
DLPC6422 DLP® Digital Controller

1 Features

- Digital controller for DLP78TUV (.78 inch 8.3megapixel) DMD
 - Dual controller Up to 4K at 60Hz
 - Single controller Up to 1080p at 120Hz

Provides a single 30-bit or dual 60-bit input pixel interface:

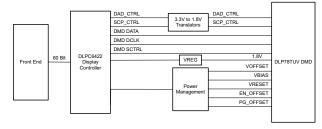
- YUV, YCrCb, RGB data format
- RGB data format
- 8, 9, or 10 bits per color
- Pixel clock up to 320MHz in dual 30-bit mode on a single controller
- Pixel clock up to 600MHz in dual 30-bit mode on dual controllers
- High-speed, low-voltage differential signaling (LVDS) DMD interface
- 150MHz ARM946[™] microprocessor
- Microprocessor peripherals
 - Programmable pulse-width modulation (PWM) and capture timers
 - Three I²C ports, three UART ports, and three SSP ports
 - One USB 1.1 secondary port
- Image processing
 - Multiple image processing algorithms
 - Frame rate conversion
 - Color coordinate adjustment
 - Programmable color space conversion
 - Programmable degamma and splash
- Integrated clock generation circuitry
 - Operates on a single 20MHz crystal
 - Integrated spread spectrum clocking

Simplified Schematic for Dual Controller System

- External memory support
 - Parallel flash for microprocessor and PWM sequence
- 516-pin plastic ball grid array package
- Supports LED and laser hybrid illuminations

2 Applications

- 3D printers
- Laser marking
- Laser manufacturing
- Digital imaging and light exposure


3 Description

The DLPC6422 is a digital light controller for the DLP® imaging chipset. The chipset comprises the DLPC6422 light controller, the DLP digital micromirror device (DMD) DLP78TUV, the DLPA100 power management device, and the DLPA300 DMD micromirror driver (refer to the DMD data sheet). This system is a great fit for DLP 3D Print and other imaging applications that require high speed, high resolution, UV wavelength, high light throughput, and a robust system. For reliable operation, the DLPC6422 light controller must always be used with a DLP DMD DLP78TUV and respective DLP power management devices.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
DLPC6422	ZPC (516)	27.00mm × 27.00mm

- For more information, see Section 10. (1)
- The package size (length × width) is a nominal value and (2) includes pins, where applicable.

Simplified Schematic for Single Controller System

Table of Contents

1 Features	
2 Applications	1
3 Description	
4 Pin Configuration and Functions	
5 Specifications	
5.1 Absolute Maximum Ratings	
5.2 Recommended Operating Conditions	
5.3 Thermal Information	
5.4 Electrical Characteristics	
5.5 ESD Ratings	
5.6 System Oscillators Timing Requirements	
5.7 Test and Reset Timing Requirements	17
5.8 JTAG Interface: I/O Boundary Scan Application	
Timing Requirements	
5.9 Port 1 Input Pixel Timing Requirements	18
5.10 Port 3 Input Pixel Interface (through GPIO)	
Timing Requirements	
5.11 DMD LVDS Interface Timing Requirements	20
5.12 Synchronous Serial Port (SSP) Interface	
Timing Requirements	20
5.13 Programmable Output Clocks Switching	
Characteristics	22
5.14 Synchronous Serial Port Interface (SSP)	
Switching Characteristics	22
5.15 JTAG Interface: I/O Boundary Scan Application	
Switching Characteristics	23

6 Detailed Description	.26
6.1 Overview	.26
6.2 Functional Block Diagram	.26
6.3 Feature Description	
6.4 Device Functional Modes	
7 Application and Implementation	
7.1 Application Information	
7.2 Typical Application	
7.3 Power Supply Requirements and	•
Recommendations	33
7.4 Layout	
8 Device and Documentation Support	
8.1 Third-Party Products Disclaimer	
8.2 Device Support	
8.3 Documentation Support	
8.4 Receiving Notification of Documentation Updates	
8.5 Support Resources	
8.6 Trademarks	
8.7 Electrostatic Discharge Caution	
8.8 Glossary	
9 Revision History	. 44
10 Mechanical, Packaging, and Orderable	
Information	45

4 Pin Configuration and Functions

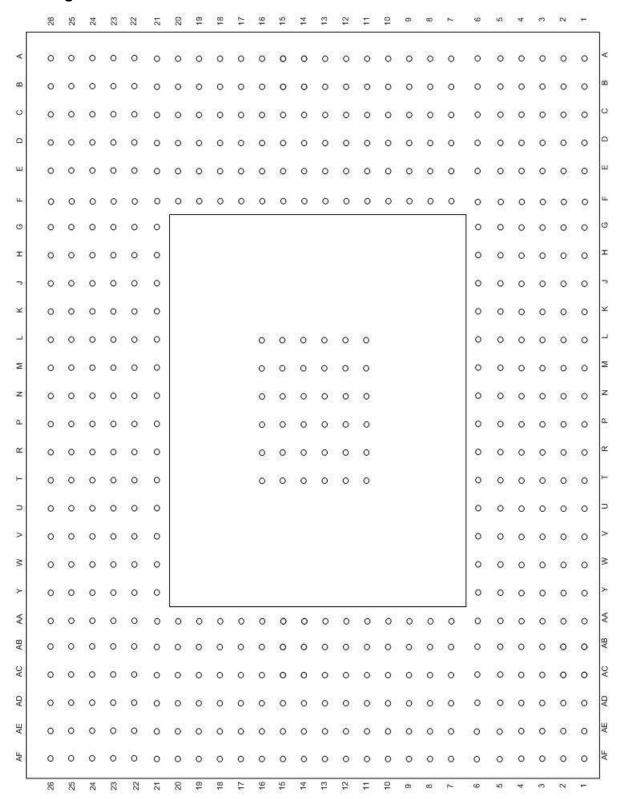


Figure 4-1. Pin Configuration

Table 4-1. Pin Functions

PIN ⁽¹⁾				
NAME	NO.	TYPE ⁽²⁾	DESCRIPTION	
POSENSE	P22	14	Power-on sense, high true, signal provided from an external voltage monitor circuit. This signal is driven active (high) when all ASIC supply voltages have reached 90% of the specified minimum voltage. This signal is driven inactive (low) after the falling edge of PWRGOOD as specified.	
PWRGOOD	T26	14	Power good, high true, signal from external power supply or voltage monitor. A high-value indicates all power is within operating voltage specs and the system is safe to exit its reset state. A transition from high to low is used to indicate that the controller or DMD supply voltage drops below the rated minimum level. This transition must occur prior to the supply voltage drop as specified. During this interval, POSENSE must remain active high. This is a warning of an imminent power loss condition. This warning is required to enhance long term DMD reliability. A DMD park followed by a full controller reset is performed by the DLPC6422 controller when PWRGOOD goes low for the specified minimum, protecting the DMD. This minimum deassertion time is used to protect the input from glitches. Following this the DLPC6422 controller is held in its reset state as long as PWRGOOD is low. PWRGOOD must be driven high for normal operation. The DLPC6422 controller acknowledges PWRGOOD as active once it has been driven high for a specified minimum time. Uses hysteresis	
EXT_ARTZ	T24	O ₂	General purpose, low true, reset output. This output is asserted low immediately upon asserting power-up reset (POSENSE) low and remains low while POSENSE remains low. EXT_ARSTZ continues to be held low after the release of power-up reset (that is, POSENSE set high) until released by software. EXT_ARSTZ is also asserted low approximately 5µs after the detection of a PWRGOOD or any internally generated reset. In all cases, it remains active for a minimum of 2ms. Note that the ASIC contains a software register that can be used to independently drive this output.	
MTR_ARTZ	T25	O ₂	Color wheel motor controller, low true, reset output. This output is asserted low immediately upon asserting power-up reset (POSENSE) low and remains low while POSENSE remains low. MTR_ARSTZ continues to be held low after the release of power-up reset (that is, POSENSE is set high) until released by software. MTR_ARSTZ is also optionally asserted low approximately 5µs after the detection of a PWRGOOD or any internally generated reset. In all cases, it remains active for a minimum of 2ms. Note that the ASIC contains a software register that can be used to independently drive this output. The ASIC also contains a software register that can be used to disable the assertion of motor reset upon a lamp strike reset.	
BOARD LEVEL TEST	T AND INITIALIZA	TION (3)		
TDI	N25	I ₄	JTAG serial data in	
TCK	N24	I ₄	JTAG serial data clock	
TMS1	P25	I ₄	JTAG test mode select	
TMS2	P26	I ₄	JTAG test mode select	
TDO1	N23	O ₅	JTAG serial data out	
TDO2	N22	O ₅	JTAG serial data out	
TRSTZ	M23	I ₄	JTAG reset. This signal includes an internal pullup and utilizes hysteresis. This pin is pulled high (or left unconnected) when the JTAG interface is in use for boundary scan or ARM debug. Connect this pin to ground, otherwise. Failure to tie this pin low during normal operation causes startup and initialization problems.	
RTCK	E4	O ₂	JTAG return clock	
ETM_PIPESTAT_2	A4	B ₂		
ETM_PIPESTAT_1	B5	B ₂	ETM trace port pipeline status. Indicates the pipeline status of the ARM core. These signals include internal pulldowns.	
ETM_PIPESTAT_0	C6	B ₂		
ETM_TRACESYNC	A5	B ₂	ETM trace port synchronization signal, indicating the start of a branch sequence on the trace packet port. This signal includes an internal pulldown.	
ETM_TRACECLK	D7	B ₂	ETM trace port clock. This signal includes an internal pulldown.	
ICTSEN	M24	I ₄	IC tristate enable (active high). Asserting high tristates all outputs except the JTAG interface. This signal includes an internal pulldown, however an external pulldown is recommended for added protection. Uses hysteresis	
TSTPT_7	E8	B ₂	Test pin 7. This signal provides internal pulldowns. Normal use: reserved for test output. Recommended to be left open or unconnected for normal use	
TSTPT_6	B4	B ₂	Test pin 6. This signal provides internal pulldowns. Normal use: reserved for test output. Recommended to be left open or unconnected for normal use	
			Test pin 5. This signal provides internal pulldowns.	
TSTPT_5	C4	B ₂	Normal use: reserved for test output. Recommended to be left open or unconnected for normal use	
TSTPT_4	E7	B ₂	Test pin 4. This signal provides internal pulldowns. Normal use: reserved for test output. Recommended to be left open or unconnected for normal use	
TSTPT_3	D5	B ₂	Test pin 3. This signal provides internal pulldowns. Normal use: reserved for test output. Recommended to be left open or unconnected for normal use.	
TSTPT_2	E6	B ₂	Test pin 2. This signal provides internal pulldowns. Additionally, it is recommended that jumper options be provided for connecting TSTPT(2:0) to external pullups.	
TSTPT_1	D3	B ₂	Test pin 1. This signal provides internal pulldowns. Additionally, it is recommended that jumper options be provided for connecting TSTPT(2:0) to external pullups.	
TSTPT_0	C2	B ₂	Test pin 0. This signal provides internal pulldowns. Additionally, it is recommended that jumper options be provided for connecting TSTPT(2:0) to external pullups.	
DEVICE TEST			•	
HW_TEST_EN	M25	I ₄	Device manufacturing test enable. This signal includes an internal pulldown and utilizes hysteresis. It is recommended that this signal be tied to an external ground in normal operation for added protection.	
ANALOG FRONT EN	D			

