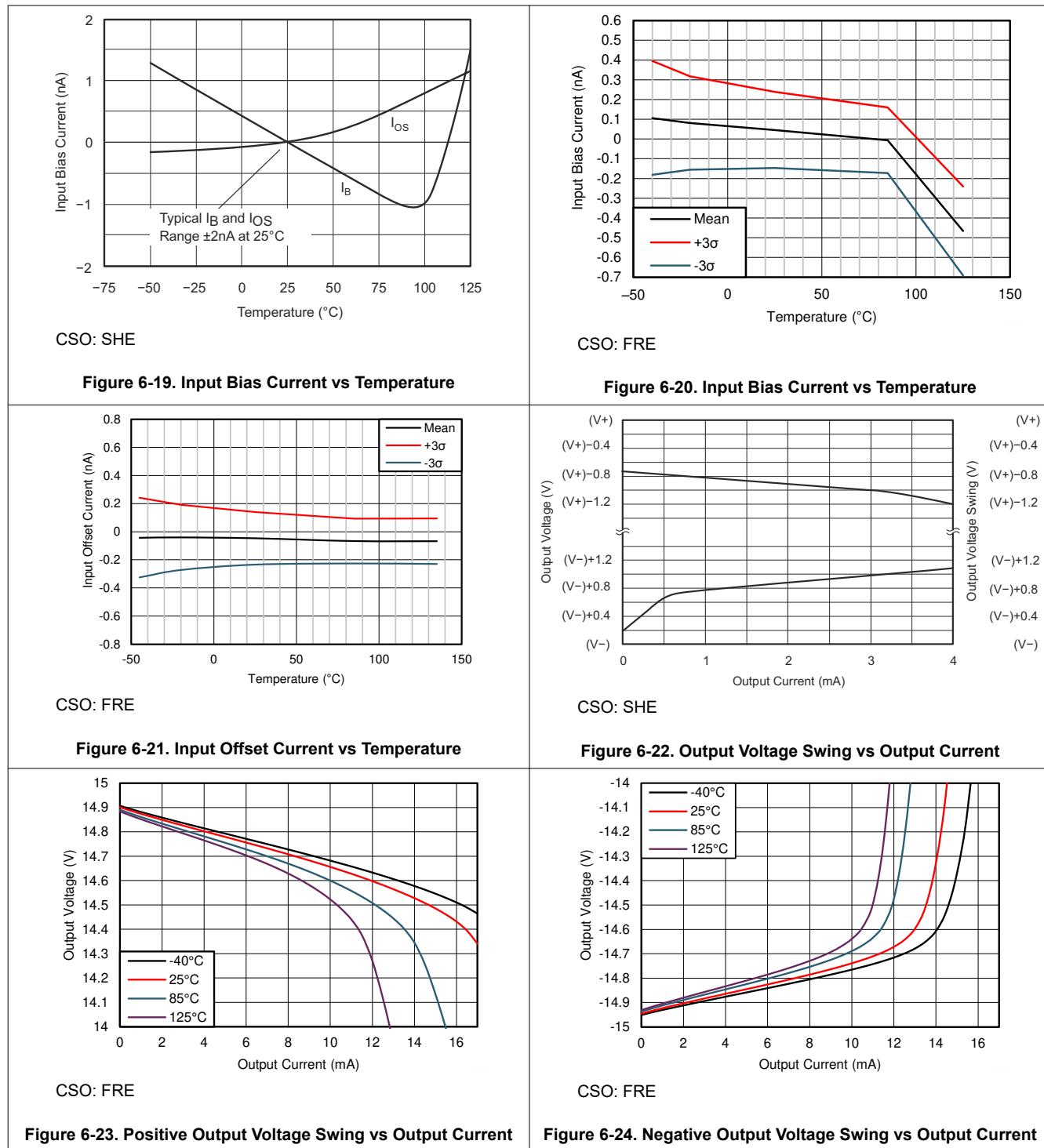

Figure 6-17. Input Overvoltage V/I Characteristics

Figure 6-18. Input Offset Voltage Warm-Up

6.6 Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_S = \pm 15\text{V}$, $R_L = 10\text{k}\Omega$, $V_{\text{REF}} = 0\text{V}$, $V_{\text{CM}} = V_S / 2$, and $G = 1$, all chips site origins (CSO) (unless otherwise noted)

6.6 Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_S = \pm 15\text{V}$, $R_L = 10\text{k}\Omega$, $V_{\text{REF}} = 0\text{V}$, $V_{\text{CM}} = V_S / 2$, and $G = 1$, all chips site origins (CSO) (unless otherwise noted)

