

DRV8885

SLVSD39D - OCTOBER 2015-REVISED MARCH 2020

DRV8885 1.5-A Stepper Motor Driver With Integrated Current Sense

1 Features

- PWM microstepping stepper motor driver
 - Up to 1/16 microstepping
 - Non-circular and standard ½ step modes
- Integrated current sense functionality
 - No sense resistors required
 - ±6.25% Full-scale current accuracy
- · Slow and mixed decay options
- 8.0- to 37-V Operating supply voltage range
- Low R_{DS(ON)}: 0.86 Ω HS + LS at 24 V, 25°C
- · High current capacity
 - 1.5-A Full scale per bridge
 - 1.0-A rms per bridge
- Fixed off-time PWM chopping
- Simple STEP/DIR interface
- Low-current sleep mode (20 μA)
- · Small package and footprint
 - 24 HTSSOP PowerPAD™ package
 - 28 WQFN package
- Protection features
 - VM undervoltage lockout (UVLO)
 - Charge pump undervoltage (CPUV)
 - Overcurrent protection (OCP)
 - Thermal shutdown (TSD)
 - Fault condition indication pin (nFAULT)

2 Applications

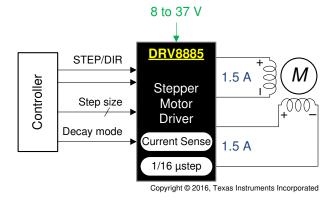
- Multi-function printers and scanners
- Laser beam printers
- · 3D printers
- Automatic teller and money handling machines
- Video security cameras
- · Office automation machines
- · Factory automation and robotics

3 Description

The DRV8885 is a stepper motor driver for industrial equipment applications. The device has two N-channel power MOSFET H-bridge drivers, a microstepping indexer, and integrated current sense. The DRV8885 is capable of driving up to 1.5 A full scale or 1.0 A rms output current (depending on proper PCB ground plane for thermal dissipation and at 24 V and $T_A = 25^{\circ}\text{C}$).

The DRV8885 integrated current sense functionality eliminates the need for two external sense resistors.

The STEP/DIR pins provide a simple control interface. The device can be configured in full-step up to 1/16 step modes. A low-power sleep mode is provided for very-low quiescent current standby using a dedicated nSLEEP pin.


Internal protection functions are provided for undervoltage, charge pump faults, overcurrent, short circuits, and overtemperature. Fault conditions are indicated by an nFAULT pin.

Device Information (1)

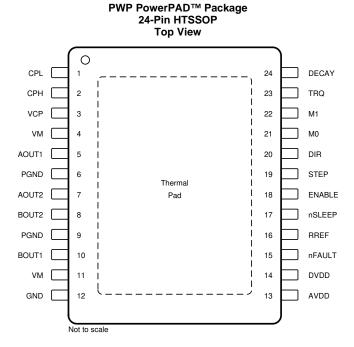

PART NUMBER	PACKAGE	BODY SIZE (NOM)
DD\/0005	HTSSOP (24)	7.80 mm × 4.40 mm
DRV8885	WQFN (28)	5.50 mm × 3.5 mm

 For all available packages, see the orderable addendum at the end of the data sheet.

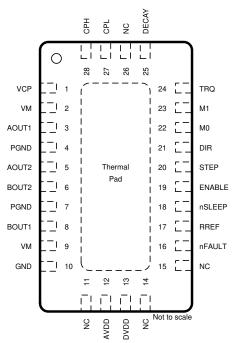
Simplified Schematic

Microstepping Current Waveform

1	Features 1		7.4 Device Functional Modes	3
2	Applications 1	8	Application and Implementation	32
3	Description 1		8.1 Application Information	32
4	Revision History2		8.2 Typical Application	32
5	Pin Configuration and Functions3	9	Power Supply Recommendations	3
6	Specifications4		9.1 Bulk Capacitance	3
•	6.1 Absolute Maximum Ratings	10	Layout	36
	6.2 ESD Ratings		10.1 Layout Guidelines	
	6.3 Recommended Operating Conditions		10.2 Layout Example	36
	6.4 Thermal Information	11	Device and Documentation Support	37
	6.5 Electrical Characteristics		11.1 Documentation Support	3
	6.6 Indexer Timing Requirements		11.2 Receiving Notification of Documentation Update	es 3
	6.7 Typical Characteristics		11.3 Community Resources	3
7	Detailed Description 11		11.4 Trademarks	3
•	7.1 Overview		11.5 Electrostatic Discharge Caution	3
	7.2 Functional Block Diagram		11.6 Glossary	3
	7.3 Feature Description	12	Mechanical, Packaging, and Orderable Information	3


4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


CI	nanges from Revision C (November 2018) to Revision D	Page
<u>.</u>	Added Various Sources of Error and Application-Specific Error Calculations	18
CI	nanges from Revision B (July 2018) to Revision C	Page
<u>.</u>	Changed device status from Advance Information to Production Data	1
CI	nanges from Revision A (April 2016) to Revision B	Page
•	Added the WQFN package option	1
•	Deleted and internal indexer from the description of the ENABLE pin in the Pin Functions table	3
•	Changed until ENABLE is deasserted to until ENABLE is asserted in the Device Functional Modes section	31
<u>•</u>	Added the Receiving Notification of Documentation Updates section	37
CI	nanges from Original (October 2015) to Revision A	Page
•	Updated peak drive current based on OCP	4
•	Updated R _{PD} and R _{PU} values	6
•	Fixed chopping current equation	
•	Added "Controlling RREF with a PWM Resource"	
	Fixed resistance values in tri-level input pin diagram	29

5 Pin Configuration and Functions

RHR Package 28-Pin WQFN With Exposed Thermal Pad **Top View**

Pin Functions

	PIN					
NAME	NO).	TYPE(1)	DESCRIPTION		
NAIVIE	HTSSOP	WQFN				
AOUT1	5	3	0	Winding A output. Connect to stepper motor winding.		
AOUT2	7	5	O	winding A output. Connect to stepper motor winding.		
AVDD	13	12	PWR	nternal regulator. Bypass to GND with a X5R or X7R, 0.47-μF, 6.3-V ceramic capacitor.		
BOUT1	10	8	0	Window Doublet Connected to the connected of the		
BOUT2	8	6	O	Winding B output. Connect to stepper motor winding.		
CPH	2	28	DWD	Characteristics and Connecte VED as VZD 0.000 F VM and describe to a CDU to CDU		
CPL	1	27	PWR	Charge pump switching node. Connect a X5R or X7R, 0.022-µF, VM-rated ceramic capacitor from CPH to CPL.		
DECAY	24	25	I	ecay-mode setting. Sets the decay mode (see the <i>Decay Modes</i> section). Decay mode can be adjusted during peration.		
DIR	20	21	I	irection input. Logic level sets the direction of stepping; internal pulldown resistor.		
DVDD	14	13	PWR	Internal regulator. Bypass to GND with a X5R or X7R, 0.47-μF, 6.3-V ceramic capacitor.		
ENABLE	18	19	I	Enable driver input. Logic high to enable device outputs; logic low to disable; internal pulldown resistor.		
GND	12	10	PWR	Device ground. Connect to system ground.		
M0	21	22	_	Microstepping mode-setting. Sets the step mode; tri-level pins; sets the step mode; internal pulldown resistor.		
M1	22	23	ı	microstepping mode-setting. Sets the step mode, threever pins, sets the step mode, internal pulldown resistor.		
		11				
NC		14		No connect. No internal connection		
INC	_	15	_	No connect. No internal connection		
26		26				
PGND	6	4	PWR	Power ground Connect to existen ground		
FGND	9	7	PWK	Power ground. Connect to system ground.		
RREF	16	17	I	Current-limit analog input. Connect a resistor to ground to set full-scale regulation current.		

(1) I = input, O = output, PWR = power, OD = open-drain

Pin Functions (continued)

PIN												
NAME	NO.		NO.		NO.		NO.		NO.		TYPE(1)	DESCRIPTION
INAIVIE	HTSSOP	WQFN										
STEP	19	20	I	Step input. A rising edge causes the indexer to advance one step; internal pulldown resistor.								
TRQ	23	24	I	Current-scaling control. Scales the output current; tri-level pin.								
VCP	3	1	PWR	Charge pump output. Connect a X5R or X7R, 0.22-μF, 16-V ceramic capacitor to VM.								
\/N4	4	2	2 PWR	Power supply. Connect to motor supply voltage and bypass to GND with two 0.01-μF ceramic capacitors (one for								
VM	11	9	PWK	each pin) plus a bulk capacitor rated for VM.								
nFAULT	15	16	OD	Fault indication. Pulled logic low with fault condition; open-drain output requires an external pullup resistor.								
nSLEEP	17	18	I	Sleep mode input. Logic high to enable device; logic low to enter low-power sleep mode; internal pulldown resistor.								

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

	MIN	MAX	UNIT
Power supply voltage (VM)	-0.3	40	V
Power supply voltage ramp rate (VM)	0	2	V/µs
Charge pump voltage (VCP, CPH)	-0.3	VM + 7	V
Charge pump negative switching pin (CPL)	-0.3	VM	V
Internal regulator voltage (DVDD)	-0.3	3.8	V
Internal regulator current output (DVDD)	0	1	mA
Internal regulator voltage (AVDD)	-0.3	5.7	V
Control pin voltage (STEP, DIR, ENABLE, nFAULT, M0, M1, DECAY, TRQ, nSLEEP)	-0.3	5.7	V
Open drain output current (nFAULT)	0	10	mA
Current limit input pin voltage (RREF)	-0.3	6.0	V
Continuous phase node pin voltage (AOUT1, AOUT2, BOUT1, BOUT2)	-0.7	VM + 0.7	V
Peak drive current (AOUT1, AOUT2, BOUT1, BOUT2)		2.3	А
Operating junction temperature, T _J	-40	150	°C
Storage temperature, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
\/	Flootroototic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
VM	Power supply voltage range	8	37	V
VCC	Logic level input voltage	0	5.3	V
f_{PWM}	Applied STEP signal (STEP)	0	100 (1)	kHz
I _{DVDD}	DVDD external load current	0	1 (2)	mA
I _{FS}	Motor full scale current	0	1.5	А
I _{rms}	Motor rms current	0	1.0	А
T _A	Operating ambient temperature	-40	125	°C

 ⁽¹⁾ STEP input can operate up to 500 kHz, but system bandwidth is limited by the motor load
 (2) Power dissipation and thermal limits must be observed