PIN ⁽¹⁾			Table 4-1. Pin Functions (continued)		
NAME	NO.	TYPE ⁽²⁾	DESCRIPTION		
NAME	NO.		Applica front and LOW true, reget output. This output is accorded law immediately upon according newer up reget		
AFE_ARSTZ	AC12	O ₂	Analog front end, LOW true, reset output. This output is asserted low immediately upon asserting power-up reset (POSENSE) low and remains low while POSENSE remains low. AFE_ARSTZ continues to be held low after the release of power-up reset (that is, POSENSE set high) until released by software. AFE_ARSTZ is also asserted low approximately 5µs after the detection of a PWRGOOD or any internally generated reset. In all cases, it remains active for a minimum of 2ms after the reset condition is released by software. Note that the ASIC contains a software register that can be used to independently drive this output.		
AFE_CLK	AD12	O ₆	Analog front end external clock output for video decoder operation. Supports programmable output drive		
AFE_IRQ	AB13	I ₄	Analog front end interrupt (Active High). This signal includes an internal pulldown and utilizes hysteresis.		
PORT1 and PORT	2 CHANNEL DATA a	and CONTROL (4) (5	() (6) (7)		
P_CLK1	AE22	I ₄	Input Port Data Pixel Write Clock (selectable as rising or falling edge triggered, and which port it is associated with (A or B or (A and B)). This signal includes an internal pulldown.		
P_CLK2	W25	l ₄	Input Port Data Pixel Write Clock (selectable as rising or falling edge triggered, and which port it is associated with (A or B or (A and B)). This signal includes an internal pulldown.		
P_CLK3	AF23	l ₄	Input Port Data Pixel Write Clock (selectable as rising or falling edge triggered, and which port it is associated with (A or B or (A and B)). This signal includes an internal pulldown.		
P_DATAEN1	AF22	l ₄	Active High Data Enable. Selectable as to which port it is associated with (A or B or (A and B)). This signal includes an internal pulldown.		
P_DATAEN2	W24	l ₄	Active High Data Enable. Selectable as to which port it is associated with (A or B or (A and B)). This signal includes an internal pulldown.		
P1_A_9	AD15	I ₄	Port 1 A Channel Input Pixel Data (bit weight 128)		
P1_A_8	AE15	l ₄	Port 1 A Channel Input Pixel Data (bit weight 64)		
P1_A_7	AE14	14	Port 1 A Channel Input Pixel Data (bit weight 32)		
P1_A_6	AE13	I ₄	Port 1 A Channel Input Pixel Data (bit weight 16)		
P1_A_5	AD13	I ₄	Port 1 A Channel Input Pixel Data (bit weight 8)		
P1_A_4	AC13	14	Port 1 A Channel Input Pixel Data (bit weight 4)		
P1_A_3	AF14	I ₄	Port 1 A Channel Input Pixel Data (bit weight 2)		
P1_A_2	AF13	I ₄	Port 1 A Channel Input Pixel Data (bit weight 1)		
P1_A_1	AF12	I ₄	Port 1 A Channel Input Pixel Data (bit weight 0.5)		
P1_A_0	AE12	I ₄	Port 1 A Channel Input Pixel Data (bit weight 0.25)		
P1_B_9	AF18	l ₄	Port 1B Channel Input Pixel Data (bit weight 128)		
P1_B_8	AB18	I ₄	Port 1B Channel Input Pixel Data (bit weight 64)		
P1_B_7	AC15	I ₄	Port 1B Channel Input Pixel Data (bit weight 32)		
P1_B_6	AC16	14	Port 1B Channel Input Pixel Data (bit weight 16)		
P1_B_5	AD16	I ₄	Port 1B Channel Input Pixel Data (bit weight 8)		
P1_B_4	AE16	I ₄	Port 1B Channel Input Pixel Data (bit weight 4)		
P1_B_3	AF16	14	Port 1B Channel Input Pixel Data (bit weight 2)		
P1_B_2	AF15	l ₄	Port 1B Channel Input Pixel Data (bit weight 1)		
P1_B_1	AC14	l ₄	Port 1B Channel Input Pixel Data (bit weight 0.5)		
P1_B_0	AD14	I ₄	Port 1B Channel Input Pixel Data (bit weight 0.25)		
P1_C_9	AD20	I ₄	Port 1 C Channel Input Pixel Data (bit weight 128)		
P1_C_8	AE20		Port 1 C Channel Input Pixel Data (bit weight 126)		
P1 C 7		l ₄	Port 1 C Channel Input Pixel Data (bit weight 32)		
	AE21	l ₄			
P1_C_6	AF21	l ₄	Port 1 C Channel Input Pixel Data (bit weight 16)		
P1_C_5	AD19	I ₄	Port 1 C Channel Input Pixel Data (bit weight 8)		
P1_C_4	AE19	l ₄	Port 1 C Channel Input Pixel Data (bit weight 4)		
P1_C_3	AF19	l ₄	Port 1 C Channel Input Pixel Data (bit weight 2)		
P1_C_2	AF20	l ₄	Port 1 C Channel Input Pixel Data (bit weight 1)		
P1_C_1	AC19	l ₄	Port 1 C Channel Input Pixel Data (bit weight 0.5)		
P1_C_0	AE18	I ₄	Port 1 C Channel Input Pixel Data (bit weight 0.25)		
P1_VSYNC	AC20	B ₂	Port 1 Vertical Sync. This signal includes an internal pulldown. While intended to be associated with Port 1, it can be programmed for use with Port 2.		
P1_HSYNC	AD21	B ₂	Port 1 Horizontal Sync. This signal includes an internal pulldown. While intended to be associated with Port 1, it can be programmed for use with Port 2.		
P2_A_9	AD26	I ₄	Port 2 A Channel Input Pixel Data (bit weight 128)		
P2_A_8	AD25	I ₄	Port 2 A Channel Input Pixel Data (bit weight 64)		
P2_A_7	AB21	I ₄	Port 2 A Channel Input Pixel Data (bit weight 32)		
P2_A_6	AC22	I ₄	Port 2 A Channel Input Pixel Data (bit weight 16)		
P2_A_5	AD23	I ₄	Port 1 A Channel Input Pixel Data (bit weight 8)		
L	1	I.	1		

			Table 4-1. Pin Functions (continued)			
	IN ⁽¹⁾	TYPE(2)	DESCRIPTION			
NAME	NO.					
P2_A_4	AB20	I ₄	Port 2 A Channel Input Pixel Data (bit weight 4)			
P2_A_3	AC21	14	Port 2 A Channel Input Pixel Data (bit weight 2)			
P2_A_2	AD22	I ₄	Port 2 A Channel Input Pixel Data (bit weight 1)			
P2_A_1	AE23	I ₄	Port 2 A Channel Input Pixel Data (bit weight 0.5)			
P2_A_0	AB19	I ₄	Port 2 A Channel Input Pixel Data (bit weight 0.25)			
P2_B_9	Y22	14	Port 2 B Channel Input Pixel Data (bit weight 128)			
P2_B_8	AB26	I ₄	Port 2 B Channel Input Pixel Data (bit weight 64)			
P2_B_7	AA23	I ₄	Port 2 B Channel Input Pixel Data (bit weight 32)			
P2_B_6	AB25	I ₄	Port 2 B Channel Input Pixel Data (bit weight 16)			
P2_B_5	AA22	I ₄	Port 2 B Channel Input Pixel Data (bit weight 8)			
P2_B_4	AB24	I ₄	Port 2 B Channel Input Pixel Data (bit weight 4)			
P2 B 3	AC26	14	Port 2 B Channel Input Pixel Data (bit weight 2)			
P2 B 2	AB23	14	Port 2 B Channel Input Pixel Data (bit weight 1)			
P2 B 1	AC25	l ₄	Port 2 B Channel Input Pixel Data (bit weight 0.5)			
P2 B 0	AC24	14	Port 2 B Channel Input Pixel Data (bit weight 0.25)			
P2_C_9	W23	l ₄	Port 2 C Channel Input Pixel Data (bit weight 128)			
P2_C_8	V22	l ₄	Port 2 B Channel Input Pixel Data (bit weight 120)			
			· · · · · · · · · · · · · · · · · · ·			
P2_C_7	Y26	I ₄	Port 2 C Channel Input Pixel Data (bit weight 32)			
P2_C_6	Y25	I ₄	Port 2 B Channel Input Pixel Data (bit weight 16)			
P2_C_5	Y24	l ₄	Port 2 C Channel Input Pixel Data (bit weight 8)			
P2_C_4	Y23	I ₄	Port 2 B Channel Input Pixel Data (bit weight 4)			
P2_C_3	W22	I ₄	Port 2 C Channel Input Pixel Data (bit weight 2)			
P2_C_2	AA26	l ₄	Port 2 B Channel Input Pixel Data (bit weight 1)			
P2_C_1	AA25	I ₄	Port 2 C Channel Input Pixel Data (bit weight 0.5)			
P2_C_0	AA24	14	Port 2 B Channel Input Pixel Data (bit weight 0.25)			
P2_VSYNC	U22	B ₂	Port 2 Vertical Sync. This signal includes an internal pulldown. While intended to be associated with Port 2, it can be programmed for use with Port1.			
P2_HSYNC	W26	B ₂	Port 2 Horizontal Sync. This signal includes an internal pulldown. While intended to be associated with Port 2, it can be programmed for use with Port1.			
ALF INPUT PORT	CONTROL					
ALF_VSYNC	AF11	I ₄	Autolock dedicated vertical sync. This signal includes an internal pulldown and uses hysteresis.			
ALF_HSYNC	AD11	I ₄	Autolock dedicated horizontal sync. This signal includes an internal pulldown and uses hysteresis.			
ALF_CSYNC	AE11	I ₄	Autolock dedicated composite sync (sync on green). This signal includes an internal pulldown and uses hysteresis.			
DMD RESET and I	BIAS CONTROL					
DADOEZ	AE7	O ₅	DAD (DLPA200 / DLPA300)Output Enable (active low)			
DADADDR 3	AD6	O ₅				
DADADDR 2	AE5	O ₅	_			
DADADDR 1	AF4	O ₅	DAD address			
DADADDR 0	AB8	O ₅	_			
DADADDK_0 DADMODE_1	AD7	O ₅				
			— DAD modes			
DADSEL 1	AE6	O ₅				
DADSEL_1	AE4	O ₅	DAD select			
DADSEL_0	AC7	O ₅	DAD shales			
DADSTRB	AF5	O ₅	DAD strobe			
DAD_INTZ	AC8	l ₄	DAD interrupt (active low). This signal typically requires an external pullup and uses hysteresis.			
DMD LVDS INTER						
DCKA_P	V4	07	DMD, LVDS I/F channel A, differential clock			
DCKA_N	V3	O ₇				
SCA_P	V2	O ₇	DMD, LVDS I/F channel A, differential serial control			
SCA_N	V1	O ₇	,			
DDA_P_15	P4	O ₇	DMD, LVDS I/F channel A, differential serial data			
DDA_N_15	P3	O ₇	DMD, LVDS I/F channel A, differential serial data			
DDA_P_14	P2	O ₇	DMD, LVDS I/F channel A, differential serial data			
DDA_N_14	P1	O ₇	DMD, LVDS I/F channel A, differential serial data			
DDA_N_12	R1	O ₇	DMD, LVDS I/F channel A, differential serial data			
	-	-				

PIN ⁽¹⁾			Table 4-1. Pin Functions (continued)	
NAME	NO.	TYPE(2)	DESCRIPTION	
DDA_P_11	T4	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_N_11	Т3	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_P_10	T2	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_N_10	T1	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_P_9	U4	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_N_9	U3	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_P_8	U2	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_N_8	U1	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_P_7	W4	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_N_7	W3	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_P_6	W2	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_N_6	W1	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_P_5	Y2	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_N_5	Y1	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_P_4	Y4	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_N_4	Y3	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_P_3	AA2	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_N_3	AA1	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_P_2	AA4	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_N_2	AA3	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_P_1	AB2	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_N_1	AB1	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_P_0	AC2	O ₇	DMD, LVDS I/F channel A, differential serial data	
DDA_N_0	AC1	O ₇	DMD, LVDS I/F channel A, differential serial data	
DCKB_P	J3	O ₇	DMD, LVDS I/F channel A, differential clock	
DCKB_N	J4	O ₇	DMD, LVDS I/F channel A, differential clock	
SCB_P	J1	O ₇	DMD, LVDS I/F channel A, differential serial control	
SCB_N	J2	O ₇	DMD, LVDS I/F channel A, differential serial control	
DDB_P_15	N1	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_15	N2	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_P_14	N3	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_14	N4	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_P_13	M2	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_13	M1	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_P_12	M3	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_12	M4	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_P_11	L1	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_11	L2	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_P_10	L3	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_10	L4	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_P_9	K1	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_9	K2	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_P_8	К3	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_8	K4	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_P_7	H1	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_7	H2	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_P_6	Н3	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_6	H4	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_P_5	G1	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_5	G2	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_P_4	G3	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_4	G4	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_P_3	F1	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_3	F2	O ₇	DMD, LVDS I/F channel B, differential serial data	

PIN ⁽¹⁾			rable 4-1.1 in Functions (continued)	
NAME	NO.	TYPE ⁽²⁾	DESCRIPTION	
DDB_P_2	F3	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_2	F4	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_P_1	E1	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_1	E2	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_P_0	D1	O ₇	DMD, LVDS I/F channel B, differential serial data	
DDB_N_0	D2	O ₇	DMD, LVDS I/F channel B, differential serial data	
PROGRAM MEMOR	RY (Flash and SRAI	M) INTERFACE		
PM_CSZ_0	D13	O ₅	Input Bus D Data bit 3. 100Ω internal LVDS termination	
PM_CSZ_1	E12	O ₅		
PM_CSZ_2	A13	O ₅	Input Bus D Data bit 5. 100Ω internal LVDS termination	
PM_ADDR_22 (GPIO 36)	A12	B ₅		
PM_ADDR_21 (GPIO 35)	E11	B ₅	Input Bus D Data bit 10. 100Ω internal LVDS termination	
PM_ADDR_20	D12	O ₅		
PM_ADDR_19	C12	O ₅	Input Bus D Data bit 11. 100Ω internal LVDS termination	
PM_ADDR_18	B11	O ₅		
PM_ADDR_17	A11	O ₅	Input Bus D Data bit 12.	
PM_ADDR_16	D11	O ₅	100Ω internal LVDS termination	
PM_ADDR_15	C11	O ₅	Input Bus D Data bit 13.	
PM_ADDR_14	E10	O ₅	100Ω internal LVDS termination	
PM_ADDR_13	D10	O ₅	Input Bus D Data bit 14.	
PM_ADDR_12	C10	O ₅	100Ω internal LVDS termination	
PM_ADDR_11	B9	O ₅	Input Bus D Data bit 15.	
PM_ADDR_10	A9	O ₅	100Ω internal LVDS termination	
PM_ADDR_9	E9	O ₅		
PM_ADDR_8	D9	O ₅	Output Bus A Data bit 0 to DMD	
PM_ADDR_7	C9	O ₅		
PM_ADDR_6	B8	O ₅	Output Bus A Data bit 1 to DMD	
PM_ADDR_5	A8	O ₅	Outsid Day A Data hii O to DND	
PM_ADDR_4	D8	O ₅	Output Bus A Data bit 2 to DMD	
PM_ADDR_3	C8	O ₅	0.1.1010.1.110.1.000	
PM_ADDR_2	B7	O ₅	Output Bus A Data bit 3 to DMD	
PM_ADDR_1	A7	O ₅	Outsid Day A Data hii 444 DMD	
PM_ADDR_0	C7	O ₅	Output Bus A Data bit 4 to DMD	
PM_WEZ	B12	O ₅	Output Rue A Data hit 5 to DMD	
PM_OEZ	C13	O ₅	Output Bus A Data bit 5 to DMD	
PM_BLSZ_1	B6	O ₅	Output Bus A Data bit 6 to DMD	
PM_BLSZ_0	A6	O ₅	Output Dua A Data Dit 0 to Divid	
PM_DATA_15	C17	B ₅	Output Bus A Data bit 7 to DMD	
PM_DATA_14	B16	B ₅	Output Due A Data Dit / 10 Divid	
PM_DATA_13	A16	B ₅	Output Bus A Data bit 8 to DMD	
PM_DATA_12	A15	B ₅	Output Due A Data Dit 0 to Divid	
PM_DATA_11	B15	B ₅	Output Bus A Data bit 9 to DMD	
PM_DATA_10	D16	B ₅	Caspat Sao A Data Sit O to Divid	
PM_DATA_9	C16	B ₅	Output Bus A Data bit 10 to DMD	
PM_DATA_8	E14	B ₅	Caspat Sacrit Sata Sit To to Divid	
PM_DATA_7	D15	B ₅	Output Bus A Data bit 11 to DMD	
PM_DATA_6	C15	B ₅	Super Sucr. Sum Sit 11 to Sitto	
PM_DATA_5	B14	B ₅	Output Bus A Data bit 12 to DMD	
PM_DATA_4	A14	B ₅	Capa. Sacr. Data Dit 12 to Dinib	
PM_DATA_3	E13	B ₅	Output Bus A Data bit 13 to DMD	
PM_DATA_2	D14	B ₅		