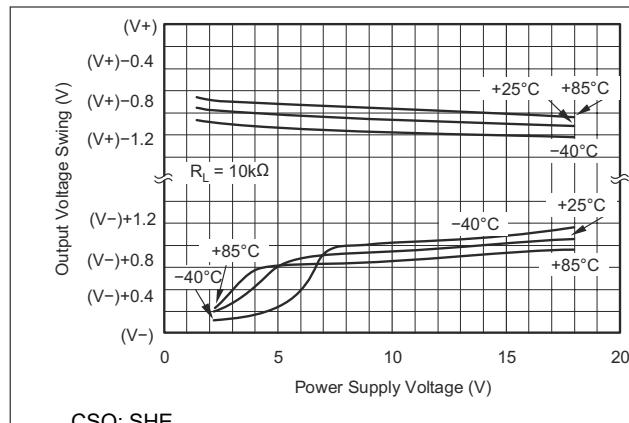


Figure 6-25. Output Voltage Swing vs Power Supply Voltage

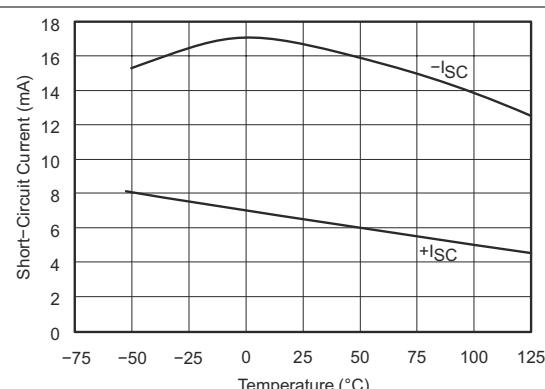


Figure 6-26. Short Circuit Output Current vs Temperature

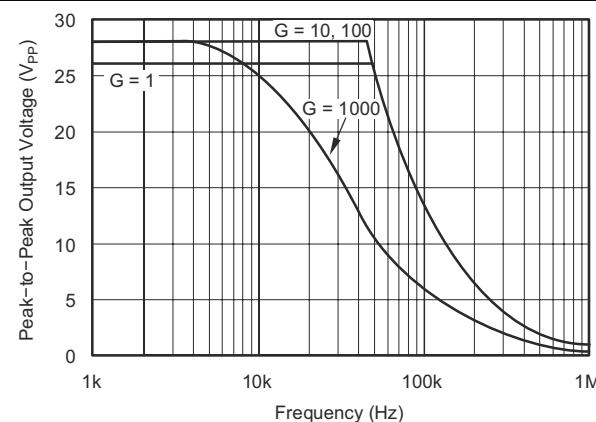


Figure 6-27. Maximum Output Voltage vs Frequency

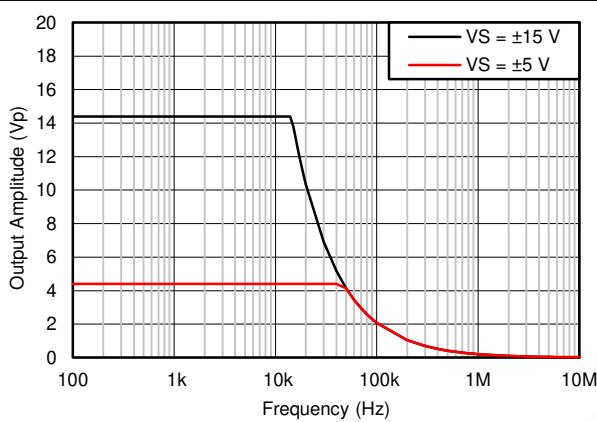


Figure 6-28. Maximum Output Voltage vs Frequency

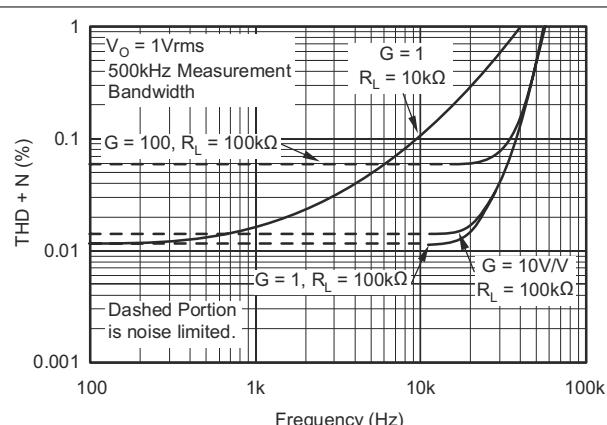


Figure 6-29. Total Harmonic Distortion + Noise vs Frequency

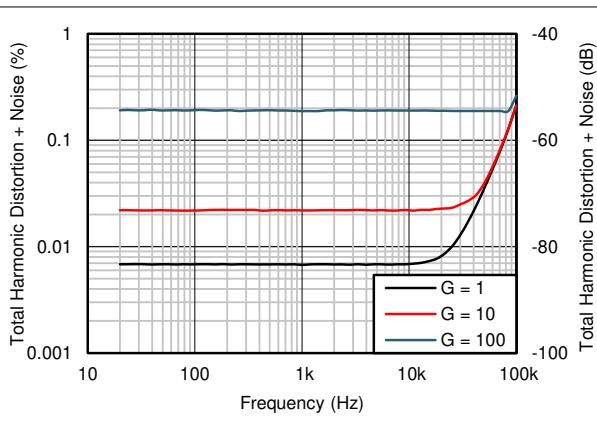
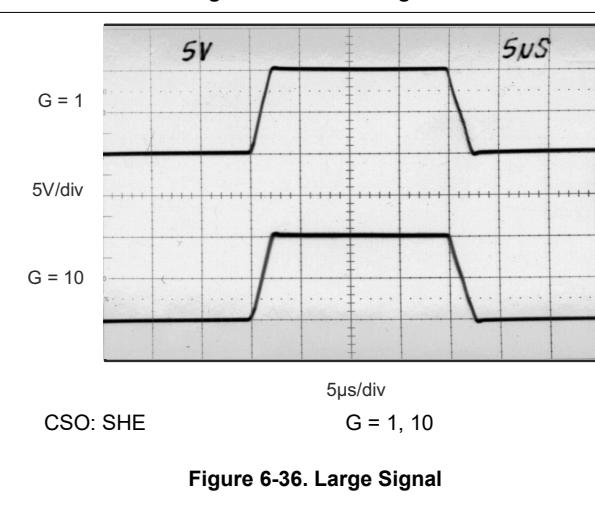
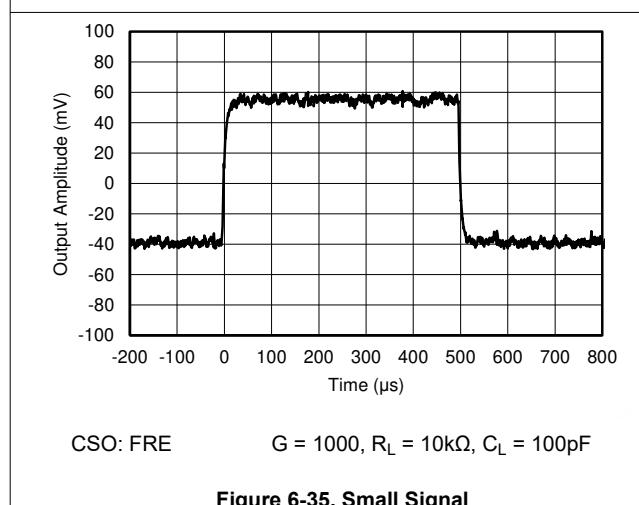
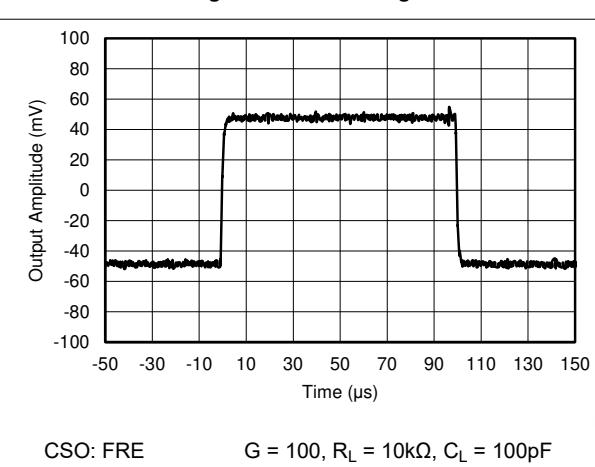
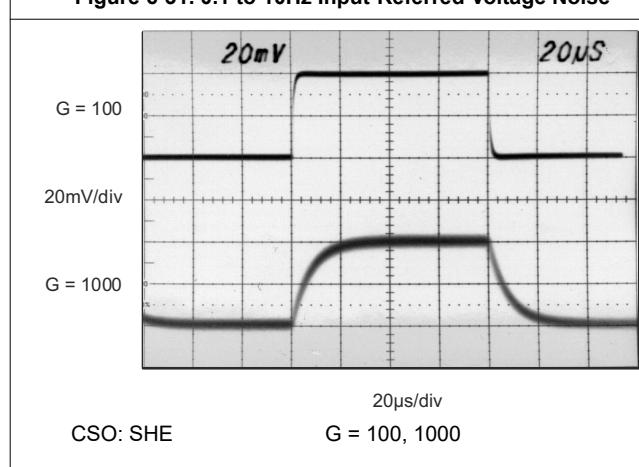
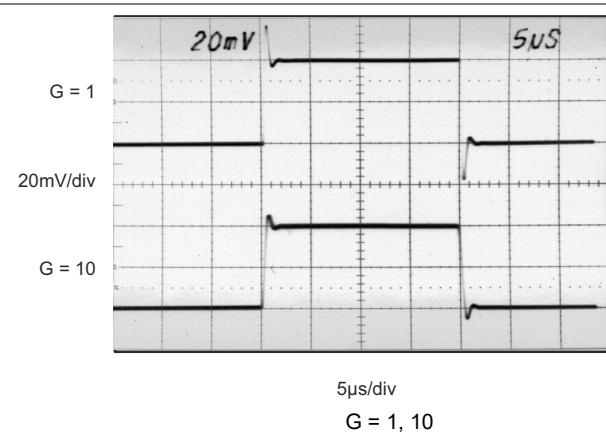
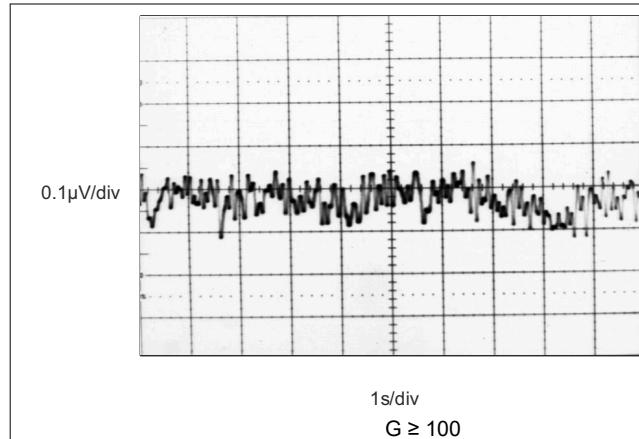
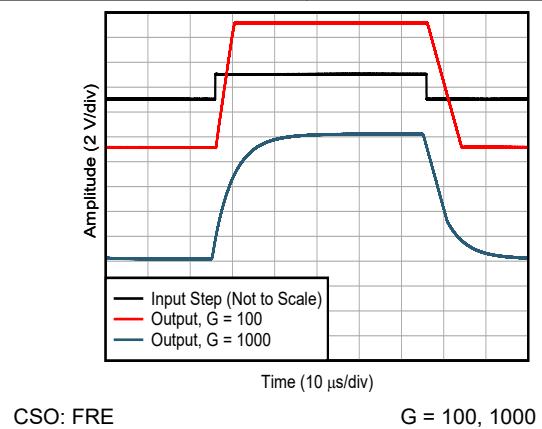
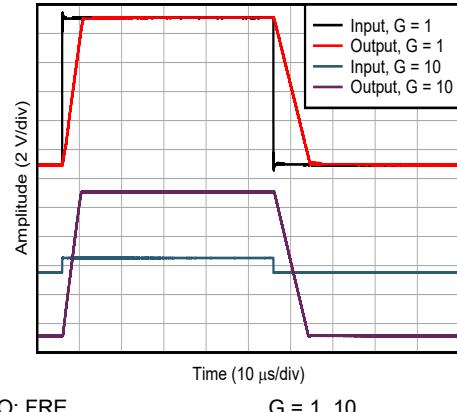
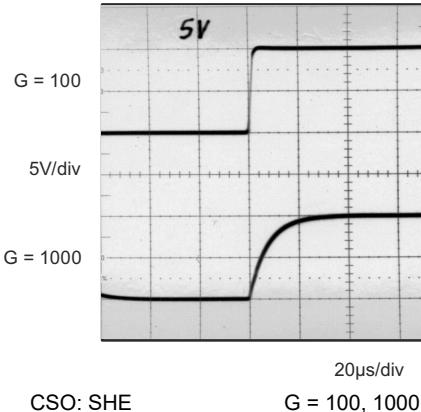