6.4 Thermal Information

		DR	V8885	
	THERMAL METRIC (1)	PWP (HTSSOP)	RHR (WQFN)	UNIT
		24 PINS	28 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	36.1	33.6	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	18.3	23.8	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	15.8	12.7	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.4	0.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	15.7	12.6	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	1.1	3.7	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER	SUPPLIES (VM, DVDD, AVDD)		'			
VVM	VM operating voltage		8		37	V
I_{VM}	VM operating supply current	VM ≈ 8 to 35 V, ENABLE = 1, nSLEEP = 1, No motor load		5	8	mA
	VA -1	nSLEEP = 0; T _A = 25°C			20	
I_{VMQ}	VM sleep mode supply current	nSLEEP = 0; T _A = 125°C ⁽¹⁾			40	μΑ
t _{SLEEP}	Sleep time	nSLEEP = 0 to sleep-mode		50	200	μS
t _{WAKE}	Wake-up time	nSLEEP = 1 to output transition		0.85	1.5	ms
t _{ON}	Turn-on time	VM > UVLO to output transition		0.85	1.5	ms
V_{DVDD}	Internal regulator voltage	0- to 1-mA external load	2.9	3.3	3.6	V
V _{AVDD}	Internal regulator voltage	No external load	4.5	5.0	5.5	V
	PUMP (VCP, CPH, CPL)					
V_{VCP}	VCP operating voltage	VM > 8 V		VM + 5.5		V
	EVEL INPUTS (STEP, DIR, ENABL	E, nSLEEP, M1)				
V _{IL}	Input logic low voltage		0		0.8	V
V _{IH}	Input logic high voltage		1.6		5.3	V
V _{HYS}	Input logic hysteresis		100			mV
I _{IL}	Input logic low current	VIN = 0 V	-1		1	μА
I _{IH}	Input logic high current	VIN = 5.0 V			100	<u>.</u> μΑ
R _{PD}	Pulldown resistance	To GND		100		kΩ
t _{PD}	Propagation delay	STEP to current change			1.2	μS
	EL INPUT (M0, TRQ)					•
V _{IL}	Tri-level input logic low voltage		0		0.65	V
V _{IZ}	Tri-level input Hi-Z voltage			1.1		V
V _{IH}	Tri-level input logic high voltage		1.5		5.3	V
I _{IL}	Tri-level input logic low current	VIN = 0 V	-80			μА
I _{IZ}	Tri-level input Hi-Z current	VIN = 1.3 V	-5		5	<u>.</u> μΑ
I _{IH}	Tri-level input logic high current	VIN = 5.0 V			155	μ A
R _{PD}	Tri-level pulldown resistance	To GND	18	32	50	kΩ
R _{PU}	Tri-level pullup resistance	To DVDD	30	60	90	kΩ
QUAD-LE	EVEL INPUT (DECAY)					
V _{I1}	Quad-level input voltage 1	5% resistor 5 kΩ to GND	0.07	0.11	0.13	V
V _{I2}	Quad-level input voltage 2	5% resistor 15 kΩ to GND	0.24	0.32	0.40	V
V _{I3}	Quad-level input voltage 3	5% resistor 45 kΩ to GND	0.71	0.97	1.20	V
V _{I4}	Quad-level input voltage 4	5% resistor 135 kΩ to GND	2.12	2.90	3.76	V
I _O	Output current	To GND	14	22	30	μА
	DL OUTPUTS (nFAULT)		1			•
V _{OL}	Output logic low voltage	$I_O = 1 \text{ mA}, R_{PULLUP} = 4.7 \text{ k}\Omega$			0.5	V
I _{OH}	Output logic high leakage	$V_O = 5.0 \text{ V}, R_{PULLUP} = 4.7 \text{ k}\Omega$	-1		+1	μА
U 11		O , I OLLOF	1			F

⁽¹⁾ Not tested in production; limits are based on characterization data

Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
MOTOR DE	RIVER OUTPUTS (AOUT1, AOUT	r2, BOUT1, BOUT2)				
R _{DS(ON)}	High-side FET on resistance	VM = 24 V, I = 1 A, T _A = 25°C		440	490	mΩ
R _{DS(ON)}	Low-side FET on resistance	VM = 24 V, I = 1 A, T _A = 25°C		420	460	mΩ
t _{RISE} (2)	Output rise time			100		ns
t _{FALL} (2)	Output fall time			100		ns
t _{DEAD} (2)	Output dead time			200		ns
V _d (2)	Body diode forward voltage	I _{OUT} = 0.5 A		0.7	1.0	V
PWM CURF	RENT CONTROL (RREF)				*	
A _{RREF}	RREF transimpedance gain		28.1	30	31.9	kAΩ
V _{RREF}	RREF voltage	RREF = 18 to 132 k Ω	1.18	1.232	1.28	V
t _{OFF}	PWM off-time			20		μS
C _{RREF}	Equivalent capacitance on RREF				10	pF
	DWM blooking time	I _{RREF} = 1.5 A, 63% to 100% current setting		1.5		μs
t _{BLANK}	PWM blanking time	I _{RREF} = 1.5 A, 0% to 63% current setting		1.0		
	Current trip accuracy	I _{RREF} = 1.0 A, 10% to 20% current setting, 1% reference resistor	-25%		25%	
ΔI_{TRIP}		I _{RREF} = 1.0 A, 20% to 63% current setting, 1% reference resistor	-12.5%		12.5%	
		I _{RREF} = 1.0 A, 71% to 100% current setting, 1% reference resistor	-6.25%		6.25%	
PROTECTION	ON CIRCUITS	•			*	
. /	\/\data	VM falling; UVLO report			7.8	V
V_{UVLO}	VM UVLO	VM rising; UVLO recovery			8.0	V
V _{UVLO,HYS}	Undervoltage hysteresis	Rising to falling threshold		100		mV
V _{CPUV}	Charge pump undervoltage	VCP falling; CPUV report		VM + 2.0		V
I _{OCP}	Overcurrent protection trip level	Current through any FET	2.3			А
t _{OCP}	Overcurrent deglitch time		1.3	1.9	2.8	μS
t _{RETRY}	Overcurrent retry time		1		1.6	ms
T _{TSD} (2)	Thermal shutdown temperature	Die temperature T _J	150			°C
T _{HYS} (2)	Thermal shutdown hysteresis	Die temperature T _J		20		°C

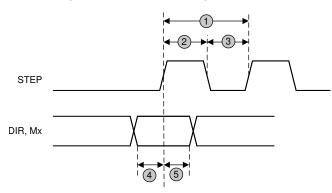
⁽²⁾ Not tested in production; limits are based on characterization data

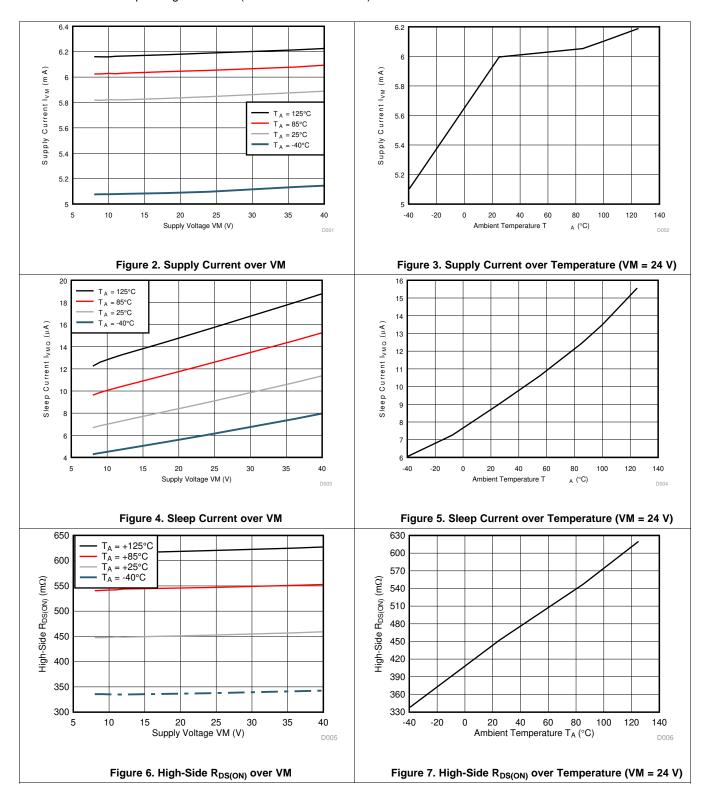
6.6 Indexer Timing Requirements

 $T_A = 25$ °C, over recommended operating conditions unless otherwise noted

NO.			MIN	MAX	UNIT
1	f_{STEP}	Step frequency		500 ⁽¹⁾	kHz
2	t _{WH(STEP)}	Pulse duration, STEP high	970		ns
3	t _{WL(STEP)}	Pulse duration, STEP low	970		ns
4	t _{SU(DIR, Mx)}	Setup time, DIR or USMx to STEP rising	200		ns
5	t _{H(DIR, Mx)}	Hold time, DIR or USMx to STEP rising	200		ns

(1) STEP input can operate up to 500 kHz, but system bandwidth is limited by the motor load

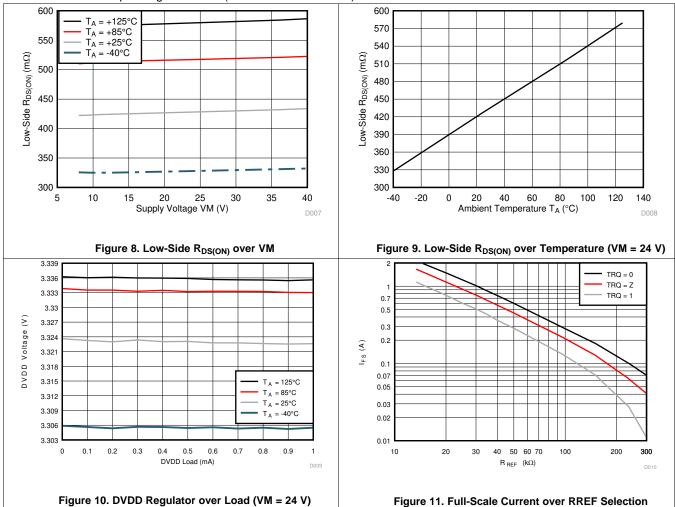



Figure 1. Timing Diagram

Submit Documentation Feedback

6.7 Typical Characteristics

Over recommended operating conditions (unless otherwise noted)