		Table 4-1. Pin Functions (continued)			
NAME	N ⁽¹⁾	TYPE ⁽²⁾		DESCRIPTION	
PM_DATA_1	C14	B ₅			
PM_DATA_0	B13	B ₅	Output Bus A Data bit 14 to DMD		
PERIPHERAL INTE		,			
IC0_SCL	A10	B ₈	I2C Bus 0, Clock. This bus support 400k minimum acceptable pullup value is 1kΩ	kHz, fast mode operation. This signal requires an external pullup to 3.3V. The Ω. This input is not 5V tolerant.	
IIC0_SDA	B10	B ₈	2C Bus 0, Data. This bus support 400kl-minimum acceptable pullup value is 1kΩ	Hz, fast mode operation. This signal requires an external pullup to 3.3V. The 2. This input is not 5V tolerant.	
SSP0_CLK	AD4	B ₅	Synchronous Serial Port 0, clock		
SSP0_RXD	AD5	I ₄	Synchronous Serial Port 0, receive data	in	
SSP0_TXD	AB7	O ₅	Synchronous Serial Port 0, transmit data	a out	
SSP0_CSZ_0	AC5	B ₅	Synchronous Serial Port 0, chip select 0	(active low)	
SSP0_CSZ_1	AB6	B ₅	Synchronous Serial Port 0, chip select 1	(active low)	
SSP0_CSZ_2	AC3	B ₅	Synchronous Serial Port 0, chip select 2	? (active low)	
JART0_TXD	AB3	O ₅	UART0 transmit data output		
JART0_RXD	AD1	O ₅	UART0 receive data input		
JART0_RTSZ	AD2	O ₅	UART0 ready to send hardware flow co	ntrol output (active low)	
JART0_CTSZ	AE2	I ₄	UART0 clear to send hardware flow con	trol input (active low)	
JSB_DAT_N	C5	B ₉	USB D- I/O		
JSB_DAT_P	D6	B ₉	USB D+ I/O		
PMD_INTZ	AE8	14	Interrupt from DLPA100 (active low). Th	is signal requires an external pullup. Uses hysteresis	
CW_PWM	AD8	O ₅	Color wheel control PWM output		
CW_INDEX	AF7	O ₅	Color wheel index. Uses hysteresis		
MPCTRL	AC9	O ₅	Lamp control output. Lamp enable and	synchronization to the ballast	
MPSTAT	AF8	I ₄	Lamp status input. Driven high from the	ballast once the lamp is lit.	
GENERAL PURPOSE I/O (GPIO) (8)		ALTERNATE FUNCTION 1	ALTERNATE FUNCTION 2		
GPIO_82	E3	B ₅	N/A	N/A	
GPIO_81	AB10	B ₂	Reserved	N/A	
GPIO_80	AD9	B ₂	IR_ENABLE (O)	N/A	
GPIO_79	AE9	B ₂	Reserved	N/A	
GPIO_78	AF9	B ₂	FIELD_3D_LR (I)	N/A	
GPIO_77	AB11	B ₂	SAS_INTGTR_EN (O)	SENSE_PWM_OUT (O)	
GPIO_76	AC10	B ₂	SAS_CSZ (O)	N/A	
GPIO_75	AD10	B ₂	SAS_DO (O)	SENSE_FREQ_IN (I)	
GPIO_74	AE10	B ₂	SAS_DI (I)	SENSE_COMP_IN (I)	
GPIO_73	AF10	B ₂	SAS_CLK (O)	N/A	
GPIO_72	K24	B ₂	SSP2_DI (I)	N/A	
GPIO_71	K23	B ₂	SSP2_CLK (B)	N/A	
GPIO_70	K22	B ₂	SSP2_CSZ_1 (B)	N/A	
GPIO_69	J26	B ₂	SSP2_CSZ_0 (B)	N/A	
GPIO_68	J25	B ₂	SSP2_DO (O)	N/A	
GPIO_67	J24	B ₂	SP_Data_7 (O)	SSP2_CSZ_2 (B)	
GPIO_66	J23	B ₂	SP_Data_6 (O)	SSP0_CSZ_5 (B)	
GPIO_65	J22	B ₂	SP_Data_5 (O)	N/A	
GPIO_64	H26	B ₂	SP_Data_4 (O)	CW_PWM_2 (O)	
GPIO_63	H25	B ₂	SP_Data_3 (O)	CW_INDEX_2 (I)	
GPIO_62	H24	B ₂	SP_Data_2 (O)	SP_VC_FDBK (I)	
GPIO_61	H23	B ₂	SP_Data_1 (O)	N/A	
GPIO_60	H22	B ₂	SP_Data_0 (O)	N/A	
GPIO_59	G26	B ₂	SP_WG_CLK (O)	N/A	
GPIO_58	G25	B ₂	LED_SENSE_PULSE (O)	N/A	
GPIO_57	F25	B ₂	Reserved	N/A	
GPIO_56	G24	B ₂	UART2_RXD (O)	N/A	
GPIO_55	G23	B ₂	UART2_TXD (O)	N/A	
GPIO_54	F26	B ₂	PROG_AUX_7 (O)	N/A	
GPIO_53	E26	B ₂	PROG_AUX_6 (O)	N/A	

PIN 1 NAME GPIO_52 GPIO_51 GPIO_50 GPIO_49 GPIO_48 GPIO_48	NO. AB12 AC11 V23 V24 V25	B ₂ B ₂ B ₂	CSP_Data (O) CSP_CLK (O)	DESCRIPTION ALF_CLAMP (O)
GPIO_51 GPIO_50 GPIO_49 GPIO_48	AC11 V23 V24	B ₂		ALF_CLAMP (O)
GPIO_50 GPIO_49 GPIO_48	V23 V24		CSP CLK (O)	
GPIO_49 GPIO_48	V24	B ₂	0002.((0)	ALF_COAST (O)
GPIO_48			Reserved	HBT_CLKOUT (O)
	V25	B ₂	Reserved	HBT_DO (O)
ODIO 47		B ₂	Reserved	HBT_CLKIN_2 (I)
GPIO_47	V26	B ₂	Reserved	HBT_DI_2 (I)
GPIO_46	T22	B ₂	Reserved	HBT_CLKIN_1 (I)
GPIO_45	U23	B ₂	Reserved	HBT_DI_1 (I)
GPIO_44	U24	B ₂	Reserved	HBT_CLKIN_0 (I)
GPIO_43	U25	B ₂	Reserved	HBT_DI_0 (I)
GPIO_42	U26	B ₂	Reserved	SSP0_CSZ4 (B)
GPIO_41	R22	B ₂	Reserved	DASYNC (I)
GPIO_40	T23	B ₂	Reserved	FSD12 (O)
GPIO_39	F24	B ₂	SW reserved (Boot Hold)	SW reserved (Boot Hold)
GPIO_38	E25	B ₂	SW reserved (USB Enumeration Enable)	SW reserved (USB Enumeration Enable)
GPIO_37	G22	B ₂	N/A	N/A
GPIO_36	A12	B ₂	PM_ADDR_22 (O)	I2C_2 SDA (B)
GPIO_35	E11			120_2 SCL (B)
GPIO_34	F23	B ₂	PM_ADDR_21 (O) SSP1_CSZ_1 (B)	N/A
GPIO_33	D26	B ₂		N/A
GPIO_33 GPIO_32		B ₂	SSP1_CSZ_0 (B)	
	E24	B ₂	SSP1_DO (O)	N/A
GPIO_31	F22	B ₂	SSP1_DI (I)	N/A
GPIO_30	D25	B ₂	SSP1_CLK (B)	N/A
GPIO_29	E23	B ₂	IR1 (I)	SSP2 BC CSZ (B)
GPIO_28	C26	B ₂	IR0 (I)	SSP2 BC CSZ (B)
GPIO_27	AB4	B ₂	SSP0_CSZ3 (B)	N/A
GPIO_26	D24	B ₂	Blue LED enable (O)	UART2 TXD (O)
GPIO_25	C25	B ₂	Green LED enable (O)	LAMPSYNC (O)
GPIO_24	B26	B ₂	Red LED enable (O)	N/A
GPIO_23	E21	B ₂	LED Dual Current Control (O)	N/A
GPIO_22	D22	B ₂	LED Dual Current Control (O)	N/A
GPIO_21	E20	B ₂	LED Dual Current Control (O)	N/A
GPIO_20	C23	B ₂	N/A	N/A
GPIO_19	D21	B ₂	N/A	N/A
GPIO_18	B24	B ₂	N/A	N/A
GPIO_17	C22	B ₂	General Purpose Clock 2 (O)	N/A
GPIO_16	B23	B ₂	General Purpose Clock 1 (O)	N/A
GPIO_15	E19	B ₂	I2C_1 SDA (B)	N/A
GPIO_14	D20	B ₂	I2C_1 SCL (B)	N/A
GPIO_13	C21	B ₂	PWM IN_1 (I)	I2C_2 SDA (B)
GPIO_12	B22	B ₂	PWM IN_0 (I)	I2C_2 SCL (B)
GPIO_11	A23	B ₂	PWM STD_7 (O)	N/A
GPIO_10	A22	B ₂	PWM STD_6 (O)	N/A
GPIO_9	B21	B ₂	PWM STD_5 (O)	N/A
GPIO_8	A21	B ₂	PWM STD_4 (O)	N/A
GPIO_7	A20	B ₂	PWM STD_3 (O)	N/A
GPIO_6	C20	B ₂	PWM STD_2 (O)	N/A
GPIO_5	B20	B ₂	PWM STD_1 (O)	N/A
GPIO_4	B19	B ₂	PWM STD_0 (O)	N/A
GPIO_3	A19	B ₂	UART1_RTSZ (O)	N/A
GPIO_2	E18	B ₂	UART1_CTSZ (I)	N/A
GPIO_1	D19	B ₂	UART1_RXD (I)	N/A
GPIO_0	C19	B ₂	UART1_TXD (O)	N/A
CLOCK and PLL SUP	PPORT	•	-	

PIN ⁽¹⁾			· ,		
NAME	NO.	TYPE ⁽²⁾	DESCRIPTION		
MOSC	M26	I ₁₀	System clock oscillator input (3.3V LVTTL). Note that MOSC must be stable for a maximum of 25ms after POSENSE transitions from low to high.		
MOSCN	N26	O ₁₀	MOSC crystal return		
OCLKA	AF6	O ₅	General-purpose output clock A. Targeted for driving the CW motor controller. The frequency is software programmable. Power-up default 787KHz. Note that the output frequency is not affected by non-power-up reset operations (it holds the last value programmed).		
DUAL CONTROLLI	ER SUPPORT				
SEQ_SYNC	AB9	В ₃	Sequence sync. This signal is used in multi-controller configurations only, in which case the SEQSYNC signal from each controller is connected together with an external pullup. This signal is either pulled high or pulled low and not allowed to float for single controller configurations.		
POWER and GROU	JND				
VDD33	F20, F17, F11, F8, L21, R21, Y21, AA19, AA16, AA10, AA7	POWER	3.3V I/O power		
VDD18	C1, F5, G6, K6, M5, P5, T5, W6, AA5, AE1, H5, N6, T6, AA13, U21, P21, H21, F14	POWER	1.8V internal DRAM and LVDS I/O power		
VDD11	F19, F16, F13, F10, F7, H6, L6, P6, U6, Y6, AA8, AA11, AA14, AA17, AA20, W21, T21, N21, K21, G21, L11, T11, T16, L16	POWER	1.1V 1.15Vcore power		
VDD_PLLD	L22	POWER	1.1V 1.15V DMD clock generator PLL digital power		
VSS_PLLD	L23	GROUND	1.1V 1.15V DMD clock generator PLL digital ground		
VAD_PLLD	K25	POWER	1.8V DMD clock generator PLL analog power		
VAS_PLLD	K26	GROUND	1.8V DMD clock generator PLL analog ground		
VDD_PLLM1	L26	POWER	1.1V 1.15Vmaster-LS clock generator PLL digital power		
VSS_PLLM1	M22	GROUND	1.1V 1.15Vmaster-LS clock generator PLL digital ground		
VAD_PLLM1	L24	POWER	1.8Vmaster-LS clock generator PLL analog power		
VAS_PLLM1	L25	GROUND	1.8Vmaster-LS clock generator PLL analog ground		
VDD_PLLM2	P23	POWER	1.1Vmaster-HS clock generator PLL digital power		
VSS_PLLM2	P24	GROUND	1.1Vmaster-HS clock generator PLL digital ground		
VAD_PLLM2	R25	POWER	1.8V master-HS clock generator PLL analog power		
VAS_PLLM2	R26	GROUND	1.8V master-HS clock generator PLL analog ground		
VAD_PLLS	R23	POWER	1.1V video-2X clock generator PLL analog power		
VAS_PLLS	R24	GROUND	1.1V video-2X clock generator PLL analog ground		
L-VDQPAD_[7:0], R-VDQPAD_[7:0]	B18, D18, B17, E17, A18, C18, A17, D17, AE17, AC17, AF17, AC18, AB16, AD17, AB17, AD18	RESERVED	These pins have to be tied directly to ground for normal operation.		
CFO_VDD33	AE26	RESERVED	This pin has to be tied directly to 3.3 I/O power (VDD33) for normal operation.		
VTEST1, VTEST2, VTEST3, VTEST4	AB14, AB15, E15, E16	RESERVED	These pins have to be tied directly to ground for normal operation.		
LVDS_AVS1, LVDS_AVS2	V5, K5	POWER	These pins have to be tied directly to ground for normal operation.		
VPGM	AC6	POWER	This pin has to be tied directly to ground for normal operation.		