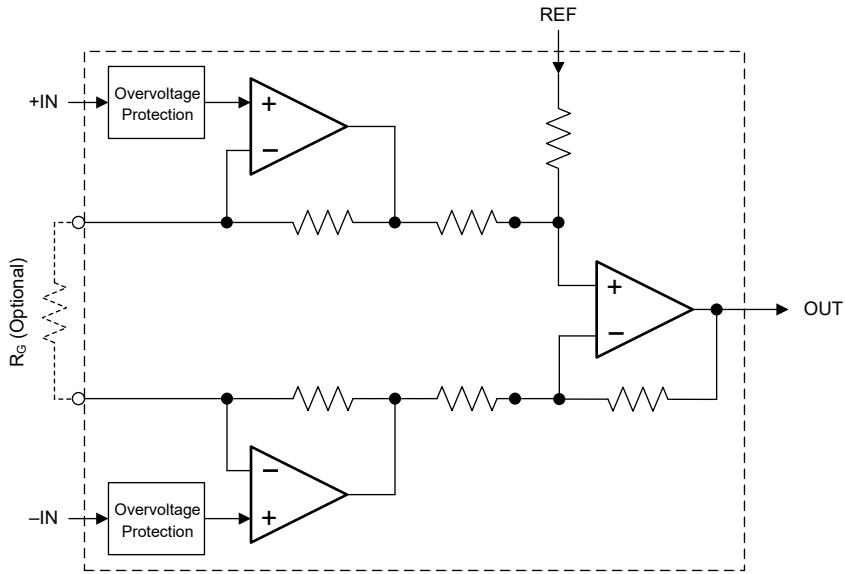
Figure 6-30. Total Harmonic Distortion + Noise vs Frequency




6.6 Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_S = \pm 15\text{V}$, $R_L = 10\text{k}\Omega$, $V_{\text{REF}} = 0\text{V}$, $V_{\text{CM}} = V_S / 2$, and $G = 1$, all chips site origins (CSO) (unless otherwise noted)

6.6 Typical Characteristics (continued)

at $T_A = 25^\circ\text{C}$, $V_S = \pm 15\text{V}$, $R_L = 10\text{k}\Omega$, $V_{\text{REF}} = 0\text{V}$, $V_{\text{CM}} = V_S / 2$, and $G = 1$, all chips site origins (CSO) (unless otherwise noted)

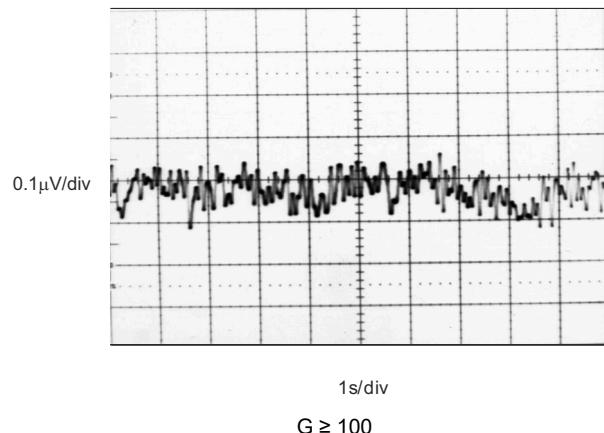


7 Detailed Description

7.1 Overview

The INA128 and INA129 (INA12x) instrumentation amplifiers are outfitted with an input protection circuit and input buffer amplifiers. These features eliminate the need for input impedance matching and make the amplifier an excellent choice for use in measurement and test equipment. Additional characteristics of the INA12x include a very-low dc offset, low drift, low noise, very-high open-loop gain, very-high common-mode rejection ratio, and very-high input impedances. The INA12x is used where great accuracy and stability of the circuit, both short and long term, are required.

7.2 Functional Block Diagram



7.3 Feature Description

The INA12x are low power, general-purpose instrumentation amplifiers offering excellent accuracy. The versatile three-op-amp design and small size make the amplifiers an excellent choice for a wide range of applications. Current-feedback input circuitry provides wide bandwidth, even at high gain. A single external resistor sets any gain from 1 to 10,000. The INA12x are laser trimmed for very low offset voltage (25 μ V typical) and high common-mode rejection (93dB at $G \geq 100$). These devices operate with power supplies as low as $\pm 2.25V$, and a quiescent current of 2mA, typically. The internal input protection can withstand up to $\pm 40V$ without damage, as shown in [Figure 6-17](#).