Copyright © 2015–2020, Texas Instruments Incorporated

Submit Documentation Feedback

Typical Characteristics (continued)

Over recommended operating conditions (unless otherwise noted)

7 Detailed Description

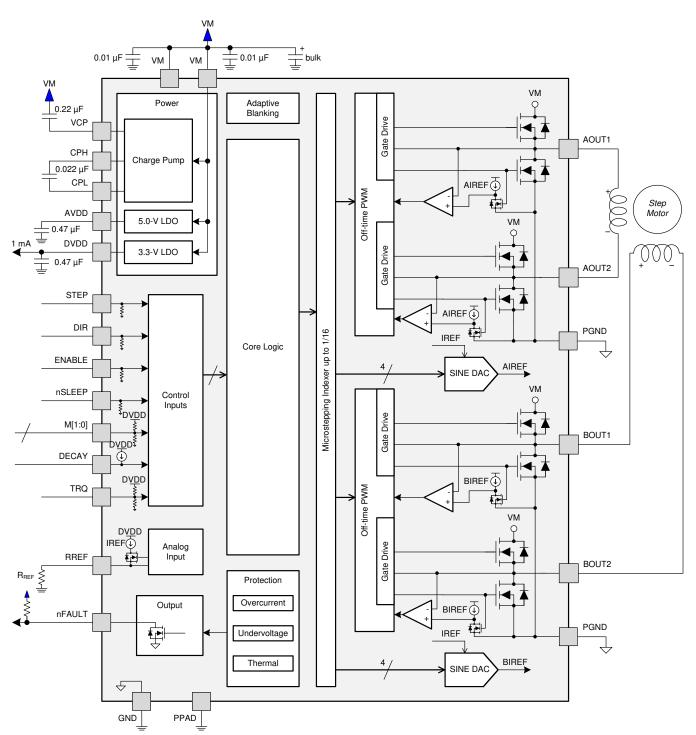
7.1 Overview

The DRV8885 is an integrated motor driver solution for bipolar stepper motors. The device integrates two NMOS H-bridges, integrated current sense and regulation circuitry, and a microstepping indexer. The DRV8885 can be powered with a supply voltage between 8 and 37 V, and is capable of providing an output current up 2.3-A peak, 1.5-A full-scale, or 1.0-A rms. Actual full-scale and rms current will depend on ambient temperature, supply voltage, and PCB ground plane size.

The DRV8885 integrates current sense functionality, which eliminates the need for high-power external sense resistors. This integration does not dissipate the external sense resistor power, because the current sense functionality is not implemented using a resistor-based architecture. This functionality helps improve component cost, board size, PCB layout, and system power consumption.

A simple STEP/DIR interface allows easy interfacing to the controller circuit. The internal indexer is able to execute high-accuracy microstepping without requiring the processor to control the current level. The indexer is capable of full step and half step as well as microstepping to 1/4, 1/8, and 1/16. In addition to the standard half stepping mode, a non-circular 1/2-stepping mode is available for increased torque output at higher motor rpm.

The current regulation is configurable with several decay modes of operation. The decay mode can be selected as a fixed slow, slow/mixed, or mixed decay. The slow/mixed decay mode uses slow decay on increasing steps and mixed decay on decreasing steps.


An adaptive blanking time feature automatically scales the minimum drive time with output current. This helps alleviate zero-crossing distortion by limiting the drive time at low-current steps.

A torque DAC feature allows the controller to scale the output current without needing to scale the reference resistor. The torque DAC is accessed using a digital input pin. This allows the controller to save power by decreasing the current consumption when not high current is not required.

A low-power sleep mode is included which allows the system to save power when not driving the motor.

7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

7.3 Feature Description

Table 1 lists the recommended external components for the DRV8885 device.

Table 1. External Components

COMPONENT	PIN 1	PIN 2	RECOMMENDED	
C _{VM}	VM	GND	Two 0.01-µF ceramic capacitors rated for VM	
C _{VM}	VM	GND	Bulk electrolytic capacitor rated for VM	
C _{VCP}	VCP	VM	16-V, 0.22-µF ceramic capacitor	
C _{SW}	CPH	CPL	0.022-μF X7R capacitor rated for VM	
C _{AVDD}	AVDD	GND	6.3-V, 0.47-μF ceramic capacitor	
C _{DVDD}	DVDD	GND	6.3-V, 0.47-µF ceramic capacitor	
R _{nFAULT}	VCC (1)	nFAULT	>4.7 kΩ	
R _{REF}	RREF	GND	Resistor to limit chopping current must be installed. See the <i>Typical Application</i> section for value selection.	

⁽¹⁾ VCC is not a pin on the DRV8885, but a VCC supply voltage pullup is required for open-drain output nFAULT; nFAULT may be pulled up to DVDD

7.3.1 Stepper Motor Driver Current Ratings

Stepper motor drivers can be classified using three different numbers to describe the output current: peak, rms, and full-scale.

7.3.1.1 Peak Current Rating

The peak current in a stepper driver is limited by the overcurrent protection trip threshold I_{OCP} . The peak current describes any transient duration current pulse, for example when charging capacitance, when the overall duty cycle is very low. In general the minimum value of I_{OCP} specifies the peak current rating of the stepper motor driver. For the DRV8885, the peak current rating is 2.3 A per bridge.

7.3.1.2 RMS Current Rating

The rms (average) current is determined by the thermal considerations of the IC. The rms current is calculated based on the R_{DS(ON)}, rise and fall time, PWM frequency, device quiescent current, and package thermal performance in a typical system at 25°C. The real operating rms current may be higher or lower depending on heatsinking and ambient temperature. For the DRV8885, the rms current rating is 1.0 A per bridge.

7.3.1.3 Full-Scale Current Rating

The full-scale current describes the top of the sinusoid current waveform while microstepping. Since the sineusoid amplitude is related to the rms current, the full-scale current is also determined by the thermal considerations of the IC. The full-scale current rating is approximately $\sqrt{2} \times I_{rms}$. The full-scale current is set by VREF, the sense resistor, and Torque DAC when configuring the DRV8885, see *Current Regulation* for details. For the DRV8885, the full-scale current rating is 1.5 A per bridge.

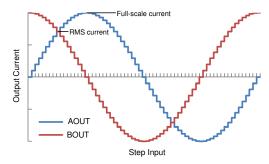


Figure 12. Full-Scale and rms Current

Copyright © 2015–2020, Texas Instruments Incorporated

7.3.2 PWM Motor Drivers

The DRV8885 contains drivers for two full H-bridges. Figure 13 shows a block diagram of the circuitry.

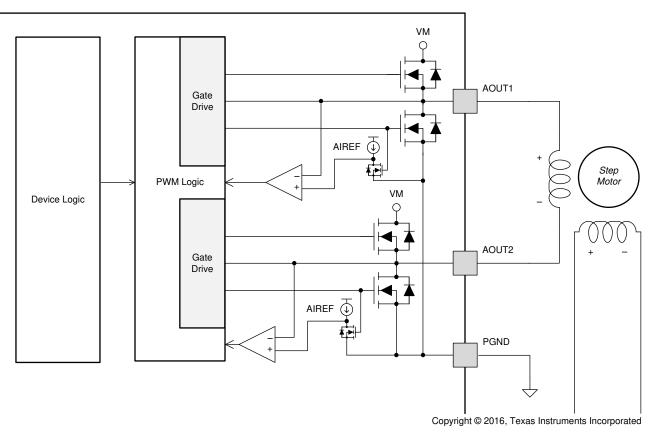


Figure 13. PWM Motor Driver Block Diagram

7.3.3 Microstepping Indexer

Built-in indexer logic in the DRV8885 allows a number of different stepping configurations. The Mx pins are used to configure the stepping format as shown in Table 2.

STEP MODE M1 M₀ 0 0 Full step (2-phase excitation) with 71% current 0 1 1/16 step 0 1/2 step 1 1 1/4 step 0 Ζ 1/8 step 1 Ζ Non-circular 1/2 step

Table 2. Microstepping Settings

Table 3 shows the relative current and step directions for full-step through 1/16-step operation. The AOUT current is the sine of the electrical angle; BOUT current is the cosine of the electrical angle. Positive current is defined as current flowing from xOUT1 to xOUT2 while driving.

At each rising edge of the STEP input the indexer travels to the next state in the table. The direction is shown with the DIR pin logic high. If the DIR pin is logic low, the sequence is reversed.

On power-up or when exiting sleep mode, keep the STEP pin logic low, otherwise the indexer will advance one step.

Note that if the step mode is changed from full, $\frac{1}{2}$, $\frac{1}{8}$, or $\frac{1}{16}$ to full, $\frac{1}{2}$, $\frac{1}{8}$, or $\frac{1}{16}$ while stepping, the indexer will advance to the next valid state for the new MODE setting at the rising edge of STEP. If the step mode is changed from or to non-circular $\frac{1}{2}$ step the indexer will go immediately to the valid state for that mode.

The home state is an electrical angle of 45°. This state is entered after power-up, after exiting logic undervoltage lockout, or after exiting sleep mode. This is shown in the table below with cells outlined in red.