PI	PIN ⁽¹⁾ TYPE ⁽²⁾		DESCRIPTION	
NAME	NO.	IIFE(=/	DESCRIPTION	
GROUND	A26, A25, A24, B25, C24, D23, E22, F21, F18, F15, F12, F9, F6, E5, D4, C3, B3, A3, B2, A2, B1, A1, G5, J5, J6, L5, M6, N5, R5, R6, U5, V6, W5, Y5, AA6, AB5, AC4, AD3, AE3, AF3, AF2, AF1, AA9, AA12, AA15, AA24, AE24, AE24, AE24, AE25, AF25, AF26, AF26, AF27, M21, J21, L15, L14, L13, L12, M16, M15, M14, M13, M12, M11, N16, N15, N14, N13, N12, N11, P16, P15, P14, P13, P12, P11, R16, R15, R14, R13, R12, R11, T15, T14, T13, T12	GROUND	Common ground	

- (1) For instructions on handling unused pins, see General Handling Guidelines for Unused CMOS-Type Pins.
- (2) I/O Type: I = Input, O = Output, B = Bidirectional, and H = Hysteresis. See Table 4-2 for subscript explanation.
- (3) All JTAG signals are LVTTL compatible.
- (4) Ports 1 and 2 can each be used to support multiple source options for a given product (for example, AFE and HDMI). To do so, the data bus from both source components must be connected to the same port pins (1 or 2), and control given to the DLPC6422 device to tristate the "inactive" source. Tying them together like this causes some signal degradation due to reflections on the tristated path. Given that the clock is the most critical signal, three Port clocks (1,2, and 3) provide an option to improve the signal integrity.
- (5) Ports 1 and 2 can be used separately as two 30-bit ports, or can be combined into one 60-bit port (typically for high data rate sources) for transmission of two pixels per clock.
- (6) The A, B, C input data channels of Ports 1 and 2 can be internally reconfigured and remapped for optimum board layout.
- (7) Sources feeding less than the full 10 bits per color component channel have to be MSB justified when connected to the DLPC6422 controller and the LSBs tied off to zero. For example, an 8-bit per color input has to be connected to bits 9:2 of the corresponding A, B, C input channel.
- (8) GPIO signals must be configured by software for input, output, bidirectional, or open-drain. Some GPIOs have one or more alternate use modes, which are also software configurable. The reset default for all optional GPIOs is as an input signal. However, any alternate functions connected to these GPIO pins, with the exception of general-purpose clocks and PWM generation, are reset. An external pullup to the 3.3V supply is required for each signal configured as open-drain. External pullup or pulldown resistors may be required to establish stable operation before software is able to configure these ports.

Table 4-2. I/O Type Subscript Definition

SUBSCRIPT	DESCRIPTION	ESD STRUCTURE
2	3.3V LVTTL I/O buffer with 8mA drive	
3	3.3V LVTTL I/O buffer with 12mA drive	
4	3.3V LVTTL receiver	
5	3.3V LVTTL I/O buffer with 8mA drive, with slew rate control	
6	3.3V LVTTL I/O buffer, with programmable 4mA, 8mA, or 12mA drive	ESD diode to VDD33 and GROUND
7	1.8V LVDS (DMD I/F)	
8	3.3V I ² C with 3mA sink	
9	USB Compatible (3.3V)	
10	OSC 3.3V I/O Compatible LVTTL	

5 Specifications

5.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
ELECTRICAL				
	V _{DD11} (Core)	-0.30	1.60	
	V _{DD18} (LVDS I/O and Internal DRAM)	-0.30	2.50	
	V _{DD33} (I/O)	-0.30	3.90	
	VDD_PLLD (1.1VDMD clock generator - Digital)	-0.30	1.60	
	VDD_PLLM1 (1.1VMaster - LS clock generator - Digital)	-0.30	1.60	
Supply Voltage ⁽²⁾	VDD_PLLM2 (1.1VMaster - HS clock generator - Digital)	-0.30	1.60	V
	VDD_PLLD (1.8V DMD clock generator - Analog)	-0.30	2.50	
	VDD_PLLM1 (1.8V Master - LS clock generator - Analog)	-0.30	2.50	
	VDD_PLLM2 (1.8V Master - HS clock generator - Analog)	-0.30	2.50	
	VDD_PLLS (1.1V Video 2X - Analog)	-0.50	1.40	
	USB	-1.0	5.25	
V _I Input Voltage ⁽³⁾	OSC	-0.3	V _{DD33} + 0.3	V
vi iliput voltage (*)	3.3V LVTTL	-0.3	3.6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	3.3V I2C	-0.5	3.8	
	USB	-1.0	5.25	
\/ Output \/altaga	OSC	-0.3	2.2	V
V _O Output Voltage	3.3V LVTTL	-0.3	3.6	\
	3.3V I2C	-0.5	3.8	
ENVIRONMENTAL				
T _J operating junction temp	perature	0	111	°C
T _{stg} storage temperature r	ange	-40	125	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device's lifetime.

5.2 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		I/O ⁽¹⁾	MIN	NOM	MAX	UNIT
ELECTRICAL		·				
V _{DD33}	3.3V supply voltage, I/O		3.135	3.3	3.465	V
V _{DD18}	1.8V supply voltage, LVDS and DRAM		1.71	1.8	1.89	V
V _{DD11}	1.15V supply voltage, core logic		1.100	1.15	1.200	V
V _{DD11}	1.1V supply voltage, core logic		1.045	1.1	1.155	V
VDD_PLLD	1.8V supply voltage, PLL analog		1.71	1.8	1.89	V
VDD_PLLM1	1.8V supply voltage, PLL analog		1.71	1.8	1.89	V

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

⁽²⁾ All voltage values are with respect to GROUND.

⁽³⁾ Applies to external input and bidirectional buffers

Over operating free-air temperature range (unless otherwise noted)

		I/O ⁽¹⁾	MIN	NOM	MAX	UNIT
VDD_PLLM2	1.8V supply voltage, PLL analog		1.71	1.8	1.89	V
VDD_PLLS	1.8V supply voltage, PLL Analog		1.050	1.10	1.150	V
VDD_PLLD	1.8V supply voltage, PLL analog		1.045	1.1	1.155	V
VDD_PLLM1	1.8V supply voltage, PLL analog		1.045	1.1	1.155	V
VDD_PLLM2	1.8V supply voltage, PLL analog		1.045	1.1	1.155	V
VDD_PLLD	1.8V supply voltage, PLL analog		1.090	1.15	1.200	V
VDD_PLLM1	1.8V supply voltage, PLL analog		1.090	1.15	1.200	V
VDD_PLLM2	1.8V supply voltage, PLL analog		1.090	1.15	1.200	V
VDD_PLLS	1.8V supply voltage, PLL analog		1.090	1.15	1.200	V
	lanut valtaga	USB (9)	0		V_{DD33}	
		OSC (10)	0		V_{DD33}	V
V _I	Input voltage	3.3V LVTTL (1,2,3,4)	0		V _{DD33}	V
		3.3V I ² C (8)	0		V _{DD33}	
		USB (8)	0		V_{DD33}	
.,	Output voltage	3.3V LVTTL (1,2,3,4)	0		V _{DD33}	V
Vo	Output voltage	3.3V I ² C (8)	0		V_{DD33}	V
		1.8V LVDS (7)	0		V _{DD33}	
T _A	Operating ambient temperature range	See ^{(2) (3)}	0		55	°C
T _C	Operating top center case temperature	See ^{(3) (4)}	0		109.16	°C
TJ	Operating junction temperature		0		111	°C

- (1) The number inside each parenthesis for the I/O refers to the type defined in the I/O type subscript definition section.
- (2) Assumes minimum 1m/s airflow along with the JEDEC thermal resistance and associated conditions listed at www.ti.com/packaging. Thus, this is an approximate value that varies with environment and PCB design.
- (3) Maximum thermal values assume a max power of 4.6 watts.
- (4) Assume Psi_{JT} equals 0.4C/W

5.3 Thermal Information

		DLPC6422	
	THERMAL METRIC(1)	ZPC (BGA)	UNIT
		516 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance ⁽²⁾	14.4	°C/W
$R_{\theta JC}$	Junction-to-case thermal resistance	4.4	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application Report.

5.4 Electrical Characteristics

Over recommended operating conditions

	PAR	AMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		USB (9)		2.0			
V _{IH} High-level input voltage	OSC (10)		2.0] ,	
	3.3V LVTTL (1,2,3,4)		2.0]	
		3.3V I ² C (8)		2.4		VDD33V _{DD33} +0.5	

⁽²⁾ In still air

5.4 Electrical Characteristics (continued)

Over recommended operating conditions

	PAF	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNI
		USB (9)				0.8	
	Low-level input	OSC (10)				0.8	v
V_{IL}	voltage	3.3V LVTTL (1,2,3,4)				0.8	\ \
		3.3V I ² C (8)		-0.5		1.0	
V _{DIS}	Differential Input Voltage	USB(9)		200			mV
V _{ICM}	Differential cross point voltage	USB(9)		0.8		2.5	V
		USB(9)		200			
V_{HYS}	Hysteresis (V _{T+} – V _{T-})	3.3V LVTTL (1,2,3,4)			400		m۷
	V - <i> </i>	3.3V I ² C (8)		300	550	600	
		USB (9)		2.8			
V _{OH} High-level output voltage		1.8V LVDS (7)		1.520			v
	3.3V LVTTL (1,2,3)	I _{OH} = Max Rated	2.7				
		USB (9)		0.0		0.3	
V _{OL} Low-leve voltage	Low lovel output	1.8V LVDS (7)				0.880	
	Low-level output voltage	3.3V LVTTL (1,2,3)	I _{OL} = Max Rated			0.4	V
		3.3V I ² C (8)	I _{OL} = 3-mA sink			0.4	
V _{OD}	Output differential voltage	1.8V LVDS (7)		0.065		0.440	V
		USB(9)				200	
		OSC (10)		-10.0		10	
I _{IH}	High-level input current	3.3V LVTTL (1-4) without internal pulldown	V _{IH} = VDD33	-10.0		10	μΑ
	current	3.3V LVTTL (1-4) with internal pulldown	V _{IH} = VDD33	10.0		200.0	
		3.3V I ² C (8)	V _{IH} = VDD33			10.0	
		USB(9)		-10.0		10.0	
		OSC (10)		-10.0		10.0	
I _{IL}	Low-level input current	3.3V LVTTL (1–4) without internal pulldown	V _{OH} = VDD33	-10.0		10.0	μΑ
	current	3.3V LVTTL (1-4) with internal pulldown	V _{OH} = VDD33	-10.0		-200	
		3.3V I ² C (8)	V _{OH} = VDD33			-10.0	
		USB(9)		-18.4		-19.1	
		1.8V LVDS (7) (V _{OD} = 300mV)	VO = 1.4V	6.5			
он	High-level output current	3.3V LVTTL (1)	VO = 2.4V	-4.0			m/
	Culterit	3.3V LVTTL (2)	VO = 2.4V	-8.0			1
		3.3V LVTTL (3)	VO = 2.4V	-12.0			1