7.3.1 Noise Performance

The INA12x provide very low noise in most applications. Low-frequency noise is approximately 0.2 μ V_{PP} measured from 0.1 to 10Hz ($G \geq 100$). This feature provides dramatically improved noise when compared to state-of-the-art chopper-stabilized amplifiers.

Figure 7-1. 0.1Hz to 10Hz Input-Referred Voltage Noise

7.4 Device Functional Modes

The INA12x have a single functional mode and operate when the power-supply voltage is greater than 4.5V ($\pm 2.25V$). The maximum power-supply voltage for the INA12x is 36V ($\pm 18V$).

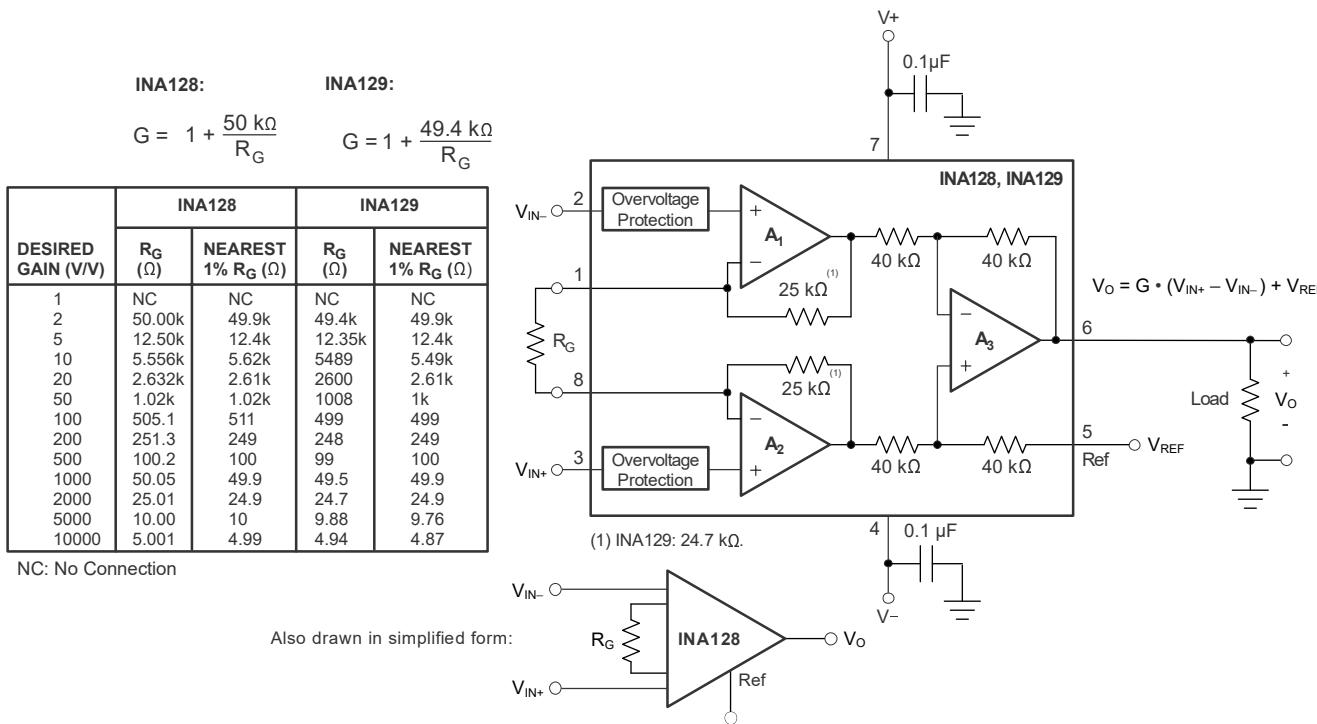
8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The INA12x measure a small differential voltage with a high common-mode voltage developed between the noninverting and inverting input. The high input-voltage protection circuit in conjunction with high input impedance make the INA12x an excellent choice for a wide range of applications. The ability to set the reference pin to adjust the functionality of the output signal offers additional flexibility that is practical for multiple configurations.


8.1.1 Input Common-Mode Range

The linear input voltage range of the INA12x input circuitry ranges from approximately 2V less than the positive supply voltage to 2V greater than the negative supply. A differential input voltage causes the output voltage to increase; however, the linear input range is limited by the output voltage swing of amplifiers A₁ and A₂. Thus, the linear common-mode input range is related to the output voltage of the complete amplifier. This behavior also depends on the supply voltage (see [Figure 6-10](#)).

Input overload can produce an output voltage that appears normal. For example, if an input-overload condition drives both input amplifiers to the positive output swing limit, the difference voltage measured by the output amplifier is near zero. The output of A₃ is near 0V even though both inputs are overloaded.

8.2 Typical Application

Figure 8-1 shows the basic connections required for operation of the INA12x. Applications with noisy or high impedance power supplies can require decoupling capacitors close to the device pins as shown. The output is referred to the output reference (REF) pin, which is normally grounded. This connection must be low-impedance to provide good common-mode rejection. A resistance of 8Ω in series with the REF pin causes a typical device to degrade to approximately 80 dB CMR ($G = 1$).

Figure 8-1. Basic Connections

8.2.1 Design Requirements

The devices are configured to monitor the input differential voltage when the input signal gain is set by the external resistor, R_G . The output signal is developed with respect to the voltage on the reference pin, REF. The most common application is where the output is referenced to ground when no input signal is present by connecting the REF pin to ground, as Figure 8-1 shows. In single-supply operation, offsetting the output signal to a precise midsupply level is useful (for example, 2.5V in a 5V supply environment). To accomplish this level shift, a voltage source must be connected to the REF pin to level shift the output so that the device can drive a single-supply ADC.

Voltage reference devices are an excellent option for providing a low-impedance voltage source for the reference pin. However, if a resistor voltage divider is used to generate a reference voltage, the voltage must be buffered by an op amp to avoid CMRR degradation.

8.2.2 Detailed Design Procedure

8.2.2.1 Setting the Gain

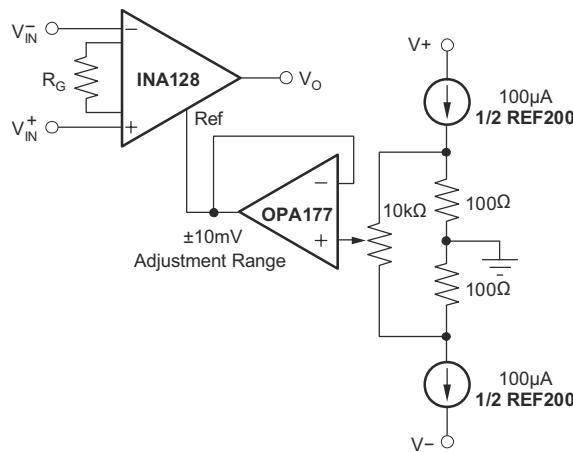
The gain (G) is set by connecting a single external resistor, R_G , between pins 1 and 8:

$$\text{INA128: } G = 1 + 50\text{k}\Omega / R_G \quad (1)$$

$$\text{INA129: } G = 1 + 49.4\text{k}\Omega / R_G \quad (2)$$

Commonly used gains and resistor values are shown in [Figure 8-1](#).