Table 3. Microstepping Relative Current Per Step (DIR = 1)

FULL STEP					FLECTRICAL	-	POLIT
FULL STEP	1/2 STEP	1/4 STEP	1/8 STEP	1/16 STEP	ELECTRICAL ANGLE (DEGREES)	AOUT CURRENT (% FULL-SCALE)	BOUT CURRENT (% FULL-SCALE)
	1	1	1	1	0.000°	0%	100%
				2	5.625°	10%	100%
			2	3	11.250°	20%	98%
				4	16.875°	29%	96%
		2	3	5	22.500°	38%	92%
				6	28.125°	47%	88%
			4	7	33.750°	56%	83%
				8	39.375°	63%	77%
1	2	3	5	9	45.000°	71%	71%
				10	50.625°	77%	63%
			6	11	56.250°	83%	56%
				12	61.875°	88%	47%
		4	7	13	67.500°	92%	38%
				14	73.125°	96%	29%
			8	15	78.750°	98%	20%
				16	84.375°	100%	10%
	3	5	9	17	90.000°	100%	0%
				18	95.625°	100%	-10%
			10	19	101.250°	98%	-20%
				20	106.875°	96%	-29%
		6	11	21	112.500°	92%	-38%
				22	118.125°	88%	-47%
			12	23	123.750°	83%	-56%
				24	129.375°	77%	-63%
2	4	7	13	25	135.000°	71%	-71%
				26	140.625°	63%	-77%
			14	27	146.250°	56%	-83%
				28	151.875°	47%	-88%
		8	15	29	157.500°	38%	-92%
				30	163.125°	29%	-96%
			16	31	168.750°	20%	-98%
				32	174.375°	10%	-100%
	5	9	17	33	180.000°	0%	-100%
				34	185.625°	-10%	-100%
			18	35	191.250°	-20%	-98%
				36	196.875°	-29%	-96%
		10	19	37	202.500°	-38%	-92%
				38	208.125°	-47%	-88%
			20	39	213.750°	-56%	-83%
				40	219.375°	-63%	-77%

Table 3. Microstepping Relative Current Per Step (DIR = 1) (continued)

FULL STEP	1/2 STEP	1/4 STEP	1/8 STEP	1/16 STEP	ELECTRICAL ANGLE (DEGREES)	AOUT CURRENT (% FULL-SCALE)	BOUT CURRENT (% FULL-SCALE)
3	6	11	21	41	225.000°	-71%	-71%
				42	230.625°	-77%	-63%
			22	43	236.250°	-83%	-56%
				44	241.875°	-88%	-47%
		12	23	45	247.500°	-92%	-38%
				46	253.125°	-96%	-29%
			24	47	258.750°	-98%	-20%
				48	264.375°	-100%	-10%
	7	13	25	49	270.000°	-100%	0%
				50	275.625°	-100%	10%
			26	51	281.250°	-98%	20%
				52	286.875°	-96%	29%
		14	27	53	292.500°	-92%	38%
				54	298.125°	-88%	47%
			28	55	303.750°	-83%	56%
				56	309.375°	-77%	63%
4	8	15	29	57	315.000°	-71%	71%
				58	320.625°	-63%	77%
			30	59	326.250°	-56%	83%
				60	331.875°	-47%	88%
		16	31	61	337.500°	-38%	92%
				62	343.125°	-29%	96%
			32	63	348.750°	-20%	98%
				64	354.375°	-10%	100%
	1	1	1	1	360.000°	0%	100%

Non-circular 1/2-step operation is shown below. This stepping mode consumes more power than circular ½-step operation, but provides a higher torque at high motor rpm.

Table 4. Non-Circular 1/2-Stepping Current

NON-CIRCULAR 1/2 STEP	AOUT CURRENT (% FULL-SCALE)	BOUT CURRENT (% FULL-SCALE)	ELECTRICAL ANGLE (DEGREES)
1	0	100	0
2	100	100	45
3	100	0	90
4	100	-100	135
5	0	-100	180
6	-100	-100	225
7	-100	0	270
8	-100	100	315

7.3.4 Current Regulation

The current through the motor windings is regulated by an adjustable fixed-off-time PWM current regulation circuit. When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage, inductance of the winding, and the magnitude of the back EMF present. Once the current hits the current chopping threshold, the bridge enters a decay mode for a fixed, 20 μ s, period of time to decrease the current. After the off time expires, the bridge is re-enabled, starting another PWM cycle.

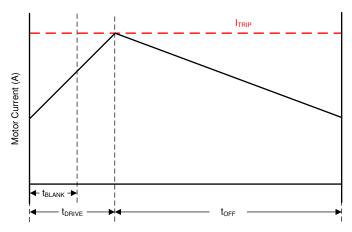


Figure 14. Current Chopping Waveform

The PWM chopping current is set by a comparator which looks at the voltage across current sense FETs in parallel with the low-side drivers. The current sense FETs are biased with a reference current that is the output of a current-mode sine-weighted DAC whose full-scale reference current is set by the current through the RREF pin. An external resistor is placed from the RREF pin to GND in order to set the reference current. In addition, the TRQ pin can further scale the reference current.

The chopping current is calculated as follows:

$$I_{FS} (A) = \frac{A_{RREF} (kA\Omega)}{RREF (k\Omega)} \times TRQ (\%) = \frac{30 (kA\Omega)}{RREF (k\Omega)} \times TRQ (\%)$$
(1)

Example: If a 30-k Ω resistor is connected to the RREF pin, the chopping current will be 1 A (TRQ at 100%)

The TRQ pin is the input to a DAC used to scale the output current. The current scalar value for different inputs is shown below.

Table 5. Torque DAC Settings

TRQ	CURRENT SCALAR (TRQ)
0	100%
Z	75%
1	50%

7.3.5 Controlling RREF With an MCU

In some cases, the full-scale output current may need to be changed on the fly between many different values, depending on motor speed and loading. The RREF pin reference current can be adjusted in system by tying the RREF resistor to a DAC output instead of GND.

In this mode of operation, as the DAC voltage increases, the reference current will decrease and therefore the full-scale current will decrease as well. For proper operation, the output of the DAC should not rise above V_{RREF}.

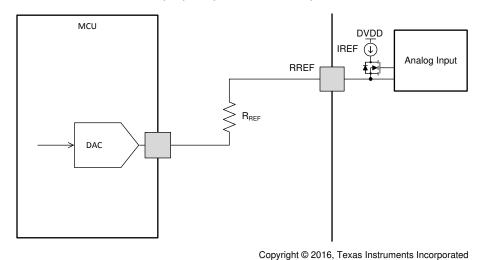


Figure 15. Controlling RREF with a DAC

The chopping current as controlled by a DAC is calculated as follows:

$$I_{FS} (A) = \frac{A_{RREF} (kA\Omega) \times \left[V_{RREF} (V) - V_{DAC} (V) \right]}{V_{RREF} (V) \times RREF (k\Omega)} \times TRQ (\%)$$
(2)

Example: If a 20-k Ω resistor is connected from the RREF pin to the DAC, and the DAC is outputting 0.74 V, the chopping current will be 600 mA (TRQ at 100%)

RREF can also be adjusted using a PWM signal and low-pass filter.

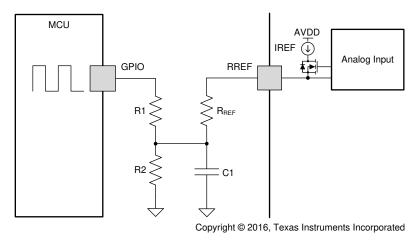


Figure 16. Controlling RREF with a PWM Resource

7.3.5.1 Various Sources of Error

When performing a design error calculation, the different variables that contribute the most to the error must be considered. To do so, first consider the typical values extracted from DRV8885 data sheet which are listed in Table 6 with a 20-k Ω 1% resistor .

Table 6. DRV8885 Data Sheet Values

Parameter	Minimum	Typical	Maximum
A _{RREF}	28100	30000	31900
V_{RREF}	1.18	1.232	1.28
RREF	19800	20000	20200

Using and knowing the desired output current, the V_{DAC} value can be obtained. For example, the DRV8885EVM, which has a 20-k Ω resistor for RREF, was selected to operate at a 1-A, 400mA, and 200 mA current. Table 7 lists the calculated V_{DAC} values using typical A_{RREF} and V_{RREF} data sheet values

Table 7. V_{DAC} Calculation

Parameter	Minimum	Typical	Maximum
I _{FS}	1	0.4	0.2
A _{RREF}	30 000	30 000	30 000
V _{RREF}	1.232	1.232	1.232
R _{REF}	20 000	20 000	20 000
V _{DAC}	0.4107	0.9035	1.0677

Next, use Equation 3 and Equation 4 to calculate the worst case value for the minimum and maximum full scale current, respectively.

$$I_{FSmin} (A) = \frac{A_{RREFmin} (kA\Omega) \times [V_{RREFmin} (V) - V_{DACmax} (V)]}{V_{RREFmin} (V) \times RREF_{max} (k\Omega)} \times TRQ (\%)$$

$$I_{FSmax} (A) = \frac{A_{RREFmax} (kA\Omega) \times [V_{RREFmax} (V) - V_{DACmin} (V)]}{V_{RREFmax} (V) \times RREF_{min} (k\Omega)} \times TRQ (\%)$$

$$(4)$$

These two equations show that error contributions come from V_{DAC} , A_{RREF} , V_{RREF} , and RREF. The next sections will show how these different error contributors, affect the overall I_{FS} error and how they can be improved.

7.3.5.1.1 V_{RREF}, A_{RREF}, and RREF Error

To observe how V_{RREF} , A_{RREF} , and RREFV_{RREF} affect the I_{FS} error, Equation 3 and Equation 4 are used with the data sheet values from earlier while V_{DAC} voltage remains constant. Table 8, Table 9, and Table 10 list the results at different current levels (1 A, 400 mA, and 200 mA, respectively).

Table 8. Worst Case Calculation—I_{FS} Error at 1 A

Parameter	Minimum	Typical	Maximum
V_{DAC}	0.4107	0.4107	0.4107
A _{RREF}	28100	30000	31900
V _{RREF}	1.18	1.232	1.28
R _{REF}	19800	20000	20200
I _{FS} (mA)	906.95	1000	1094.21
Error (%)	-9.30		9.42

Table 9. Worst Case Calculation—I_{FS} Error at 400 mA

Parameter	Minimum	Typical	Maximum
V_{DAC}	0.9035	0.9035	0.9035
A _{RREF}	28100	30000	31900
V_{RREF}	1.18	1.232	1.28
R _{REF}	19800	20000	20200
I _{FS} (mA)	326.00	400	473.93
Error (%)	-18.50		18.48

Table 10. Worst Case Calculation—I_{FS} Error at 200 mA

Parameter	Minimum	Typical	Maximum
V_{DAC}	1.0677	1.0677	1.0677
A _{RREF}	28100	30000	31900
V_{RREF}	1.18	1.232	1.28
R _{REF}	19800	20000	20200
I _{FS} (mA)	135.35	200	267.18
Error (%)	-33.83		33.59

These tables show that as the I_{FS} current level decreases, the overall error percentage increases due to increasing offset error from the internal signal chain. It is worthy to clarify that the V_{RREF} and A_{RREF} values in these tables are data sheet values which represent the characterization data variation across a wide range of temperatures and voltages with additional margin. For information on how to further minimize this percentage of error based on targeted characterization data for V_{RREF} and A_{RREF} , see Application-Specific Error Calculations .

7.3.5.1.2 V_{DAC} Error

Using the same methodology along with Equation 3 and Equation 4, the V_{DAC} error contribution to I_{FS} can be shown. This is done by removing the error from V_{RREF} , A_{RREF} , and RREF. The following examples show the V_{DAC} error value with a 3% and 10% variation.