5.4 Electrical Characteristics (continued)

Over recommended operating conditions

	PAR	RAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
		USB(9)		19.1	<u>'</u>		
		1.8V LVDS (7) (V _{OD} = 300mV)	VO = 1.0V	6.5			
	Low-level output	3.3V LVTTL (1)	VO = 0.4V	4.0			
I _{OL}	current	3.3V LVTTL (2)	VO = 0.4V	8.0			mA
		3.3V LVTTL (3)	VO = 0.4V	12.0			1
		3.3V I ² C (8)		3.0			1
		USB (9)		-10			
	High-impedance	LVDS (7)		-10			
l _{OZ}	leakage current	3.3V LVTTL (1,2,3)		-10			pF
		3.3V I ² C (8)		-10			1
		USB (9)		11.84		17.07	
		3.3V LVTTL (1)		3.75		5.52	
Cı	Input capacitance	3.3V LVTTL (2)		3.75		5.52	pF
		3.3V LVTTL (4)		3.75		5.52	
		3.3V I ² C (8)		5.26		6.54	1
I _{CC11}	Supply voltage, 1.1	V core power	Normal Mode			1474	mA
I _{CC11}	Supply voltage, 1.1	5V core power	Normal Mode			2368	mA
I _{CC18}	Supply voltage, 1.8'	V power (LVDS I/O and internal	Normal Mode			1005	mA
I _{CC33}	Supply voltage, 3.3	V I/O power	Normal Mode			33	mA
I _{CC11 PLLD}	Supply voltage, DM	D PLL Digital Power (1.1V 1.15V)	Normal Mode		4.4	6.2	mA
I _{CC11_PLLM1}	Supply voltage, Mas power (1.1V 1.15V	ster-LS Clock Generator PLL Digital)	Normal Mode		4.4	6.2	mA
I _{CC11_PLLM2}	Supply voltage, Maspower (1.1V 1.15V	ster-HS Clock Generator PLL Digital)	Normal Mode		4.4	6.2	mA
I _{CC18_PLLD}	Supply voltage, DM	D PLL Analog Power (1.8V)	Normal Mode		8.0	10.2	mA
I _{CC18_PLLM1}	Supply voltage, Mas power (1.8V)	ster-LS Clock Generator PLL Analog	Normal Mode		8.0	10.2	mA
I _{CC18_PLLM2}	Supply voltage, Mas power (1.8V)	ster-HS Clock Generator PLL Analog	Normal Mode		8.0	10.2	mA
I _{CC11_PLLS}	Supply voltage, Vide 1.15V)	eo-2X PLL Analog Power (1.1V	Normal Mode			2.9	mA
	Total Power		Normal Mode			3.73	W
	Total Power		Normal Mode			4.76	W
I _{CC11}	Supply voltage, 1.1	V 1.15V core power	Low Power Mode			21	mA
I _{CC18}	Supply voltage, 1.8V power (LVDS I/O and internal DRAM)		Low Power Mode			0	mA
I _{CC33}	Supply voltage, 3.3V I/O power		Low Power Mode			18	mA
I _{CC11_PLLD}	Supply voltage, DM	D PLL Digital Power (1.1V 1.15V)	Low Power Mode			2.03	mA
I _{CC11_PLLM1}	Supply voltage, Maspower (1.1V 1.15V	ster-LS Clock Generator PLL Digital)	Low Power Mode			2.03	mA
I _{CC11_PLLM2}	Supply voltage, Mas power (1.1V 1.15V	ster-HS Clock Generator PLL Digital	Low Power Mode			2.03	mA

5.4 Electrical Characteristics (continued)

Over recommended operating conditions

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{CC18_PLLD}	Supply voltage, DMD PLL Analog Power (1.8V)	Low Power Mode			5.42	mA
I _{CC18_PLLM1}	Supply voltage, Master-LS Clock Generator PLL Analog power (1.8V)	Low Power Mode			5.42	mA
I _{CC18_PLLM2}	Supply voltage, Master-HS Clock Generator PLL Analog power (1.8V)	Low Power Mode			5.42	mA
I _{CC11_PLLS}	Supply voltage, Video-2X PLL Analog Power (1.1V 1.15V)	Low Power Mode			.03	mA
	Total Power	Low Power Mode			106	mW

5.5 ESD Ratings

			VALUE	UNIT
V Floaten static dia	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)	± 1000	V
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	+500/–300	V

⁽¹⁾ Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

5.6 System Oscillators Timing Requirements

Over operating free-air temperature range(unless otherwise noted)

PARAM	ETER	TEST CONDITIONS	MIN	MAX	UNIT					
SYSTEM	SYSTEM OSCILLATORS									
f _{clock}	Clock frequency, MOSC ⁽¹⁾		19.998	20.002	MHz					
t _c	Cycle time, MOSC ⁽¹⁾		49.995	50.005	MHz					
t _{w(H)}	Pulse duration ⁽²⁾ , MOSC, high	50% to 50% reference points (signal)	20		ns					
t _{w(L)}	Pulse duration ⁽²⁾ , MOSC, low	50% to 50% reference points (signal)	20		ns					
t _t	Transition time ⁽²⁾ , MOSC, tt = tf /tr	20% to 80% reference points (signal)		12	ns					
t _{jp}	Period Jitter ⁽²⁾ , MOSC (This is the deviation in period from the ideal period due solely to high frequency jitter).			18	ps					

⁽¹⁾ The frequency range for MOSC is 20MHz with ±100PPM accuracy (it includes the impact to accuracy due to aging, temperature, and trim sensitivity). The MOSC input cannot support spread-spectrum clock spreading.

5.7 Test and Reset Timing Requirements

			MIN	MAX	UNIT
t _{W1(L)}	Pulse duration, inactive low, PWRGOOD	50% to 50% reference points (signal)	4.0		μs
t _{W1(L)}	Pulse duration, inactive low, PWRGOOD	50% to 50% reference points (signal)		1000(2)	ms
t _{t1}	Transition time, PWRGOOD, t_{t1} = t_{f}/t_{r}	20% to 80% reference points (signal)		625	μs

⁽²⁾ Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

⁽²⁾ Applies only when driven through an external digital oscillator

5.7 Test and Reset Timing Requirements (continued)

			MIN	MAX	UNIT
t _{W2(L)}	Pulse duration, inactive low, POSENSE	50% to 50% reference points (signal)	500		μs
t _{W2(L)}	Pulse duration, inactive low, POSENSE	50% to 50% reference points (signal)		1000 ⁽²⁾	ms
t _{t2}	Transition time, POSENSE, $t_{t1} = t_f/t_r$	20% to 80% reference points (signal)		25 ⁽¹⁾	μs
t _{PH}	Power Hold time, POSENSE remains active after PWRGOOD is deasserted	20% to 80% reference points (signal)	500		μs
t _{EW}	Early Warning time, PWRGOOD goes inactive low prior to any power supply voltage going below its specification		500		μs
t _{W1(L)} +t _{W2(L)}	The sum of PWRGOOD and POSENSE inactive time			1050 ⁽²⁾	ms

⁽¹⁾ As long as noise on this signal is below the hysteresis threshold.

5.8 JTAG Interface: I/O Boundary Scan Application Timing Requirements

			MIN	MAX	UNIT
f _{clock}	Clock frequency, TCK			10	MHZ
t _C	Cycle time, TCK		100		ns
t _{W(H)}	Pulse duration, high	50% to 50% reference points (signal)	40		ns
t _{W(L)}	Pulse duration, low	50% to 50% reference points (signal)	40		ns
t _t	Transition time, $t_t = t_f/t_r$	20% to 80% reference points (signal)		5	ns
t _{SU}	Setup time, TDI valid before TCK↑		8		ns
t _h	Hold time, TDI valid after TCK↑		2		ns
t _{SU}	Setup time, TMS1 valid before TCK↑		8		ns
t _h	Hold time, TMS1 valid before TCK↑		2		ns

5.9 Port 1 Input Pixel Timing Requirements

	-	TEST CONDITIONS	MIN	MAX	UNIT
f _{clock}	Clock frequency, P_CLK1, P_CLK2, P_CLK3 (30-bit bus)		12	175	MHz
f _{clock}	Clock frequency, P_CLK1, P_CLK2, P_CLK3 (60-bit bus)		12	160	MHz
f _{clock}	Clock frequency, P_CLK1, P_CLK2, P_CLK3 (60-bit bus)		12	141	MHz
t _C	Cycle Time, P_CLK1, P_CLK2, P_CLK3		5.714	83.33	ns
t _{W(H)}	Pulse Duration, high	50% to 50% reference points (signal)	2.3		ns
t _{W(L)}	Pulse Duration, low	50% to 50% reference points (signal)	2.3		ns
t _{jp}	Clock period jitter, P_CLK1, P_CLK2, P_CLK3	Max f _{clock}		See (2)	ps
t _t	Transition time, t _t =t _f /t _r , P_CLK1, P_CLK2, P_CLK3	20% to 80% reference points (signal)	0.6	2.0	ns
t _t	Transition time, t _t =t _f /t _r , P1_A(9-0), P1_B(9-0), P1_C(9-0), P1_HSYNC, P1_VSYNC, P1_DATAEN	20% to 80% reference points (signal)	0.6	3.0	ns
t _t	Transition time, $t_t = t_f/t_r$, ALF_HSYNC, ALF_VSYNC, ALF_CSYNC ⁽¹⁾	20% to 80% reference points (signal)	0.6	3.0	ns
SETUP	AND HOLD TIMES			•	

⁽²⁾ With 1.8V power applied. If the 1.8V power is disabled by the controller command (For example – if system is placed in Low Power mode where the controller disables 1.8V power), these signals can be placed and remain in inactive state indefinitely.

5.9 Port 1 Input Pixel Timing Requirements (continued)

		TEST CONDITIONS	MIN	MAX	UNIT
t _{su}	Setup time, P1_A(9-0), valid before P_CLK1↑↓, P_CLK2↑↓, or P_CLK3↑↓		0.8		ns
t _h	Hold time, P1_A(9-0), valid before P_CLK1 $\uparrow\downarrow$, P_CLK2 $\uparrow\downarrow$, or P_CLK3 $\uparrow\downarrow$		0.8		ns
t _{su}	Setup time, P1_B(9-0), valid before P_CLK1↑↓, P_CLK2↑↓, or P_CLK3↑↓		0.8		ns
t _h	Hold time, P1_B(9-0), valid before P_CLK1 $\uparrow\downarrow$, P_CLK2 $\uparrow\downarrow$, or P_CLK3 $\uparrow\downarrow$		0.8		ns
t _{su}	Setup time, P1_C(9-0), valid before P_CLK1↑↓, P_CLK2↑↓, or P_CLK3↑↓		0.8		ns
t _h	Hold time, P1_C(9-0), valid before P_CLK1 $\uparrow\downarrow$, P_CLK2 $\uparrow\downarrow$, or P_CLK3 $\uparrow\downarrow$		0.8		ns
t _{su}	Setup time, P1_VSYNC, valid before P_CLK1↑↓, P_CLK2↑↓, or P_CLK3↑↓		0.8		ns
t _h	Hold time, P1_VSYNC valid before P_CLK1 $\uparrow\downarrow$, P_CLK2 $\uparrow\downarrow$, or P_CLK3 $\uparrow\downarrow$		0.8		ns
t _{su}	Setup time, P1_HSYNC, valid before P_CLK1↑↓, P_CLK2↑↓, or P_CLK3↑↓		0.8		ns
t _h	Hold time, P1_HSYNC valid before P_CLK1 $\uparrow\downarrow$, P_CLK2 $\uparrow\downarrow$, or P_CLK3 $\uparrow\downarrow$		0.8		ns
t _{su}	Setup time, P2_A(9-0), valid before P_CLK1↑↓, P_CLK2↑↓, or P_CLK3↑↓		0.8		ns
t _h	Hold time, P2_A(9-0), valid before P_CLK1 $\uparrow\downarrow$, P_CLK2 $\uparrow\downarrow$, or P_CLK3 $\uparrow\downarrow$		0.8		ns
t _{su}	Setup time, P2_B(9-0), valid before P_CLK1↑↓, P_CLK2↑↓, or P_CLK3↑↓		0.8		ns
t _h	Hold time, P2_B(9-0), valid before P_CLK1 $\uparrow\downarrow$, P_CLK2 $\uparrow\downarrow$, or P_CLK3 $\uparrow\downarrow$		0.8		ns
t _{su}	Setup time, P2_C(9-0), valid before P_CLK1↑↓, P_CLK2↑↓, or P_CLK3↑↓		0.8		ns
t _h	Hold time, P2_C(9-0), valid before P_CLK1 $\uparrow\downarrow$, P_CLK2 $\uparrow\downarrow$, or P_CLK3 $\uparrow\downarrow$		0.8		ns
t _{su}	Setup time, P2_VSYNC, valid before P_CLK1↑↓, P_CLK2↑↓, or P_CLK3↑↓		0.8		ns
t _h	Hold time, P2_VSYNC valid before P_CLK1 $\uparrow\downarrow$, P_CLK2 $\uparrow\downarrow$, or P_CLK3 $\uparrow\downarrow$		0.8		ns
t _{su}	Setup time, P2_HSYNC, valid before P_CLK1↑↓, P_CLK2↑↓, or P_CLK3↑↓		0.8		ns
t _h	Hold time, P2_HSYNC valid before P_CLK1 $\uparrow\downarrow$, P_CLK2 $\uparrow\downarrow$, or P_CLK3 $\uparrow\downarrow$		0.8		ns
t _{su}	Setup time, P_DATAEN1, valid before P_CLK1↑↓, P_CLK2↑↓, or P_CLK3↑↓		0.8		ns
t _h	Hold time, P_DATAEN1 valid before P_CLK1↑↓, P_CLK2↑↓, or P_CLK3↑↓		0.8		ns
t _{su}	Setup time, P_DATAEN2, valid before P_CLK1↑↓, P_CLK2↑↓, or P_CLK3↑↓		0.8		ns
t _h	Hold time, P_DATAEN2 valid before P_CLK1↑↓, P_CLK2↑↓, or P_CLK3↑↓		0.8		ns
t _{w(A)}	VSYNC Active Pulse Width		1		Video Line
t _{w(A)}	HSYNC Active Pulse Width		16		Pixel Clocks

ALF_CSYNC, ALF_VSYNC, and ALF_HSYNC are Asynchronous signals. For frequencies (fclock) less than 175MHZ, use following formula to obtain the jitter: Max Clock Jitter = \pm [(1/ f_{clock}) – 5414ps]

5.10 Port 3 Input Pixel Interface (through GPIO) Timing Requirements

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
f _{clock}	Clock Frequency, P3_CLK		27	54	MHz
t _c	Cycle time, P3_CLK		18.5	37.1	ns
t _{W(H)}	Pulse Duration, high	50% to 50% reference points (signal)	7.4		ns
t _{W(L)}	Pulse Duration, low	50% to 50% reference points (signal)	7.4		ns
t _{jp}	Clock period jitter, P3_CLK	$Max\ f_{clock}$	See (1)	See (1)	ps
t _t	Transition time, $t_t = t_f/t_r$, P3_CLK	20% to 80% reference points (signal)	1.0	5.0	ns
t _t	Transition time, t_i = t_f/t_r , P3_DATA(9-0)	20% to 80% reference points (signal)	1.0	5.0	ns
t _{su}	Setup time, P3_DATA(9-0) valid before P3_CLK↑↓		2.0		ns
t _h	Hold time, P3_DATA(9-0) valid after P3_CLK↑↓		2.0		ns

⁽¹⁾ For frequencies less than 54MHZ, use following formula to obtain the jitter: Jitter = [(1/F) - 5414ps].