The $50\text{k}\Omega$ term in [Equation 1](#) and the $49.4\text{k}\Omega$ term in [Equation 2](#) come from the sum of the two internal feedback resistors of A_1 and A_2 . These on-chip metal film resistors are laser trimmed to accurate, absolute values. The accuracy and temperature coefficient of these internal resistors are included in the gain accuracy and drift specifications in the *Electrical Characteristics* table.


The stability and temperature drift of the external gain setting resistor, R_G , also affects gain. The contribution of R_G to gain accuracy and drift can be directly inferred from [Equation 1](#) and [Equation 2](#). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance, which contributes additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater.

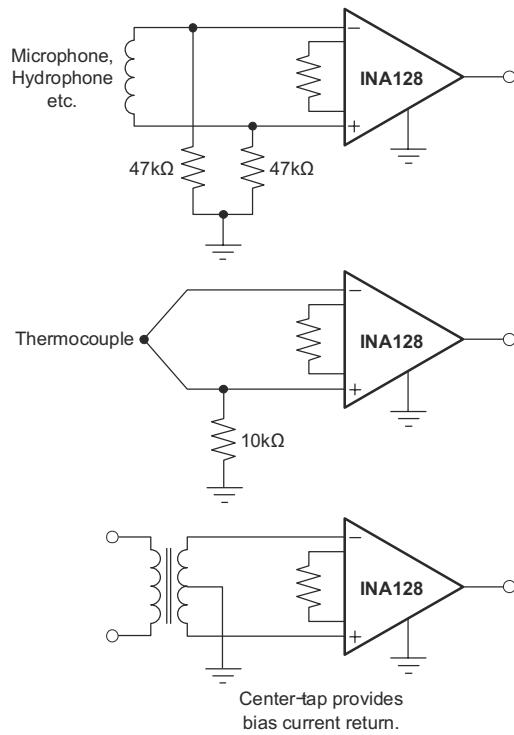
8.2.2.2 Dynamic Performance

The typical performance curve in [Figure 6-2](#) shows that despite low quiescent current, the INA12x achieve wide bandwidth even at high gain. This performance is due to the current-feedback topology of the input stage circuitry. Settling time also remains excellent at high gain.

8.2.2.3 Offset Trimming

The INA12x is laser trimmed for low-offset voltage and low offset voltage drift. Most applications require no external offset adjustment. [Figure 8-2](#) shows an optional circuit for trimming the output offset voltage. The voltage applied to the REF pin is summed with the output. The op-amp buffer provides low impedance at the REF pin to preserve good common-mode rejection.

Figure 8-2. Optional Trimming of Output Offset Voltage


8.2.2.4 Input Bias Current Return Path

The input impedance of the INA12x is extremely high: approximately $10\text{G}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is approximately $\pm 2\text{nA}$. High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. [Figure 8-3](#) shows various provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds the common-mode range, and the input amplifiers saturate.

If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in [Figure 8-3](#)). With higher source impedance, use two equal resistors to provide a balanced input, with possible advantages of lower input offset voltage due to bias current, and better high-frequency common-mode rejection.

For more details about why a valid input bias current return path is necessary, see the [Importance of Input Bias Current Return Paths in Instrumentation Amplifier Applications](#) application note.