Table 11. Worst Case Calculation— V_{DAC} 3% and 10%, I_{FS} Error at 1 A

Parameter	Minimum	Typical	Maximum
3% ERROR			
V_{DAC}	0.3983	0.4107	0.423
A _{RREF}	30000	30000	30000
V_{RREF}	1.232	1.232	1.232
R _{REF}	20000	20000	20000
I _{FS} (mA)	985.08	1000	1015.07
Error (%)	-1.50		1.50
10% ERROR			
V_{DAC}	0.3696	0.4107	0.4517
A _{RREF}	30000	30000	30000
V_{RREF}	1.232	1.232	1.232
R _{REF}	20000	20000	20000
I _{FS} (mA)	950.08	1000	1050.07
Error (%)	-5.00	·	5.00

Table 12. Worst Case Calculation— V_{DAC} 3% and 10%, I_{FS} Error at 400 mA

Parameter	Minimum	Typical	Maximum
3% ERROR	•	•	
V _{DAC}	0.8764	0.9035	0.9306
A _{RREF}	30000	30000	31 900
V_{RREF}	1.232	1.232	1.232
R _{REF}	20000	20000	20000
I _{FS} (mA)	367.18	400	433.17
Error (%)	-8.25		8.25
10% ERROR			
V _{DAC}	0.8131	0.9035	0.9938
A _{RREF}	30000	30000	30000

Table 12. Worst Case Calculation—V_{DAC} 3% and 10%, I_{FS} Error at 400 mA (continued)

Parameter	Minimum	Typical	Maximum
V_{RREF}	1.232	1.232	1.232
R _{REF}	20000	20000	20000
I _{FS} (mA)	290.19	400	510.16
Error (%)	-27.48		27.48

Table 13. Worst Case Calculation— V_{DAC} 3% and 10%, I_{FS} Error at 200 mA

Parameter	Minimum	Typical	Maximum	
3% ERROR				
V_{DAC}	1.0357	1.0677	1.0998	
A _{RREF}	30000	30000	30000	
V_{RREF}	1.232	1.232	1.232	
R _{REF}	20000	20000	20000	
I _{FS} (mA)	161.22	200	239.20	
Error (%)	-19.48		19.48	
10% ERROR				
V_{DAC}	0.9610	1.0677	1.1745	
A _{RREF}	30000	30000	30000	
V _{RREF}	1.232	1.232	1.232	
R _{REF}	20000	20000	20000	
I _{FS} (mA)	70.23	200	330.19	
Error (%)	-64.92		64.92	

These tables show that as the variation in V_{DAC} increases, the error percentage increases. Also, for very low currents, the error percentage increases greatly because of the V_{DAC} proximity to the V_{RREF} voltage.

7.3.5.2 Application-Specific Error Calculations

As described in the previous analysis, it is possible to obtain a tighter error calculations by using values for V_{RREF} and A_{RREF} for the specific application use case. The data sheet parameters represent limits based on design and characterization data across a wide range of temperatures and voltage with additional margin. For the following example, the operational voltage is limited to V_{VM} = 24 V, a common operating point for the DRV8884, DRV8885, DRV8886, and DRV8886AT.

Considering this use case, Table 14 provides updated values for V_{RREF} and A_{RREF}.

Table 14. Values For DRV8885 V_{VM}= 24-V

Parameter	Minimum	Typical	Maximum
A _{RREF}	28800	30000	31200
V _{RREF}	1.207	1.232	1.257
RREF	19800	20000	20200

Using values above and maintaining V_{DAC} constant, the error percentage is reduced as shown in the following tables.

Table 15. I_{FS} Error at 1 A, V_{DAC} Fixed and Application Values

Parameter	Minimum	Typical	Maximum
V _{DAC}	0.4107	0.4107	0.4107
A _{RREF}	28800	30000	31200
V _{RREF}	1.207	1.232	1.257
R _{REF}	19800	20000	20200

Table 15. I_{FS} Error at 1 A, V_{DAC} Fixed and Application Values (continued)

Parameter	Minimum	Typical	Maximum
I _{FS} (mA)	940.79	1000	1060.8
Error (%)	-5.93		6.07

Table 16. I_{FS} Error at 400 mA, V_{DAC} Fixed and Application Values

Parameter	Minimum	Typical	Maximum
V _{DAC}	0.9035	0.9035	0.9035
A _{RREF}	28800	30000	31200
V _{RREF}	1.207	1.232	1.257
R _{REF}	19800	20000	20200
I _{FS} (mA)	358.54	400	443.18
Error (%)	-10.4		10.75

Table 17. I_{FS} Error at 200 mA, V_{DAC} Fixed and Application Values

Parameter	Minimum	Typical	Maximum
V _{DAC}	1.0677	1.0677	1.0677
A _{RREF}	28800	30000	31200
V _{RREF}	1.207	1.232	1.257
R _{REF}	19800	20000	20200
I _{FS} (mA)	164.51	200	267.26
Error (%)	-17.83		18.51

By keeping V_{DAC} value fixed or close to be fixed, yields much less error variation. The same calculation can be made using a V_{DAC} value with a ± 3 % variation to compare error percentage difference as shown in the following tables.

Table 18. V_{DAC} 3%, V_{RREF} and A_{RREF} for 24-V Application at 1 A

Parameter	Minimum	Typical	Maximum
V_{DAC}	0.3983	0.4107	0.4230
A _{RREF}	28800	30000	31200
V _{RREF}	1.207	1.232	1.257
R _{REF}	19800	20000	20200
I _{FS} (mA)	926.09	1000	1076.39
Error (%)	-7.4		7.63

Table 19. V_{DAC} 3%, V_{RREF} and A_{RREF} for 24-V Application at 400 mA

Parameter	Minimum	Typical	Maximum
V_{DAC}	0.8764	0.9035	0.9306
A _{RREF}	28800	30000	31200
V_{RREF}	1.207	1.232	1.257
R _{REF}	19800	20000	20200
I _{FS} (mA)	326.52	400	477.16
Error (%)	-18.41		19.24

Table 20. V_{DAC} 3%, V_{RREF} and A_{RREF} for 24-V Application at 200 mA

Parameter	Minimum	Typical	Maximum
V_{DAC}	1.0357	1.0677	1.0998
A _{RREF}	28800	30000	31200
V _{RREF}	1.207	1.232	1.257
R _{REF}	19800	20000	20200
I _{FS} (mA)	126.67	200	277.42
Error (%)	-36.73		38.56

Table 18, Table 19, and Table 20 show values closer to the typical values for both V_{DAC} , A_{RREF} , and V_{RREF} . From all these calculations, the error percentages for the 200 mA current are higher because at those very low values, the minimum change greatly affects the full current equation. One method to improve the low-value current accuracy is to use a combination of the MCU DAC and TRQ pin. This method can help improve the error by reducing the need to use only the DAC voltage to achieve the low full-scale current. An example of this method is to achieve 200 mA using the 400 mA DAC setting and the 50% TRQ setting.

7.3.6 Decay Modes

The DRV8885 decay mode is selected by setting the quad-level DECAY pin to the voltage range in Table 21.

Table 21. Decay Mode Settings

DECAY	INCREASING STEPS	DECREASING STEPS
100 mV Can be tied to ground	Slow decay	Mixed decay: 30% fast
300 mV, 15 kΩ to GND	Mixed decay: 30% fast	Mixed decay: 30% fast
1.0 V, 45 kΩ to GND	Mixed decay: 60% fast	Mixed decay: 60% fast
2.9 V Can be tied to DVDD	Slow decay	Slow decay

Increasing and decreasing current are defined in the chart below. For the Slow/Mixed decay mode, the decay mode is set as slow during increasing current steps and mixed decay during decreasing current steps. In full step mode the decreasing steps decay mode is always used.

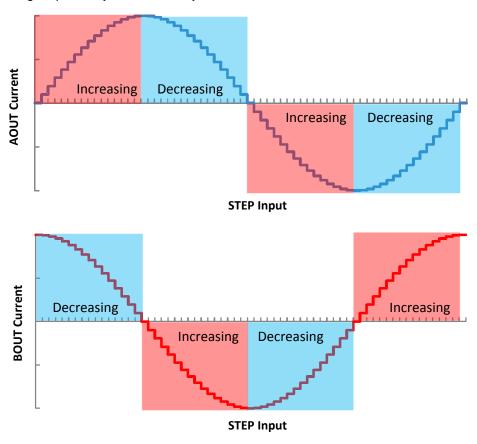


Figure 17. Definition of Increasing and Decreasing Steps

Product Folder Links: DRV8885

Copyright © 2015-2020, Texas Instruments Incorporated

7.3.6.1 Mode 1: Slow Decay for Increasing and Decreasing Current

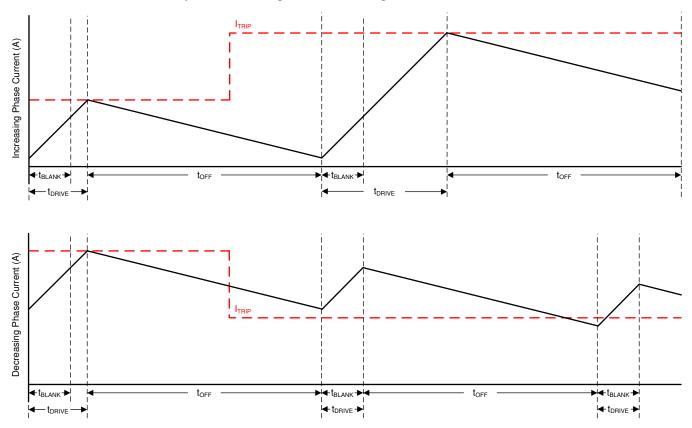


Figure 18. Slow/Slow Decay Mode

During slow decay, both of the low side FETs of the H-bridge are turned on, allowing the current to be recirculated.

Slow decay exhibits the least current ripple of the decay modes for a given t_{OFF} . However on decreasing current steps, slow decay will take a long time to settle to the new l_{TRIP} level because the current decreases very slowly.