5.11 DMD LVDS Interface Timing Requirements

	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
Clock frequency, DCK_A	N/A	DCK_A	100	400	MHz
Cycle time, DCK_A ⁽¹⁾	N/A	DCK_A	2475.3		ps
Pulse duration, high	N/A	DCK_A	1093		ps
Pulse duration, low	N/A	DCK_A	1093		ps
Transition time, t _t = t _f /t _r	N/A	DCK_A	100	400	ps
Output Setup time at max clock rate ⁽²⁾	DCK_A↑↓	SCA, DDA(15:0)	438		ps
Output hold time at max clock rate ⁽²⁾	DCK_A↑↓	SCA, DDA(15:0)	438		ps
Clock frequency, DCK_B	N/A	DCK_B	100	400	MHz
Cycle time, DCK_B ⁽¹⁾	N/A	DCK_B	2475.3		ps
Pulse duration, high	N/A	DCK_B	1093		ps
Pulse duration, low	N/A	DCK_B	1093		ps
Transition time, t _t = t _f /t _r	N/A	DCK_B	100	400	ps
Output Setup time at max clock rate ⁽²⁾	DCK_B↑↓	SCA, DDB(15:0)	438		ps
Output hold time at max clock rate ⁽²⁾	DCK_B↑↓	SCA, DDB(15:0)	438		ps
Output Skew, Channel A to Channel B	DCK_A↑	DCK_B↑		250	ps
	Cycle time, DCK_A(1) Pulse duration, high Pulse duration, low Transition time, t _t = t _t /t _r Output Setup time at max clock rate(2) Output hold time at max clock rate(2) Clock frequency, DCK_B Cycle time, DCK_B(1) Pulse duration, high Pulse duration, low Transition time, t _t = t _t /t _r Output Setup time at max clock rate(2) Output hold time at max clock rate(2)	Clock frequency, DCK_A N/A Cycle time, DCK_A(1) N/A Pulse duration, high N/A Pulse duration, low N/A Transition time, $t_t = t_f/t_r$ N/A Output Setup time at max clock rate(2) DCK_A $\uparrow\downarrow$ Clock frequency, DCK_B N/A Cycle time, DCK_B(1) N/A Pulse duration, high N/A Pulse duration, high N/A Transition time, $t_t = t_f/t_r$ N/A Output Setup time at max clock rate(2) DCK_B $\uparrow\downarrow$ Output Setup time at max clock rate(2) DCK_B $\uparrow\downarrow$ Output Setup time at max clock rate(2) DCK_B $\uparrow\downarrow$ Output Setup time at max clock rate(2) DCK_B $\uparrow\downarrow$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Clock frequency, DCK_A	Clock frequency, DCK_A

⁽¹⁾ The minimum cycle time (t_c) for DCK_A and DCL_B includes 1.0% spread spectrum modulation. The user must verify that DMD can support this rate.

5.12 Synchronous Serial Port (SSP) Interface Timing Requirements

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
SSP P	rimary	·			
t _{su}	Setup time, SSPx_DI valid before SSPx_CLK		15		ns
t _{su}	Setup time, SSPx_DI valid before SSPx_CLK		15		ns
t _h	Hold time, SSPx_DI valid after SSPx_CLK		0		ns
t _h	Hold time, SSPx_DI valid after SSPx_CLK		0		ns
t _t	Transition time, SSPx_DI, $t_t = t_f/t_r$	20% to 80% reference points (signal)		1.5	ns

⁽²⁾ Output Setup and Hold times for DMD clock frequencies below the maximum can be calculated as follows: $t_{osu}(fclock) = t_{osu}(fmax) + 250000 \times (1/fclock - 1/400)$ and $t_{oh}(fclock) = t_{oh}(fmax) + 250000 \times (1/fclock - 1/400)$ where fclock is in MHz.

www.ti.com

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
SSP S	econdary	·			
t _{su}	Setup time, SSPx_DI valid before SSPx_CLK		12		ns
t _{su}	Setup time, SSPx_DI valid before SSPx_CLK		12		ns
t _h	Hold time, SSPx_DI valid after SSPx_CLK		12		ns
t _h	Hold time, SSPx_DI valid after SSPx_CLK		12		ns
t _t	Transition time, SSPx_DI, t_t = t_f/t_r	20% to 80% reference points (signal)		1.5	ns

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

5.13 Programmable Output Clocks Switching Characteristics

Over operating free air temperature range, C_L(min timing) = 5pF, C_L(max timing) = 50pF (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TO (OUTPUT)	MIN	MAX	UNIT
f _{clock}	Clock frequency, OCLKA ⁽¹⁾		OCLKA	0.787	50	MHz
t _C	Cycle Time, OCLKA		OCLKA	20	1270.6	ns
t _{W(H)}	Pulse Duration, high ⁽²⁾	50% to 50% reference points (signal)	OCLKA	(t _C /22)		ns
t _{W(L)}	Pulse Duration, low ⁽²⁾	50% to 50% reference points (signal)	OCLKA	(t _C /22)		ns
	Jitter		OCLKA		350	ps
f _{clock}	Clock frequency, OCLKB ⁽¹⁾		OCLKB	0.787	50	MHz
t _C	Cycle Time, OCLKB		OCLKB	20	1270.6	ns
t _{W(H)}	Pulse Duration, high ⁽²⁾	50% to 50% reference points (signal)	OCLKB	(t _C /22)		ns
t _{W(L)}	Pulse Duration, low ⁽²⁾	50% to 50% reference points (signal)	OCLKB	(t _C /22)		ns
	Jitter		OCLKB		350	ps
f _{clock}	Clock frequency, OCLKC ⁽¹⁾		OCLKC	0.787	50	MHz
t _C	Cycle Time, OCLKC ⁽²⁾		OCLKC	20	1270.6	ns
t _{W(H)}	Pulse Duration, high	50% to 50% reference points (signal)	OCLKC	(t _C /22)		ns
t _{W(L)}	Pulse Duration, low ⁽²⁾	50% to 50% reference points (signal)	OCLKC	(t _C /22)		ns
	Jitter		OCLKC		350	ps

The frequency of OCLKA thru OCLKC is programmable.

5.14 Synchronous Serial Port Interface (SSP) Switching Characteristics

over operating free-air temperature range, C_L(min timing) = 5pF, C_L(max timing) = 50pF (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
f _{clock}	Clock Frequency, SSPx_CLK		N/A	SSPx_CLK	73	25000	kHz
t _c	Cycle time, SSPx_CLK		N/A	SSPx_CLK	0.040	13.6	μs
t _{W(H)}	Pulse Duration, high	50% to 50% reference points (signal)	N/A	SSPx_CLK	40%		
t _{W(L)}	Pulse Duration, low	50% to 50% reference points (signal)	N/A	SSPx_CLK	40%		
SSP Pr	imary ⁽¹⁾		1			'	
t _{pd}	Output Propagation, Clock to Q, SSPx_DO ⁽²⁾		SSPx_CLK↓	SSPx_DO	-5	5	ns
t _{pd}	Output Propagation, Clock to Q, SSPx_DO ⁽²⁾		SSPx_CLK↑	SSPx_DO	-5	5	ns
SSP Se	econdary (1)					'	
t _{pd}	Output Propagation, Clock to Q, SSPx_DO ⁽²⁾		SSPx_CLK↓	SSPx_DO	0	34	ns
t _{pd}	Output Propagation, Clock to Q, SSPx_DO ⁽²⁾		SSPx_CLK↑	SSPx_DO	0	34	ns

The SSP can be used as an SSP Primary or as an SSP Secondary. When used as a Primary, the SSP can be configured to sample DI with the same internal clock edge used to transmit the next DO, which provides a full cycle rather than a half cycle timing path, allowing operation at higher SPI clock frequencies.

The Duty Cycle of OCLKA thru OCLKC is within ±2ns of 50%.

⁽²⁾ The SSP can be configured into four different operational modes/configurations.

Table 5-1. SSP Clock Operational Modes							
0	0	0					
1	0	1					
2 1 0							
3	1	1					

5.15 JTAG Interface: I/O Boundary Scan Application Switching Characteristics

over operating free-air temperature range, $C_L(min\ timing)$ = 5pF, $C_L(max\ timing)$ = 85pF (unless otherwise noted)

PARAMETER		PARAMETER FROM INPUT		MIN	MAX	UNIT
t _{pd}	Output Propagation, Clock to Q	TCK↓	TDO1	3	12	ns

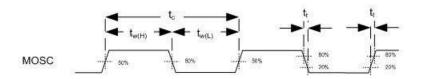


Figure 5-1. System Oscillators

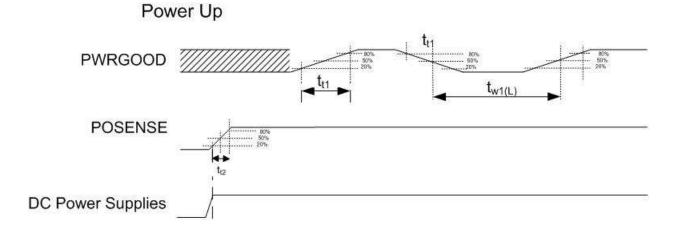


Figure 5-2. Power Up

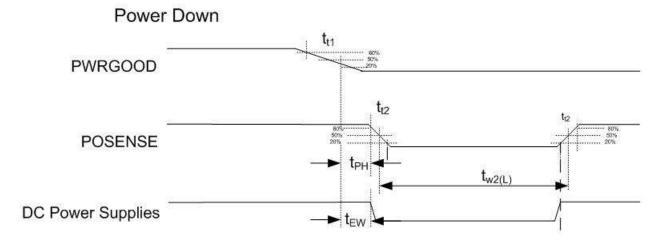


Figure 5-3. Power Down

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

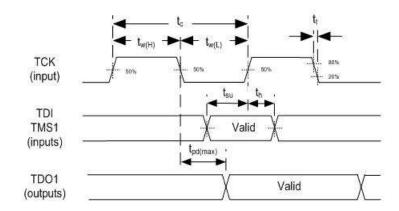


Figure 5-4. I/O Boundary Scan

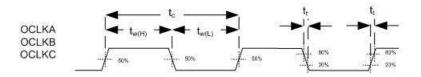


Figure 5-5. Programmable Output Clocks

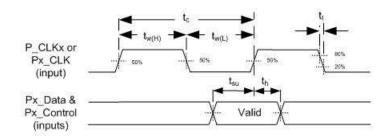


Figure 5-6. Port1, Port2, and Port3 Input Interface

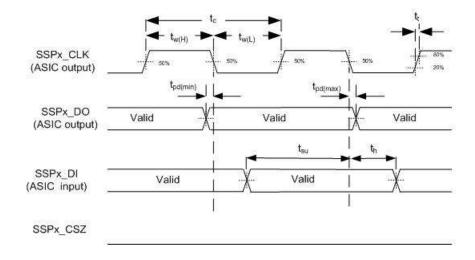


Figure 5-7. Synchronous Serial Port Interface—Primary

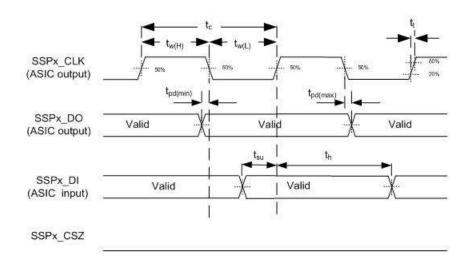


Figure 5-8. Synchronous Serial Port Interface—Secondary

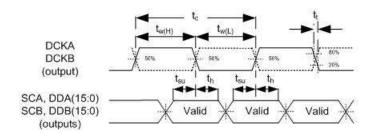
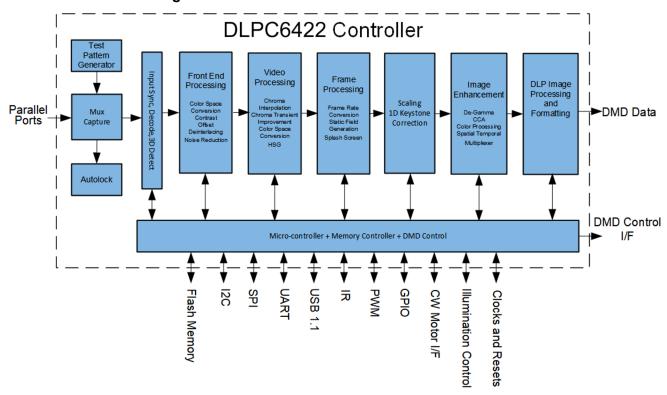


Figure 5-9. DMD LVDS Interface



6 Detailed Description

6.1 Overview

As with prior DLP electronics solutions, image data is 100% digital from the DLPC6422 input port to the image projected onto the display screen. The image stays in digital form and is never converted into an analog signal. The DLPC6422 processes the digital input image and converts the data into bit-plane format as needed by the DMD. The DLPC6422 light controller is optimized for high-resolution, high UV and visible light throughout the digital imaging system. Applications include 3D printing, laser marking, laser manufacturing, and other digital imaging and light exposure systems.