Figure 8-3. Providing an Input Common-Mode Current Path

8.2.3 Application Curves

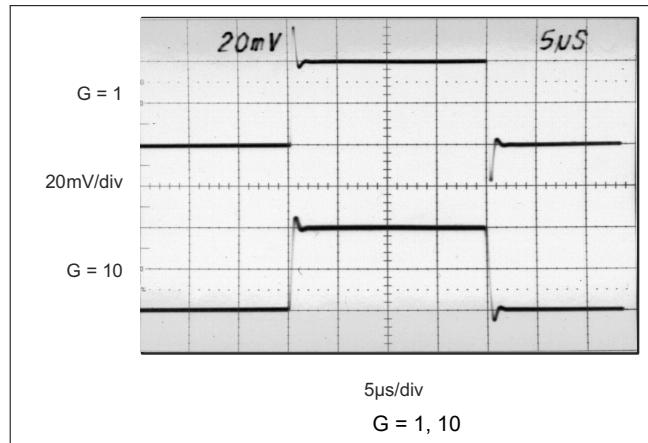


Figure 8-4. Small Signal

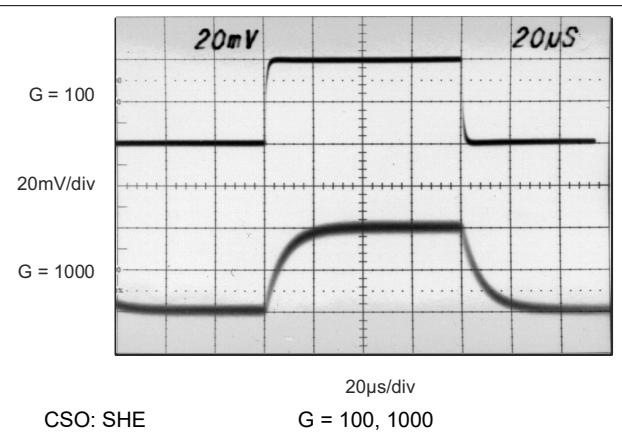


Figure 8-5. Small Signal

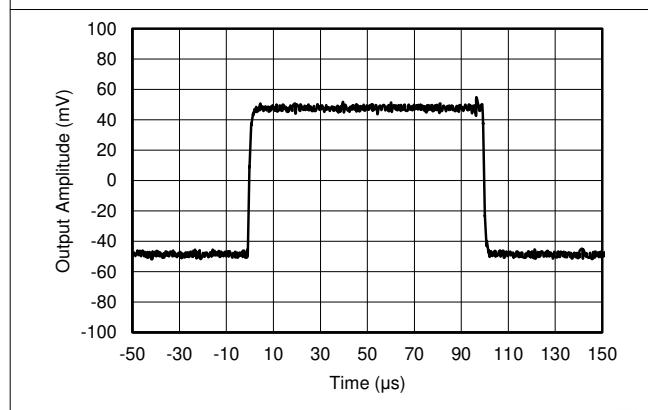


Figure 8-6. Small Signal

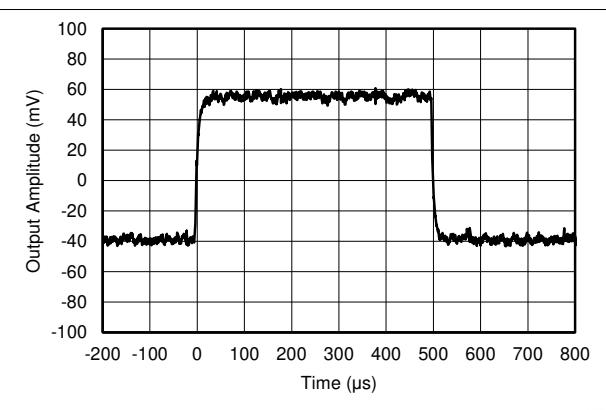


Figure 8-7. Small Signal

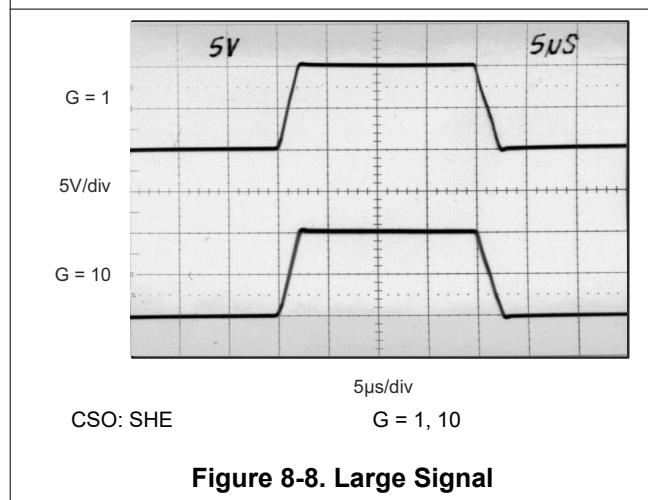


Figure 8-8. Large Signal

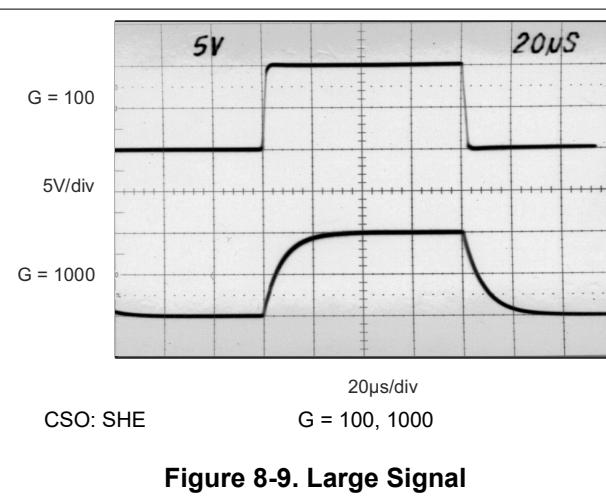


Figure 8-9. Large Signal

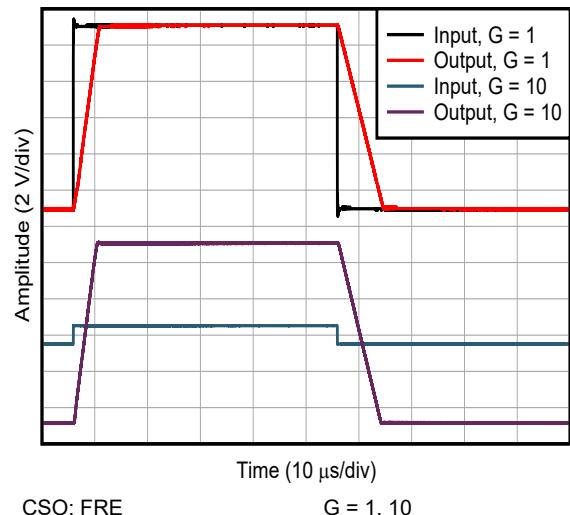


Figure 8-10. Large Signal

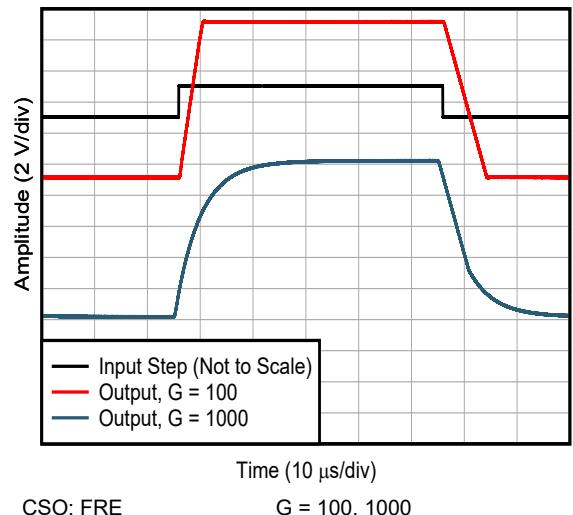


Figure 8-11. Large Signal

8.3 System Examples

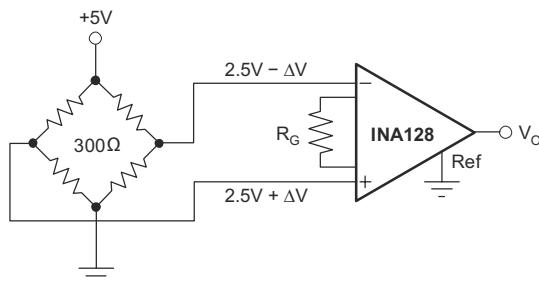


Figure 8-12. Bridge Amplifier

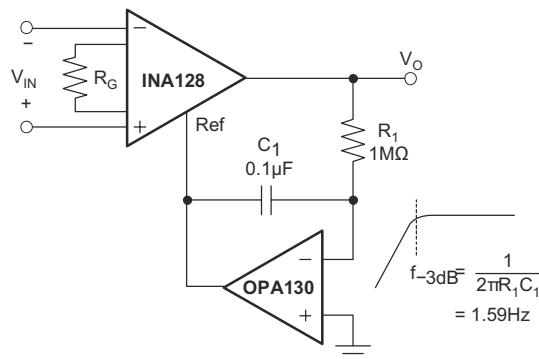
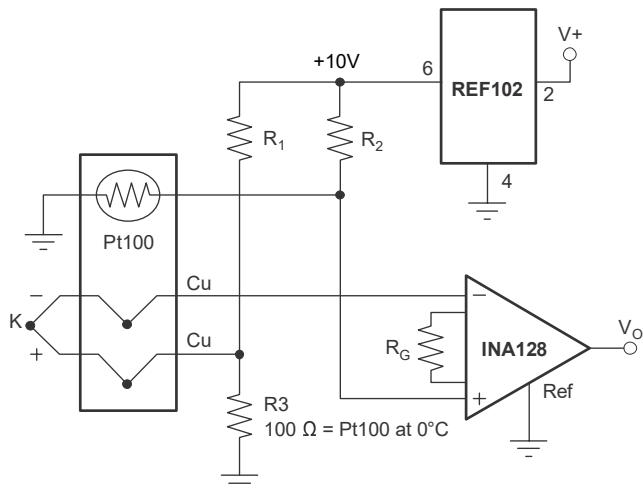



Figure 8-13. AC-Coupled Instrumentation Amplifier

ISA TYPE	MATERIAL	SEEBECK COEFFICIENT ($\mu\text{V}/\text{C}$)	R1, R2
E	+ Chromel - Constantan	58.5	66.5 kΩ
J	+ Iron - Constantan	50.2	76.8 kΩ
K	+ Chromel - Alumel	39.4	97.6 kΩ
T	+ Copper - Constantan	38.0	102 kΩ