Copyright © 2015–2020, Texas Instruments Incorporated

Product Folder Links: DRV8885

7.3.6.2 Mode 2: Slow Decay for Increasing Current, Mixed Decay for Decreasing Current

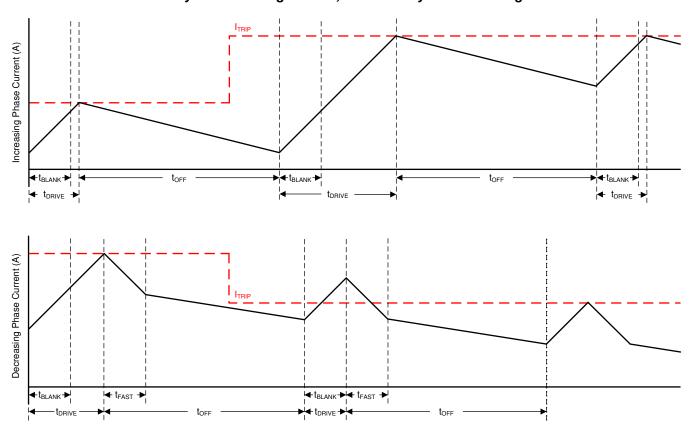


Figure 19. Slow/Mixed Decay Mode

Mixed decay begins as fast decay for a time, followed by slow decay for the remainder of t_{OFF} . In this mode, mixed decay only occurs during decreasing current. Slow decay is used for increasing current.

This mode exhibits the same current ripple as slow decay for increasing current, since for increasing current, only slow decay is used. For decreasing current, the ripple is larger than slow decay, but smaller than fast decay. On decreasing current steps, mixed decay will settle to the new I_{TRIP} level faster than slow decay.

Product Folder Links: DRV8885

26

7.3.6.3 Mode 3: Mixed Decay for Increasing and Decreasing Current

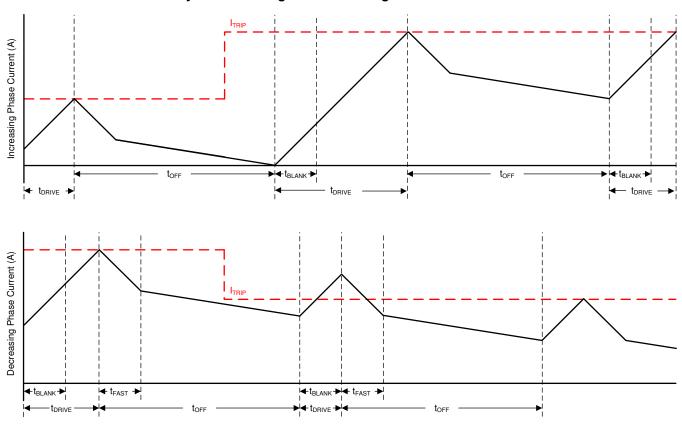


Figure 20. Mixed/Mixed Decay Mode

Mixed decay begins as fast decay for a time, followed by slow decay for the remainder of t_{OFF} . In this mode, mixed decay occurs for both increasing and decreasing current steps.

This mode exhibits ripple larger than slow decay, but smaller than fast decay. On decreasing current steps, mixed decay will settle to the new I_{TRIP} level faster than slow decay.

In cases where current is held for a long time (no input in the STEP pin) or at very low stepping speeds, slow decay may not properly regulate current because no back-EMF is present across the motor windings. In this state, motor current can rise very quickly, and requires an excessively large off-time. Increasing/decreasing mixed decay mode allows the current level to stay in regulation when no back-EMF is present across the motor windings.

7.3.7 Blanking Time

After the current is enabled in an H-bridge, the current sense comparator is ignored for a period of time (t_{BLANK}) before enabling the current sense circuitry. Note that the blanking time also sets the minimum drive time of the PWM. Table 22 shows the blanking time based on the sine table index and the torque DAC setting. Please note that the torque DAC index is not the same as one step as given in Table 3.

Table 22. Adaptive Blanking Time over Torque DAC and Microsteps

$t_{blank} = 1.5 \mu s$	$t_{blank} = 1.0 \mu s$

ONE INDEV	TORQUE DAC (TRQ)				
SINE INDEX	100%	75%	50%		
16	100%	75%	50%		
15	98%	73.5	49%		
14	96%	72%	48%		
13	92%	69%	46%		
12	88%	66%	44%		
11	83%	62.3%	41.5%		
10	77%	57.8%	38.5%		
9	71%	53.3%	35.5%		
8	63%	47.3%	31.5%		
7	56%	42%	28%		
6	47%	35.3	23.5%		
5	38%	28.5	19%		
4	29%	21.8%	14.5%		
3	20%	15%	10%		
2	10%	7.5%	5%		
1	0%	0%	0%		

7.3.8 Charge Pump

A charge pump is integrated in order to supply a high-side NMOS gate drive voltage. The charge pump requires a capacitor between the VM and VCP pins. Additionally a low ESR ceramic capacitor is required between pins CPH and CPL.

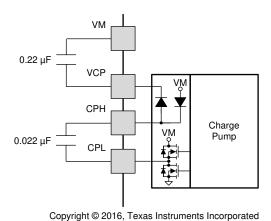


Figure 21. Charge Pump Diagram

Copyright © 2015–2020, Texas Product Folder Links: DRV8885

7.3.9 LDO Voltage Regulator

An LDO regulator is integrated into the DRV8885. DVDD can be used to provide a reference voltage. For proper operation, bypass DVDD to GND using a ceramic capacitor.

The DVDD output is nominally 3.3 V. When the DVDD LDO current load exceeds 1 mA, the output voltage will drop significantly.

The AVDD pin also requires a bypass capacitor to GND. This LDO is for DRV8885 internal use only.

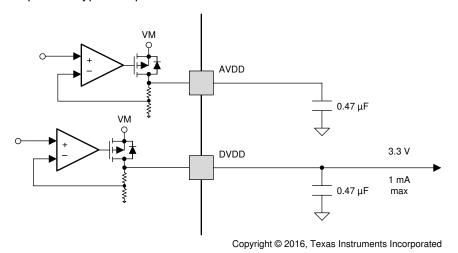


Figure 22. LDO Diagram

If a digital input needs to be tied permanently high (that is, Mx, DECAY or TRQ), it is preferable to tie the input to DVDD instead of an external regulator. This will save power when VM is not applied or in sleep mode: DVDD is disabled and current will not be flowing through the input pulldown resistors. For reference, logic level inputs have a typical pulldown of 100 k Ω , and tri-level inputs have a typical pulldown of 60 k Ω .

7.3.10 Logic and Multi-Level Pin Diagrams

Figure 23 gives the input structure for logic-level pins STEP, DIR, ENABLE, nSLEEP, M1:

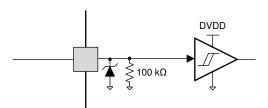


Figure 23. Logic-level Input Pin Diagram

Tri-level logic pins M0 and TRQ have the following structure:

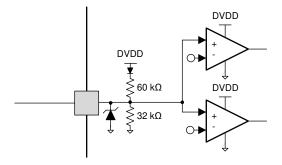


Figure 24. Tri-level Input Pin Diagram

Quad-level logic pin DECAY has the following structure:

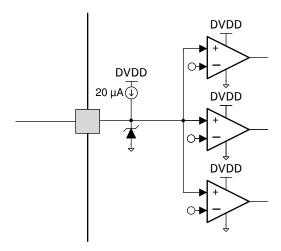


Figure 25. Quad-level Input Pin Diagram

7.3.11 Protection Circuits

The DRV8885 is fully protected against undervoltage, charge pump undervoltage, overcurrent, and overtemperature events.

7.3.11.1 VM Undervoltage Lockout (UVLO)

If at any time the voltage on the VM pin falls below the VM undervoltage lockout threshold voltage (V_{UVLO}), all FETs in the H-bridge will be disabled, the charge pump will be disabled, the logic will be reset, the DVDD regulator is disabled, and the nFAULT pin will be driven low. Operation will resume when VM rises above the UVLO threshold. The nFAULT pin will be released after operation has resumed. Decreasing VM below this undervoltage threshold will reset the indexer position.

7.3.11.2 VCP Undervoltage Lockout (CPUV)

If at any time the voltage on the VCP pin falls below the charge pump undervoltage lockout threshold voltage, all FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. Operation will resume when VCP rises above the CPUV threshold. The nFAULT pin will be released after operation has resumed.

7.3.11.3 Overcurrent Protection (OCP)

An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this analog current limit persists for longer than $t_{\rm OCP}$, all FETs in the H-bridge will be disabled and nFAULT will be driven low.

The driver will be re-enabled after the OCP retry period (t_{RETRY}) has passed. nFAULT becomes high again at after the retry time. If the fault condition is still present, the cycle repeats. If the fault is no longer present, normal operation resumes and nFAULT remains deasserted.

7.3.11.4 Thermal Shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. Once the die temperature has fallen to a safe level operation will automatically resume. The nFAULT pin will be released after operation has resumed.

Table 23. Fault Condition Summary

FAULT	CONDITION	ERROR REPORT	H-BRIDGE	CHARGE PUMP	INDEXER	DVDD	RECOVERY
VM undervoltage (UVLO)	VM < V _{UVLO} (max 7.8 V)	nFAULT	Disabled	Disabled	Disabled	Disabled	VM > V _{UVLO} (max 8.0 V)
VCP undervoltage (CPUV)	VCP < V _{CPUV} (typ VM + 2.0 V)	nFAULT	Disabled	Operating	Operating	Operating	VCP > V _{CPUV} (typ VM + 2.7 V)
Overcurrent (OCP)	I _{OUT} > I _{OCP} (min 2.1 A)	nFAULT	Disabled	Operating	Operating	Operating	t _{RETRY}
Thermal Shutdown (TSD)	T _J > T _{TSD} (min 150°C)	nFAULT	Disabled	Operating	Operating	Operating	T _J < T _{TSD} - T _{HYS} (T _{HYS} typ 20°C)

7.4 Device Functional Modes

The DRV8885 is active unless the nSLEEP pin is brought logic low. In sleep mode the charge pump is disabled, the H-bridge FETs are disabled Hi-Z, and the V3P3 regulator is disabled. Note that t_{SLEEP} must elapse after a falling edge on the nSLEEP pin before the device is in sleep mode. The DRV8885 is brought out of sleep mode automatically if nSLEEP is brought logic high. Note that t_{WAKE} must elapse before the outputs change state after wake-up.

TI recommends to keep the STEP pin logic low when coming out of nSLEEP or when applying power.

If the ENABLE pin is brought logic low, the H-bridge outputs are disabled, but the internal logic will still be active. A rising edge on STEP will advance the indexer, but the outputs will not change state until ENABLE is asserted.