6.2 Functional Block Diagram

6.3 Feature Description

6.3.1 System Reset Operation

6.3.1.1 Power-Up Reset Operation

Immediately following a power-up event, the DLPC6422 hardware automatically brings up the primary PLL and places the controller in normal power mode. Then, the hardware follows the standard system reset procedure (see Section 6.3.1.2).

6.3.1.2 System Reset Operation

Immediately following any type of system reset (power-up reset, PWRGOOD reset, watchdog timer timeout, lamp-strike reset), the DLPC6422 device automatically returns to NORMAL power mode in the following state:

- All GPIOs are tristated.
- The primary PLL remains active (it is reset only after a power-up reset sequence), and most of the derived clocks are active. However, only those resets associated with the ARM9 processor and its peripherals are released (the ARM9 is responsible for releasing all other resets).
- ARM9-associated clocks default to the full clock rate. (Boot-up is at full speed.)
- All front-end clocks derived are disabled.

- The PLL feeding the LVDS DMD I/F (PLLD) defaults to its power-down mode, and all derived clocks are inactive with corresponding resets asserted. (The ARM9 is responsible for enabling these clocks and releasing associated resets.)
- LVDS I/O defaults to its power-down mode with outputs tristated.
- All resets output by the DLPC6422 device remain asserted until released by the ARM9(after boot-up).
- The ARM9 processor boots up from external flash.

When the ARM9 boots-up, the ARM9 API:

- Configures the programmable DDR Clock Generator (DCG) clock rates (that is, the DMD LVDS I/F rate)
- Enables the DCG PLL (PLLD) while holding divider logic in reset
- When the DCG PLL locks, the ARM9 software sets the DMD clock rates.
- · API software then releases DCG divider logic resets, which in turn, enable all derived DCG clocks
- Release external resets

Application software then typically waits for a wake-up command (through the soft power switch on the projector) from the end-user. When the projector is requested to wake up, the software places the ASIC back in normal mode, reinitializes clocks, and resets as required.

6.3.2 Spread Spectrum Clock Generator Support

The DLPC6422 controller supports limited, internally controlled, spread spectrum clock spreading on the DMD interface. The purpose of this is to frequency spread all signals on this high-speed, external interface to reduce EMI emissions. Clock spreading is limited to triangular waveforms. The DLPC6422 controller provides modulation options of 0%, $\pm 0.5\%$, and $\pm 1.0\%$ (center-spread modulation).

6.3.3 GPIO Interface

The DLPC6422 controller provides 83 software-programmable, general-purpose I/O pins. Each GPIO pin is individually configurable as either input or output. In addition, each GPIO output can be configured as push-pull or open-drain. Some GPIOs have one or more alternate-use modes, which are also software configurable. The reset default for all GPIO is as an input signal. However, any alternate function connected to these GPIO pins, with the exception of general-purpose clocks and PWM generation, stays in reset. When configured as open-drain, the outputs must be externally pulled up (to the 3.3V supply). External pullup or pulldown resistors may be required to establish stable operation before software is able to configure these ports.

6.3.4 Source Input Blanking

Vertical and horizontal blanking requirements for both input ports are defined as follows (see *Video Timing Parameter Definitions*).

- · Minimum port 1 and port 2 vertical blanking
 - Vertical back porch (VBP): 370µs
 - Vertical front porch (VFP): 1 line
 - Total vertical blanking (TVB): 370µs + 2 lines
- Minimum port 1 and port 2 horizontal blanking
 - Horizontal back porch (HBP): 10 pixels
 - Horizontal front porch (HFP): 0 pixels
 - Total horizontal blanking (THB): 80 pixels

6.3.5 Video Graphics Processing Delay

The DLPC6422 controller introduces a variable number of field/ frame delays dependent on the source type and selected processing steps performed on the source. For optimum audio/ video synchronization, this delay must be matched in the audio path. The following tables define various video delay scenarios to aid in audio matching.

Frame and Fields in the table refer to source frames and fields.

• For 2D sources, "N" is defined to be the ratio of the primary channel source frame rate (or field rate for interlaced video) to the display frame/ field rate.

Copyright © 2025 Texas Instruments Incorporated

• For 3D sources, "M" is defined to be the ratio of the primary channel source frame rate (or field rate for interlaced video) required to obtain both the left and right image, to the display frame/field rate (the rate at which each eye is displayed).

Table 6-1. Primary Channel/Video-Graphics Processing Delay

Source	3D Video Decoder	Deinterlacing	Frame Rate Conversion	FRC Type	Formatter Buffer	Total Delay
60Hz Progressive Video	Disabled	Disabled	2 Frames	Sync (1:4)	M Frames	2 + M Frames
120Hz Progressive Video	Disabled	Disabled	2 Frames	Sync (1:2)	M Frames	2 + M Frames
24Hz 1080p	Disabled	Disabled	1 Frame	Sync (1:6)	M Frames	1 + M Frames
60Hz 1080p	Disabled	Disabled	1 Frame	Sync (1:2)	M Frames	1 + M Frames
60Hz 1080p	Disabled	Disabled	1 Frame	Sync (1:2)	M Frames	1 + M Frames
60Hz Graphics	Disabled	Disabled	1 Frame	Sync (1:4)	M Frames	1 + M Frames
120Hz Graphics	Disabled	Disabled	1 Frame	Sync (1:2)	M Fields	1 + M Fields

Table 6-2. Primary Channel/Video-Graphics Processing Delay

	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Source	Frame Rate Conversion	FRC Type	Formatter Buffer	Total Delay
48Hz Graphics	1 Frame	Sync (1:1)	N Frames	1 + N Frames
50Hz Graphics	1 Frame	Sync (1:1)	N Frames	1 + N Frames
60Hz Graphics	1 Frame	Sync (1:1)	N Frames	1 + N Frames
100 and 120Hz Graphics	1 Frame	Sync (1:1)	N Frames	1 + N Frames

Table 6-3. Primary Channel/Video-Graphics Processing Delay

Source	Frame Rate Conversion	FRC Type	Formatter Buffer	Total Delay
48Hz Graphics	1 Frame	Sync (1:1)	N Frames	1 + N Frames
50Hz Graphics	1 Frame	Sync (1:1)	N Frames	1 + N Frames
60Hz Graphics	1 Frame	Sync (1:1)	N Frames	1 + N Frames
240Hz Graphics (2xDLPC6422)	1 Frame	Sync (1:1)	N Frames	1 + N Frames

6.3.6 Program Memory Flash/SRAM Interface

The DLPC6422 controller provides three external program memory chip selects:

- PM CSZ 0 available for optional SRAM or flash device (≤ 128Mb)
- PM_CSZ_1 dedicated CS for boot flash device (for example, Standard NOR-type flash, ≤ 128Mb)
- PM_CSZ_2 available for optional SRAM or flash device (≤ 128Mb)

Flash and SRAM access timing is software programmable up to 31 wait states. Wait state resolution is 6.7ns in normal mode and 53.33ns in low power modes. Wait state program values for typical flash access times are shown in the Table 6-4.

Table 6-4. Wait State Program Values for Typical Flash Access Times

	Normal Mode (1)	Low Power Mode ⁽¹⁾
Formula to Calculate the Required Wait State Value	= Roundup (Device_Access_Time / 6.7ns)	= Roundup (Device_Access_Time / 53.33ns)
Max Supported Device Access Time	207ns	1660ns

1) Assumes a maximum single-direction trace length of 75mm.

Note that when another device, such as an SRAM or additional flash, is used in conjunction with the boot flash, care must be taken to keep the stub length short and located as close as possible to the flash end of the route.

The DLPC6422 controller provides enough Program Memory Address pins to support a flash or SRAM device up to 128Mb. For systems not requiring this capacity, up to two address pins can be used as GPIO instead. Specifically, the two most significant address bits (for example, PM_ADDR_22 and PM_ADDR_21) are shared on pins GPIO_36 and GPIO_35, respectively. Like other GPIO pins, these pins float in a high-impedance input state following reset; therefore, if these GPIO pins are to be reconfigured as Program Memory Address pins, they require board-level pulldown resistors to prevent any flash address bits from floating until software is able to reconfigure the pins from GPIO to Program Memory Address. Also note that until software reconfigures the pins from GPIO to Program Memory Address, the upper portions of flash memory are not accessible.

Table 6-5 shows typical GPIO_35 and GPIO36 pin configuration for various flash sizes.

Table 6-5. Typical GPIO 35 and GPIO 36 Pin Configurations for Various Flash Sizes

7 ·		
FLASH SIZE	GPIO_36 Pin Configuration	GPIO_35 Pin Configuration
32Mb or less	GPIO_36	GPIO_35
64Mb	GPIO_36	PM_ADDR_21 ⁽¹⁾
128Mb	PM_ADDR_22 ⁽¹⁾	PM_ADDR_21 ⁽¹⁾

⁽¹⁾ Board-level pulldown resistor required

6.3.7 Calibration and Debug Support

The DLPC6422 controller contains a test point output port, TSTPT_(7:0), which provides selected system calibration support as well as ASIC debug support. These test points are inputs while reset is applied and switch to outputs when reset is released. The state of these signals is sampled upon the release of the system reset, and the captured value configures the test mode until the next time a reset is applied. Each test point includes an internal pulldown resistor, and thus, external pullups are used to modify the default test configuration. The default configuration (x00) corresponds to the TSTPT_(7:0) outputs being driven low to reduce switching activity during normal operation. For maximum flexibility, an option to jumper to an external pullup is recommended for TSTPT_(3:0). Note that adding a pullup to TSTPT_(7:4) may have adverse effects for normal operation and is not recommended. Note that these external pullups are only sampled upon a zero-to-one transition on POSENSE and thus changing configuration after reset has been released does not have any effect until the next time reset is asserted and released. Table 6-6 defines the test mode selection for 3 of the 16 programmable scenarios defined by TSTPT_(3:0):

Table 6-6. Test Mode Selection

	No Switching Activity	System Calibration	ARM Debug Signal Set
TSTPT(3:0) Capture Value	х0	х8	x1
TSTPT(0)	0	Vertical Sync	ARM9_Debug (0)
TSTPT(1)	0	Delayed CW Index	ARM9_Debug (1)
TSTPT(2)	0	Sequence Index	ARM9_Debug (2)
TSTPT(3)	0	CW Spoke Test Pt	ARM9_Debug (3)
TSTPT(4)	0	CW Revolution Test Pt	ARM9_Debug (4)
TSTPT(5)	0	Reset Seq. Aux Bit 0	ARM9_Debug (5)
TSTPT(6)	0	Reset Seq. Aux Bit 1	ARM9_Debug (6)
TSTPT(7)	0	Reset Seq. Aux Bit 2	ARM9_Debug (7)

6.3.8 Board Level Test Support

Copyright © 2025 Texas Instruments Incorporated

The in-circuit tristate enable signal (ICTSEN) is a board-level test control signal. By driving ICTSEN to a logic high state, all controller outputs (except TDO1 and TDO2) are tristated.

The DLPC6422 controller also provides JTAG boundary scan support on all I/O except non-digital I/O and a few special signals. Table 6-7 defines these exceptions.

Deadwat Faldan Links

Table 6-7. DLPC6422 —Signals Not Covered by JTAG

SIGNAL NAME	PKG BALL
HW_TEST_EN	M25
MOSC	M26
MOSCN	N26
USB_DAT_N	C5
USB_DAT_P	D6
TCK	N24
TDI	N25
TRSTZ	M23
TDO1	N23
TDO2	N22
TMS1	P25
TMS2	P26

6.4 Device Functional Modes

The DLPC6422 has two functional modes, which are enabled through software commands through the Host control interface. These modes are Standby and Active.

6.4.1 Standby Mode

The system is powered up and active; however, some blocks within the controller have been shut down to conserve power. Only the µProcessor and its peripherals are active (supporting a dormant projector waiting to be woken up). In this mode, the DMD is parked, and no image can be displayed.

6.4.2 Active Mode

The system is powered up and fully operational, capable of projecting internal or external video sources.

6.4.2.1 Normal Configuration

This configuration enables the full functionality of the DLPC6422.