Figure 8-14. Thermocouple Amplifier With RTD Cold-Junction Compensation

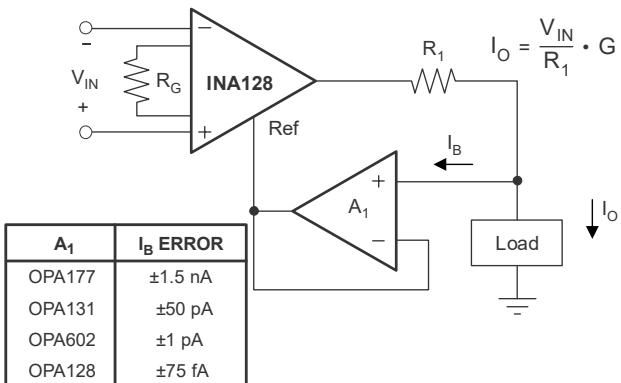


Figure 8-15. Differential Voltage to Current Converter

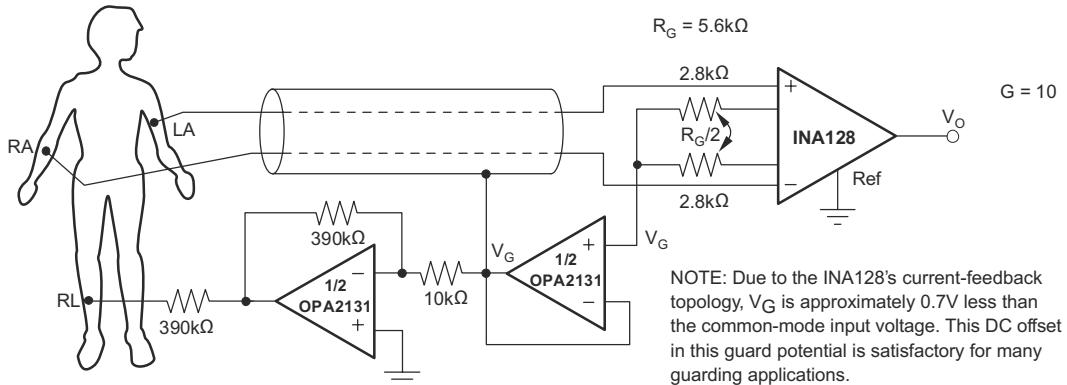


Figure 8-16. ECG Amplifier With Right-Leg Drive

8.4 Power Supply Recommendations

The minimum power supply voltage for INA12x is $\pm 2.25V$ and the maximum power supply voltage is $\pm 18V$. This minimum and maximum range covers a wide range of power supplies; but for optimum performance, $\pm 15V$ is recommended. Add a bypass capacitor at the input to compensate for the layout and power supply source impedance.

8.4.1 Low-Voltage Operation

The INA12x operate on power supplies as low as $\pm 2.25V$. Performance remains excellent with power supplies ranging from $\pm 2.25V$ to $\pm 18V$. Most parameters vary only slightly throughout this supply voltage range; see [Section 6.6](#).

Operation at very-low supply voltages requires careful attention to make sure that the input voltages remain within the linear range. Voltage swing requirements of internal nodes limit the input common-mode range with low power-supply voltage. [Figure 6-10](#) shows the range of linear operation for $\pm 15V$, $\pm 5V$, and $\pm 2.5V$ supplies.

8.5 Layout

8.5.1 Layout Guidelines

Place the power-supply bypass capacitor as close as possible to the supply and ground pins. The recommended value of this bypass capacitor is $0.1\mu F$ to $1\mu F$. If necessary, add more decoupling capacitance to compensate for noisy or high-impedance power supplies. These decoupling capacitors must be placed between the power supply and INA12x devices.

The gain resistor must be placed close to pin 1 and pin 8. This placement limits the layout loop and minimizes any noise coupling into the devices.

8.5.2 Layout Example

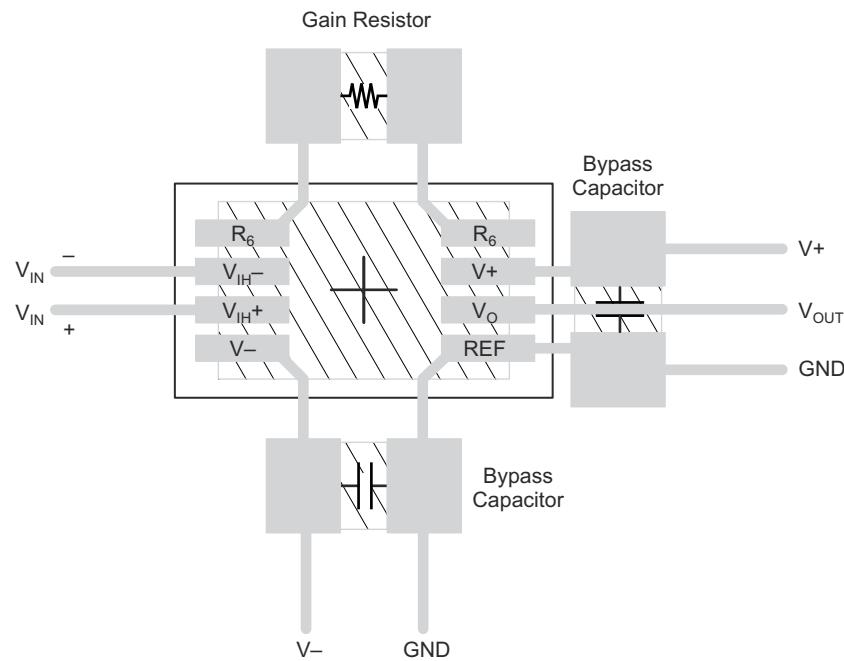


Figure 8-17. Recommended Layout

9 Device and Documentation Support

9.1 Device Support

9.1.1 Device Nomenclature

Table 9-1. Device Nomenclature

PART NUMBER	DEFINITION
INA12xU	
INA12xU/2K5	
INA12xU/2K51G4	The die is manufactured in CSO: SHE or CSO: FRE.
INA12xUA	
INA12xUA/2K5	
INA12xP	
INA12xPA	The die is manufactured in CSO: SHE.

9.1.2 Development Support

9.1.2.1 PSpice® for TI

PSpice® for TI is a design and simulation environment that helps evaluate performance of analog circuits. Create subsystem designs and prototype designs before committing to layout and fabrication, reducing development cost and time to market.

9.1.2.2 TINA-TI™ Simulation Software (Free Download)

TINA-TI™ simulation software is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI simulation software is a free, fully-functional version of the TINA™ software, preloaded with a library of macromodels, in addition to a range of both passive and active models. TINA-TI simulation software provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities.

Available as a [free download](#) from the [Design and simulation tools](#) web page, TINA-TI simulation software offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.

Note

These files require that either the TINA software or TINA-TI software be installed. Download the free TINA-TI simulation software from the [TINA-TI™ software folder](#).

9.2 Documentation Support

9.2.1 Related Documentation

For related documentation see the following:

- Texas Instruments, [Comprehensive Error Calculation for Instrumentation Amplifiers](#) application note
- Texas Instruments, [Importance of Input Bias Current Return Paths in Instrumentation Amplifier Applications](#) application note

9.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on [ti.com](#). Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.4 Support Resources

[TI E2E™ support forums](#) are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

9.5 Trademarks

TINA-TI™ and TI E2E™ are trademarks of Texas Instruments.

TINA™ is a trademark of DesignSoft, Inc.

PSpice® is a registered trademark of Cadence Design Systems, Inc.

All trademarks are the property of their respective owners.