Table 24. Functional Modes Summary

	CONDITION	H-BRIDGE	CHARGE PUMP	INDEXER	V3P3
		II-BRIDGE	CHARGE I OWN	INDEXEN	¥31 3
Operating	8 V < VM < 40 V nSLEEP pin = 1 ENABLE pin = 1	Operating	Operating	Operating	Operating
Disabled	8 V < VM < 40 V nSLEEP pin = 1 ENABLE pin = 0	Disabled	Operating	Operating	Operating
Sleep mode	8 V < VM < 40 nSLEEP pin = 0	Disabled	Disabled	Disabled	Disabled
	VM undervoltage (UVLO)	Disabled	Disabled	Disabled	Disabled
Fault encountered	VCP undervoltage (CPUV)	Disabled	Operating	Operating	Operating
rauit encountered	Overcurrent (OCP)	Disabled	Operating	Operating	Operating
	Thermal Shutdown (TSD)	Disabled	Operating	Operating	Operating

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The DRV8885 is used in bipolar stepper control.

8.2 Typical Application

The following design procedure can be used to configure the DRV8885.

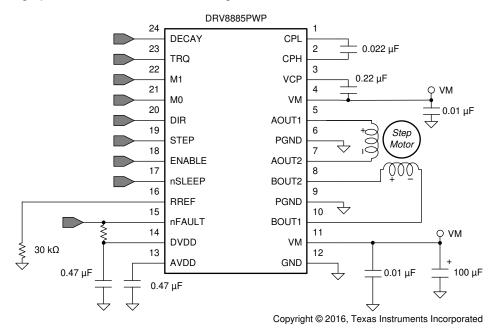


Figure 26. Typical Application Schematic

8.2.1 Design Requirements

Table 25 gives design input parameters for system design.

Table 25. Design Parameters

DESIGN PARAMETER	REFERENCE	EXAMPLE VALUE
Supply voltage	VM	24 V
Motor winding resistance	R_{L}	2.6 Ω/phase
Motor winding inductance	LL	1.4 mH/phase
Motor full step angle	$\theta_{\sf step}$	1.8°/step
Target microstepping level	n _m	1/8 step
Target motor speed	V	120 rpm
Target full-scale current	I _{FS}	1.0 A

8.2.2 Detailed Design Procedure

8.2.2.1 Stepper Motor Speed

The first step in configuring the DRV8885 requires the desired motor speed and microstepping level. If the target application requires a constant speed, then a square wave with frequency $f_{\rm step}$ must be applied to the STEP pin.

If the target motor speed is too high, the motor will not spin. Make sure that the motor can support the target speed.

For a desired motor speed (v), microstepping level (n_m), and motor full step angle (θ_{step}),

$$f_{\text{step}} \text{ (steps/s)} = \frac{\text{v (rpm)} \times 360 (^{\circ}/\text{rot})}{\theta_{\text{step}} (^{\circ}/\text{step}) \times n_{\text{m}} \text{ (steps/microstep)} \times 60 \text{ (s/min)}}$$
(5)

 θ_{step} can be found in the stepper motor data sheet, or written on the motor itself.

For the DRV8885, the microstepping level is set by the Mx pins and can be any of the settings in the table below. Higher microstepping will mean a smother motor motion and less audible noise, but will increase switching losses and require a higher fstep to achieve the same motor speed.

STEP MODE M1 MO 0 Full step (2-phase excitation) with 71% current 1/16 step 1 0 1/2 step 1 1 1/4 step 0 Z 1/8 step Ζ Non-circular 1/2 step

Table 26. Microstepping Indexer Settings

Example: Target 120 rpm at 1/8 microstep mode. The motor is 1.8°/step

$$f_{\text{step}} \text{ (steps/s)} = \frac{120 \text{ rpm} \times 360^{\circ}/\text{rot}}{1.8^{\circ}/\text{step} \times 1/8 \text{ steps/microstep} \times 60 \text{ s/min}} = 3.2 \text{ kHz}$$
(6)

8.2.2.2 Current Regulation

In a stepper motor, the full-scale current (I_{FS}) is the maximum current driven through either winding. This quantity will depend on the RREF resistor and the TRQ setting. During stepping, I_{FS} defines the current chopping threshold (I_{TRIP}) for the maximum current step.

$$I_{FS}(A) = \frac{A_{RREF}(kA\Omega)}{RREF(k\Omega)} = \frac{30(kA\Omega) \times TRQ\%}{RREF(k\Omega)}$$
(7)

Note that I_{FS} must also follow Equation 8 in order to avoid saturating the motor. VM is the motor supply voltage, and R_L is the motor winding resistance.

$$I_{FS} (A) < \frac{VM (V)}{R_L (\Omega) + 2 \times R_{DS(ON)} (\Omega)}$$
(8)


8.2.2.3 Decay Modes

The DRV8885 supports three different decay modes: slow decay, slow/mixed and all mixed decay. The current through the motor windings is regulated using an adjustable fixed-time-off scheme. This means that after any drive phase, when a motor winding current has hit the current chopping threshold (I_{TRIP}), the DRV8885 will place the winding in one of the three decay modes for I_{OFF} . After I_{OFF} , a new drive phase starts.

The blanking time t_{BLANK} defines the minimum drive time for the PWM current chopping. I_{TRIP} is ignored during t_{BLANK} , so the winding current may overshoot the trip level.

TEXAS INSTRUMENTS

8.2.3 Application Curves

9 Power Supply Recommendations

The DRV8885 is designed to operate from an input voltage supply (VM) range between 8 V and 35 V. A 0.01 µF ceramic capacitor rated for VM must be placed at each VM pin as close to the DRV8885 as possible. In addition, a bulk capacitor must be included on VM.

9.1 Bulk Capacitance

Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.

The amount of local capacitance needed depends on a variety of factors, including:

- · The highest current required by the motor system
- The power supply's capacitance and ability to source current
- · The amount of parasitic inductance between the power supply and motor system
- The acceptable voltage ripple
- The type of motor used (brushed DC, brushless DC, stepper)
- · The motor braking method

The inductance between the power supply and motor drive system will limit the rate current can change from the power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage remains stable and high current can be quickly supplied.

The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate sized bulk capacitor.

The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases when the motor transfers energy to the supply.

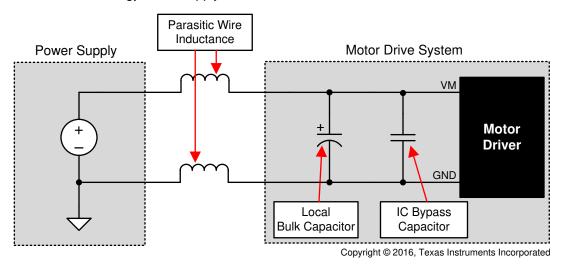


Figure 31. Example Setup of Motor Drive System With External Power Supply

10 Layout

10.1 Layout Guidelines

The VM terminal should be bypassed to GND using a low-ESR ceramic bypass capacitor with a recommended value of 0.01 μ F rated for VM. This capacitor should be placed as close to the VM pin as possible with a thick trace or ground plane connection to the device GND pin.

The VM pin must be bypassed to ground using a bulk capacitor rated for VM. This component may be an electrolytic.

A low-ESR ceramic capacitor must be placed in between the CPL and CPH pins. A value of $0.022~\mu F$ rated for VM is recommended. Place this component as close to the pins as possible.

A low-ESR ceramic capacitor must be placed in between the VM and VCP pins. A value of 0.22 µF rated for 16 V is recommended. Place this component as close to the pins as possible.

Bypass AVDD and DVDD to ground with a ceramic capacitor rated 6.3 V. Place this bypassing capacitor as close to the pin as possible.

10.2 Layout Example

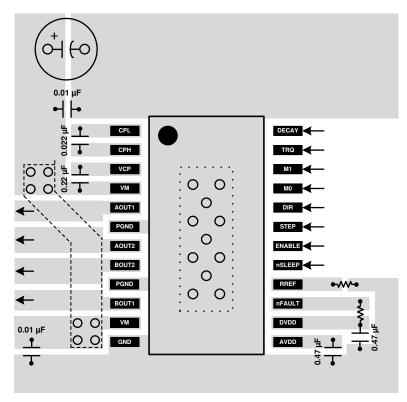


Figure 32. Layout Recommendation

Product Folder Links: DRV8885

Copyright © 2015-2020, Texas Instruments Incorporated

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, Calculating Motor Driver Power Dissipation application report
- Texas Instruments, Current Recirculation and Decay Modes application report
- Texas Instruments, Full-Scale Current Adjustment Using a Digital-to-Analog Converter (DAC) application report
- Texas Instruments, DRV8885 Evaluation Module (EVM) User's Guide
- Texas Instruments, PowerPAD™ Made Easy application report
- Texas Instruments, PowerPAD™ Thermally Enhanced Package application report
- Texas Instruments, Understanding Motor Driver Current Ratings application report

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.4 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: DRV8885

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
DRV8885PWP	Obsolete	Production	HTSSOP (PWP) 24	-	-	Call TI	Call TI	-40 to 125	DRV8885
DRV8885PWPR	Active	Production	HTSSOP (PWP) 24	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	DRV8885
DRV8885PWPR.A	Active	Production	HTSSOP (PWP) 24	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	DRV8885
DRV8885RHRR	Active	Production	WQFN (RHR) 28	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	DRV8885
DRV8885RHRR.A	Active	Production	WQFN (RHR) 28	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	DRV8885
DRV8885RHRT	Obsolete	Production	WQFN (RHR) 28	-	-	Call TI	Call TI	-40 to 125	DRV8885

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

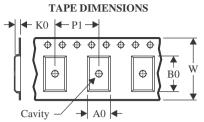
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM


www.ti.com 9-Nov-2025

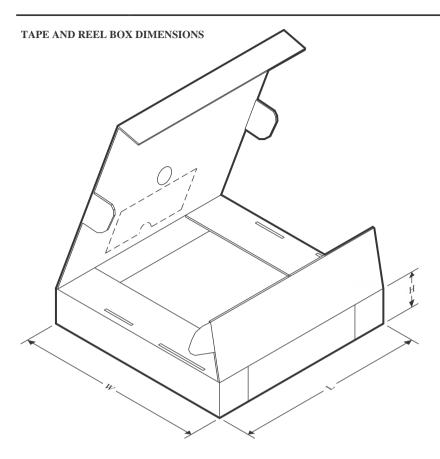
PACKAGE MATERIALS INFORMATION

www.ti.com 21-Mar-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

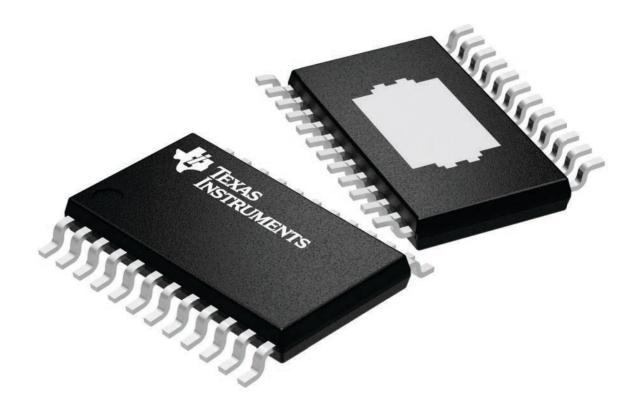


*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DRV8885PWPR	HTSSOP	PWP	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
DRV8885RHRR	WQFN	RHR	28	3000	330.0	12.4	3.8	5.8	1.2	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

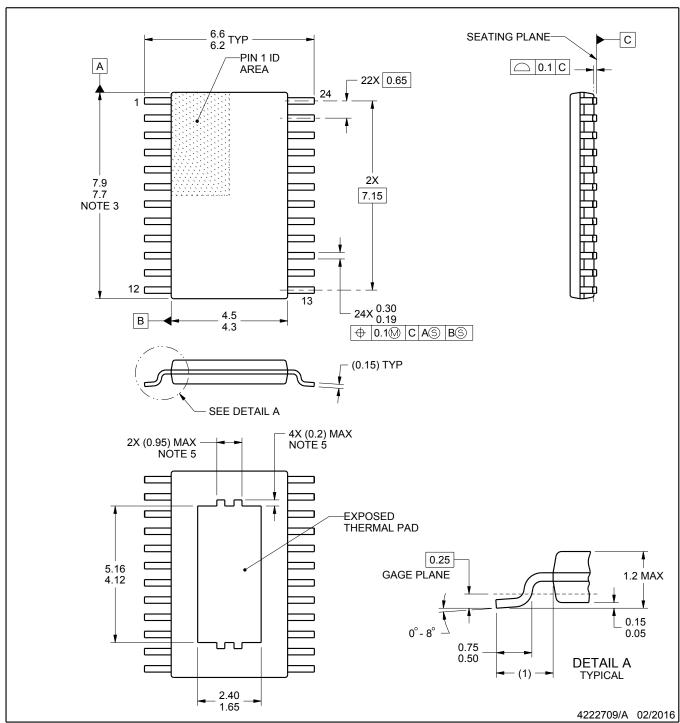
www.ti.com 21-Mar-2025


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DRV8885PWPR	HTSSOP	PWP	24	2000	350.0	350.0	43.0
DRV8885RHRR	WQFN	RHR	28	3000	367.0	367.0	35.0

4.4 x 7.6, 0.65 mm pitch

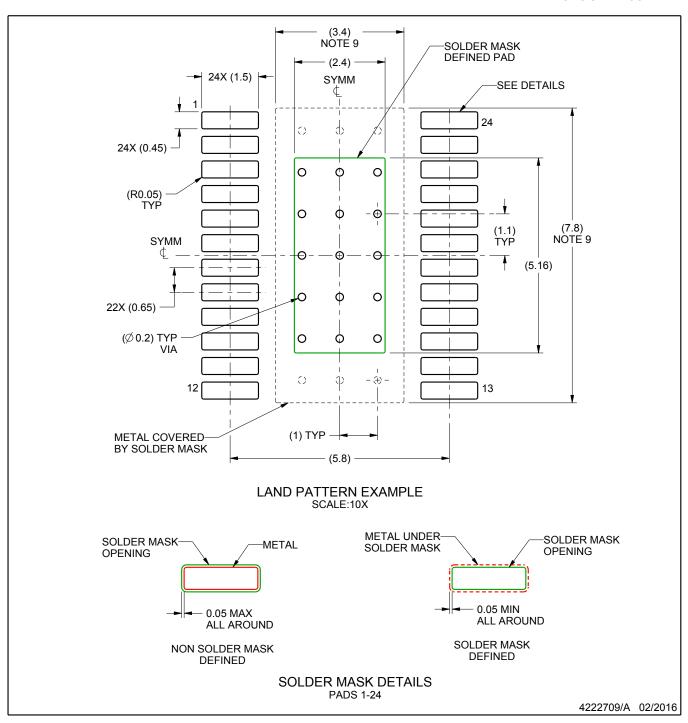
PLASTIC SMALL OUTLINE


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

·in the state of t

PowerPAD™ TSSOP - 1.2 mm max height

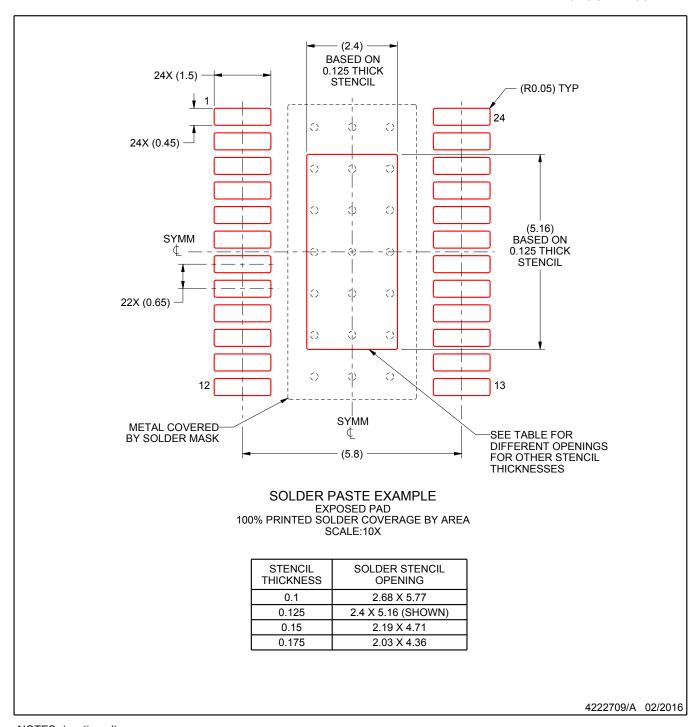
PLASTIC SMALL OUTLINE


NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.
- 5. Features may not be present and may vary.

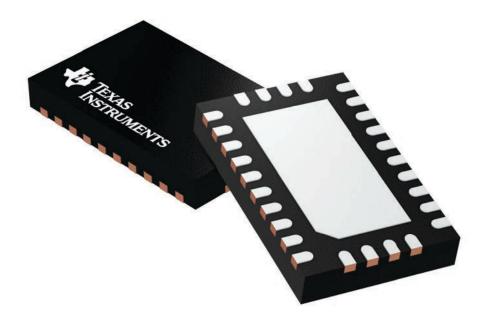
PLASTIC SMALL OUTLINE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.

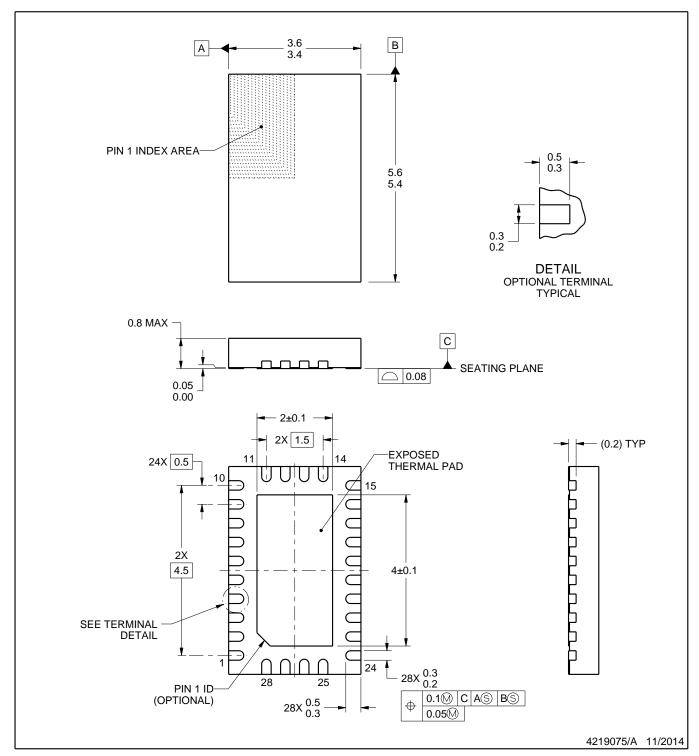
PLASTIC SMALL OUTLINE


NOTES: (continued)

- 10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 11. Board assembly site may have different recommendations for stencil design.

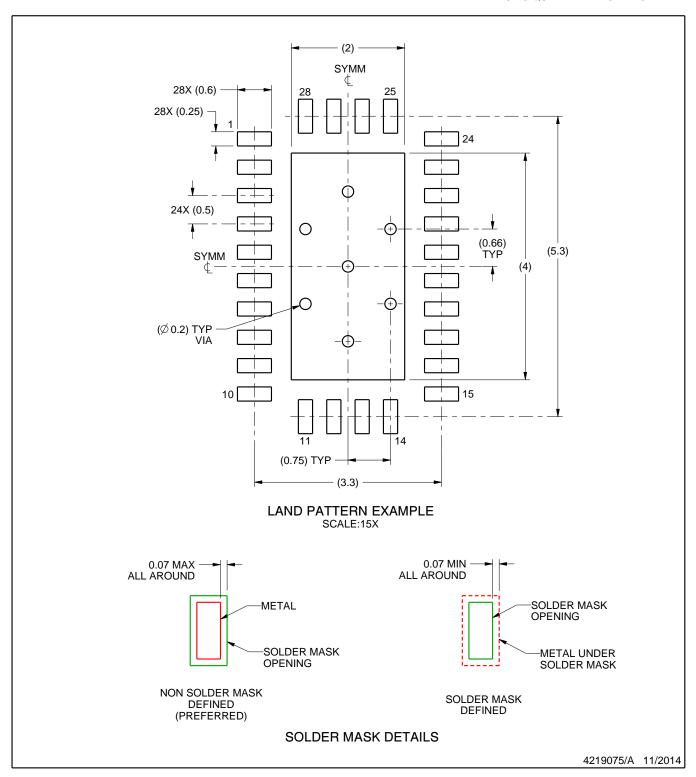
3.5 x 5.5, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4210249/B

PLASTIC QUAD FLATPACK - NO LEAD


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025