9.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.7 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision F (May 2022) to Revision G (January 2026)	Page
• Added different fabrication process specifications for Input bias current in the <i>Features</i> section.....	1
• Added description of device flow information in the <i>Specifications</i>	4
• Added all chips site origins (CSO) condition to the typical test conditions in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Offset voltage (RTI) in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Power-supply rejection ratio (RTI) in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Long-term stability in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Common-mode rejection ratio in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Input bias current in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Input offset current in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Voltage noise (RTI) in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Current noise in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Gain error in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Gain drift in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Positive output voltage swing in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Negative output voltage swing in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Short-circuit current in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Bandwidth, -3dB in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Slew rate in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for Settling time in the <i>Electrical Characteristics</i>	5
• Added all <i>chips site origins</i> (CSO) condition to the typical test conditions in the <i>Typical Characteristics</i>	9
• Added CSO: SHE to <i>Common-Mode Rejection vs Frequency</i> , <i>Positive Power Supply Rejection vs Frequency</i> , <i>Input-Referred Noise vs Frequency</i> , <i>Settling Time vs Gain</i> , <i>Input Bias Current vs Temperature</i> , <i>Output Voltage Swing vs Output Current</i> , <i>Output Voltage Swing vs Power Supply Voltage</i> , <i>Short Circuit Output Current vs Temperature</i> , and <i>Small Signal</i> curves in the <i>Typical Characteristics</i>	9

- Added CSO: FRE to *Gain vs Frequency, Negative Power Supply Rejection vs Frequency, Input Overvoltage V/I Characteristics, Maximum Output Voltage vs Frequency, Total Harmonic Distortion + Noise vs Frequency, and Large Signal* curves in the *Typical Characteristics* 9
- Added *Gain vs Frequency, Input-Referred Noise vs Frequency, Positive Power Supply Rejection vs Frequency, Negative Power Supply Rejection vs Frequency, Input Overvoltage V/I Characteristics, Maximum Output Voltage vs Frequency, Total Harmonic Distortion + Noise vs Frequency, and Large Signal* curves for CSO: SHE in the *Typical Characteristics* 9
- Added *Common-Mode Rejection vs Frequency, Positive Power Supply Rejection vs Frequency, Input-Referred Voltage Noise vs Frequency, Input-Referred Current Noise vs Frequency, Input Bias Current vs Temperature, Input Offset Current vs Temperature, Positive Output Voltage Swing vs Output Current, Negative Output Voltage Swing vs Output Current, and Small Signal* curves for CSO: FRE in the *Typical Characteristics* 9
- Updated the *Gain vs Frequency* curve for CSO: FRE in the *Typical Characteristics* 9
- Updated the *Positive Power Supply Rejection vs Frequency* curve for CSO: SHE in the *Typical Characteristics* 9
- Added CSO: SHE to *Small Signal* curves in the *Application Curves* 22
- Added CSO: FRE to *Large Signal* curves in the *Application Curves* 22
- Added *Large Signal* curves for CSO: SHE in the *Application Curves* 22
- Added *Small Signal* curves for CSO: FRE in the *Application Curves* 22
- Added part number flow information table to the *Device Nomenclature* 27

Changes from Revision E (April 2019) to Revision F (May 2022)	Page
• Updated the numbering format for tables, figures, and cross-references throughout the document.	1
• Added bandwidth and noise specifications in <i>Features</i>	1
• Changed <i>Applications</i> to link to latest end-equipment solutions on ti.com	1
• Changed reference from INA819 to INA818 in <i>Device Comparison Table</i>	3
• Added single supply specification to <i>Absolute Maximum Ratings</i>	4
• Added note clarifying output short-circuit "to ground" in <i>Absolute Maximum Ratings</i> refers to short-circuit to $V_S / 2$	4
• Added single supply specification to <i>Recommended Operating Conditions</i>	4
• Changed input common-mode voltage range specification from $V - 2$ to $(V-) + 2$ in <i>Recommended Operating Conditions</i>	4
• Deleted INA128-HT and INA129-HT operating temperature specifications from <i>Recommended Operating Conditions</i>	4
• Added specified temperature range to <i>Recommended Operating Conditions</i>	4
• Added $V_{REF} = 0$ V, $V_{CM} = V_S / 2$, and $G = 1$ to "unless otherwise noted" conditions in <i>Electrical Characteristics</i> and <i>Typical Characteristics</i> for clarity	5
• Changed test condition for offset voltage drift specification in <i>Electrical Characteristics</i> from " $T_A = T_{MIN}$ to T_{MAX} " to " $T_A = -40^\circ C$ to $+85^\circ C$ " for clarity	5
• Changed typical long-term stability specification from $\pm 0.1 \pm 3/G \mu V/mo$ to $\pm 0.2 \pm 3/G \mu V/mo$ in <i>Electrical Characteristics</i>	5
• Changed common-mode voltage specification from $(V-) + 2V$ minimum and $(V+) - 2V$ minimum across two rows to $(V-) + 2V$ minimum and $(V+) - 2V$ maximum across one row in <i>Electrical Characteristics</i>	5
• Deleted typical common-mode voltage specifications in <i>Electrical Characteristics</i>	5
• Added test condition of " $RS = 0\Omega$ " to safe input voltage specification in <i>Electrical Characteristics</i> for clarity	5
• Added test condition of " $T_A = -40^\circ C$ to $+85^\circ C$ " to input bias current drift specification in <i>Electrical Characteristics</i> for clarity	5
• Added test condition of " $T_A = -40^\circ C$ to $+85^\circ C$ " to input offset current drift specification in <i>Electrical Characteristics</i> for clarity	5
• Changed maximum gain error specification for INA128PA/UA and INA129PA/UA with $G = 1$ from $\pm 0.01\%$ to $\pm 0.1\%$ in <i>Electrical Characteristics</i>	5
• Added test condition of " $T_A = -40^\circ C$ to $+85^\circ C$ " for gain drift in <i>Electrical Characteristics</i> for clarity	5

• Changed parameter names from "Voltage - Positive" to "Positive output voltage swing" and from "Voltage - Negative" to "Negative output voltage swing" in <i>Electrical Characteristics</i>	5
• Deleted typical positive and negative output voltage swing specifications in <i>Electrical Characteristics</i>	5
• Added test condition of "Continuous to $V_S / 2$ " to short-circuit current specification in <i>Electrical Characteristics</i> for clarity.....	5
• Changed typical bandwidth specification for $G = 10$ from 700kHz to 640kHz in <i>Electrical Characteristics</i>	5
• Changed typical slew rate specification from 4V/μs to 1.2V/μs in <i>Electrical Characteristics</i>	5
• Changed typical settling time specification for $G = 1$, $G = 10$, and $G = 100$ from 7μs, 7μs, and 9μs respectively to 12μs, 12μs, and 12μs, in <i>Electrical Characteristics</i>	5
• Deleted redundant voltage range, operating temperature range, and specification temperature range specifications from <i>Electrical Characteristics</i>	5
• Changed Figures 7-1, 7-3, 7-4, 7-9, 7-10, 7-11, 7-16, 7-17, 7-20, 7-21.....	9
• Changed values discussed in <i>Input Common-Mode Range</i> from typical input common-mode voltage range values to maximum and minimum values.....	18
• Changed Figure 9-1 to fix missing text and include reference voltage.....	19
• Added more detailed guidance concerning REF pin in <i>Design Requirements</i>	19
• Changed Figures 9-6, 9-7.....	22
• Changed Figures 9-10 and 9-11 to fix missing text.....	24
• Added <i>Related Documentation</i> links to <i>Device and Documentation Support</i>	27

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025