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *DLPC6422*

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

The DLPC6422 display controller and supported DMDs comprise the chipset. The controller integrates all system image processing, DMD control, and data formatting onto a single integrated circuit (IC), as well as LED or laser illumination systems and multiple image processing algorithms. Applications include 4K Ultra High Definition (UHD) and High Definition 3D print, laser marking, laser manufacturing, and other digital imaging and light exposure systems.

7.2 Typical Application

The DLPC6422 controller is ideal for applications requiring high brightness and high resolution light control applications, such as 3D printing and other Laser or LED-based manufacturing applications. When two one DLPC6422 light controllers are combined with the DLP 4K DMD, an FPGA controller is combined with the DLP DMD, a power management (DLPA100), and other electrical, optical and mechanical components the chipset enables bright, affordable, 4K UHD high resolution light control solutions. A typical DLP system application using the DLPC6422 controller and supporting DLP DMD is shown below.

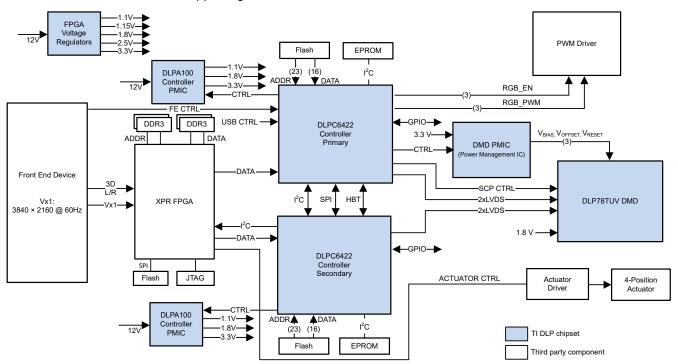


Figure 7-1. Typical 4K UHD Light Control Application

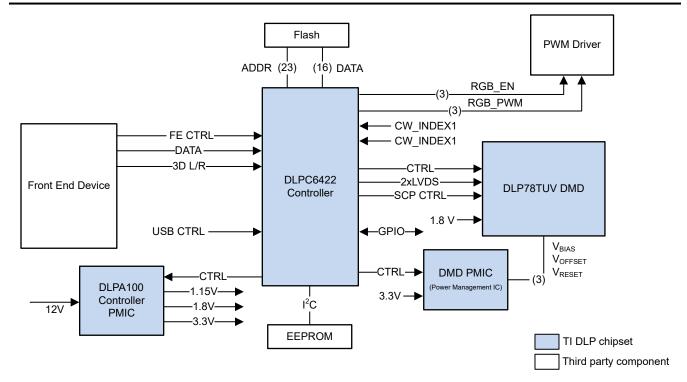


Figure 7-2. Typical 1080p Light Control Application

7.2.1 Design Requirements

The display controller is the digital interface between the DMD and the rest of the system. The display controller takes digital input from front-end digital receivers and drives the DMD over a high-speed interface. The display controller also generates the necessary signals (data, protocols, timings) required to display images on the DMD. Some systems require a dual controller to format the incoming data before sending it to the DMD. Reliable operation of the DMD is only ensured when the DMD and the controller are used together in a system. In addition to the DLP devices included in the chipset, other devices may be needed, such as a flash part to store the software and firmware.

7.2.1.1 Recommended MOSC Crystal Oscillator Configuration

Table 7-1. Crystal Port Characteristics

PARAMETER	NOMINAL	UNIT
MOSC TO GROUND Capacitance	1.5	pF
MOSCZ TO GROUND Capacitance	1.5	pF

Table 7-2. Recommended Crystal Configuration

Table 1 2: Noceminenaea eryotai eemigaration					
PARAMETER	RECOMMENDED	UNIT			
Crystal circuit configuration	Parallel resonant				
Crystal type	Fundamental (1st harmonic)				
Crystal nominal frequency	20	MHz			
Crystal frequency temperature stability	± 30	PPM			
Overall crystal frequency tolerance (including accuracy, stability, aging, and trim sensitivity)	± 100	PPM			
Crystal Equivalent Series Resistor (ESR)	50 max	Ω			
Crystal load	20	pF			
Crystal shunt load	7 max	pF			
RS drive resistor (nominal)	100	Ω			
RFB feedback resistor (nominal)	1	ΜΩ			

Table 7-2. Recommended Crystal Configuration (continued)

The state of the s					
PARAMETER	RECOMMENDED	UNIT			
CL1 external crystal load capacitor (MOSC)	See ⁽¹⁾ .	pF			
CL2 external crystal load capacitor (MOSCN)	See ⁽¹⁾ .	pF			
PCB layout	A ground isolation ring around the crystal is recommended.				

(1) Typical drive level with the XSA020000FK1H-OCX Crystal (ESRmax = 40Ω) = 50μ W

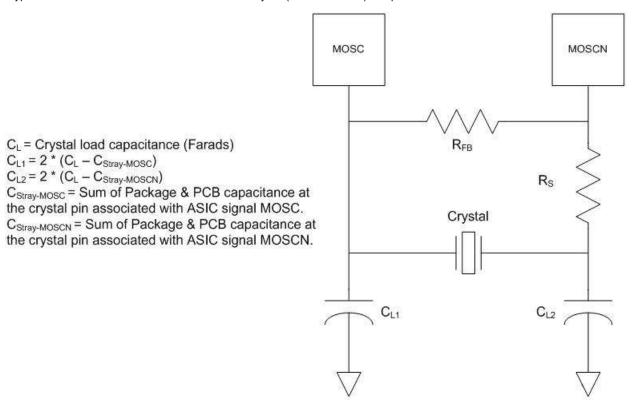


Figure 7-3. Recommended Crystal Oscillator Configuration

Typically, the external crystal oscillator stabilizes within 50ms after stable power is applied.

7.2.2 Detailed Design Procedure

For connecting the DLPC6422 controller and the DLP DMD together, see the reference design schematic. The layout guidelines must be followed to achieve a reliable system. To complete the DLP system, an optical module or light engine is required that contains the DLP DMD, associated illumination sources, optical elements, and necessary mechanical components.

7.3 Power Supply Requirements and Recommendations

7.3.1 System Power Regulations

It is strongly recommended that the VDD18_PLLD, VDD18_PLLM1, and VDD18_PLLM2 power feeding internal PLLs be derived from an isolated linear regulator to minimize the AC Noise component. The VDD11_PLLD, VDD11_PLLM1, VDD11_PLLM2, and VDD11_PLLS can be derived from the same regulator as the core VDD11, but they must be filtered.

7.3.2 System Power-Up Sequence

Copyright © 2025 Texas Instruments Incorporated

Although the DLPC6422 controller requires an array of power supply voltages (1.1V 1.15V, 1.8V, 3.3V); there are no restrictions regarding the relative order of power supply sequencing for both power-up and power-down scenarios. Similarly, there is no minimum time between powering up or powering down the different

Duadwet Felden Linker D/

supplies feeding the DLP controller. However, note that it is not uncommon for there to be power sequencing requirements for the devices that share the supplies with the DLP controller.

- 1.1V 1.15V core power is applied whenever any I/O power is applied to establish the state of the associated I/O that is powered is controlled to a known state. Thus, it is recommended to apply core power first. Other supplies are applied only after the 1.1V core has ramped up.
- All DLPC6422 device power must be applied before POSENSE is asserted to ensure proper power-up initialization.

Typically the DLPC6422 controller power-up sequencing is handled by external hardware. An external power monitor holds the controller in system reset during power-up (that is, POSENSE = 0). During this time, all DLP controller I/Os are tristated. The primary PLL (PLLM1) is released from reset upon the low-to-high transition of POSENSE, but the controller keeps the rest of the device in reset for an additional 60ms to allow the PLL to lock and stabilize its outputs. After this 60ms delay, the ARM-9 related internal resets are deasserted, causing the microprocessor to begin its boot-up routine.

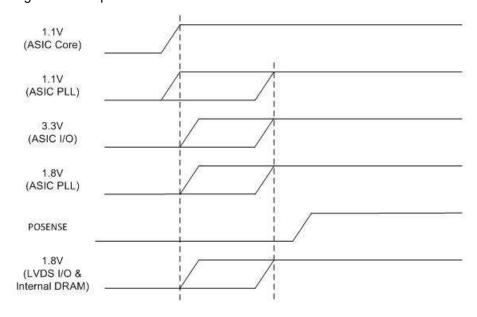


Figure 7-4. System Power-Up Sequence

7.3.3 Power-On Sense (POSENSE) Support

To set up the power monitor to trip within the DLPC6422 controller minimum supply voltage specifications, it is recommended that the external power monitor generating POSENSE targets its threshold to 90% of the minimum supply voltage specifications and ensures that POSENSE remains low for a sufficient amount of time for all supply voltages to reach minimum device requirements and stabilize. Note that the trip voltage for detecting the loss of power, as well as the reaction time to respond to a low voltage condition, is not critical for POSENSE as PWRGOOD is used for this purpose. As such, PWRGOOD has critical requirements in these areas.

7.3.4 System Environment and Defaults

7.3.4.1 DLPC6422 System Power-Up and Reset Default Conditions

Following system power-up, the DLPC6422 controller performs a power-up initialization routine that defaults the device to a normal power mode, in which ARM9-related clocks are enabled at full rate and associated resets are released. Most other clocks default to the disabled state with associated resets asserted until released by the processor. In addition, the default for system power gating enables all power. These same defaults are also applied as part of all system reset events (Watchdog timer timeout, and so on) that occur without removing or

cycling power, with the possible exception of power for the LVDS I/O and internal DRAM. For an extended reset condition, the OEM is expected to place the controller in Low Power mode prior to reset, in which case the 1.8V power for the LVDS I/O and internal DRAM is disabled. When this reset is released, the 1.8V power does not get enabled until the ARM9 has been initialized and is executing the system initialization routines.

Following power-up or system reset initialization, the ARM9 boots from an external flash memory after which it enables the 1.8V power (from the DLPA100), enables the rest of the controller clocks, and initializes the internal DRAM. Once system initialization is complete, the Application software determines if and when to enter low-power mode.

7.3.4.2 1.1V 1.15V System Power

The DLPC6422 controller can support a low cost power delivery system with a single 1.1V 1.15V power source derived from a switching regulator. To enable this approach, appropriate filtering must be provided for the 1.1V power pins of the PLLs.

7.3.4.3 1.8V System Power

It is recommended that the DLPC6422 controller power delivery system provides two independent 1.8V power sources. One of the 1.8V power sources is used to supply 1.8V power to the controller LVDS I/O and internal DRAM. Power for these functions is fed from a common source, which is recommended to be a linear regulator. The second 1.8V power source is used (along with appropriate filtering as discussed in the PCB layout guidelines for the internal ASIC PLL power section of this document) to supply all of the DLPC6422 controller internal PLLs. To keep this power as clean as possible, a dedicated linear regulator for the 1.8V power to the PLLs is recommended.

7.3.4.4 3.3V System Power

The DLPC6422 controller can support a low-cost power delivery system with a single 3.3V power source derived from a switching regulator. This 3.3V source supplies power to all LVTTL I/O and the Crystal Oscillator cell. The 3.3V power must remain active in all power modes for which 1.1V core power is applied.

7.3.4.5 Power Good (PWRGOOD) Support

The PWRGOOD signal is defined as an early warning signal that alerts the DLPC6422 controller a specified amount of time before the DC supply voltages drop below specifications, which allows the controller to park the DMD and to place the system into reset, ensuring the integrity of future operation. For practical reasons, it is recommended that the monitor sensing PWRGOOD be on the input side of supply regulators.

7.3.4.6 5V Tolerant Support

With the exception of USB_DAT, the DLPC6422 controller does not support any other 5V-tolerant I/Os. However, note that source signals ALF_HSYNC, ALF_VSYNC, and I2C typically have 5V requirements, and special measures must be taken to support them. Also, a 5V to 3.3V level shifter is recommended.

7.4 Layout

7.4.1 Layout Guidelines

To achieve the needed thermal connectivity, 2-ounce copper planes in the PCB design are recommended.

7.4.1.1 PCB Layout Guidelines for Internal DLPC6422 Power

The following guidelines to achieve the desired controller performance relative to internal PLLs are recommended:

• The DLPC6422 controller contains four PLLs (PLLM1, PLLM2, PLLD, and PLLS), each of which has a dedicated 1.1V 1.15V digital supply, and three (PLLM1, PLLM2, and PLLD), which have a dedicated 1.8V analog supply. It is important to have filtering on the supply pins that covers a broad frequency range. Each 1.1V 1.15V PLL supply pin must have individual high-frequency filtering in the form of a ferrite bead and a 0.1µF ceramic capacitor. These components must be located very close to the individual PLL supply balls. The impedance of the ferrite bead must be greater than that of the capacitor at frequencies above 10MHz. The 1.1V 1.15V to the PLL supply pins must also have low-frequency filtering in the form of an RC filter.

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

This filter can be common to all the PLLs. The voltage drop across the resistor is limited by the 1.1V 1.15V regulator tolerance and the DLPC6422 device voltage tolerance. A resistance of 0.36Ω and a $100\mu F$ ceramic are recommended.

- The analog 1.8V PLL power pins must have a similar filter topology to the 1.1V 1.15V. In addition, it is recommended that the 1.8V be generated with a dedicated linear regulator.
- When designing the overall supply filter network, care must be taken to ensure that no resonance occurs.
 Particular care must be taken around the 1MHz to 2MHz band, as this coincides with the PLL natural loop frequency.

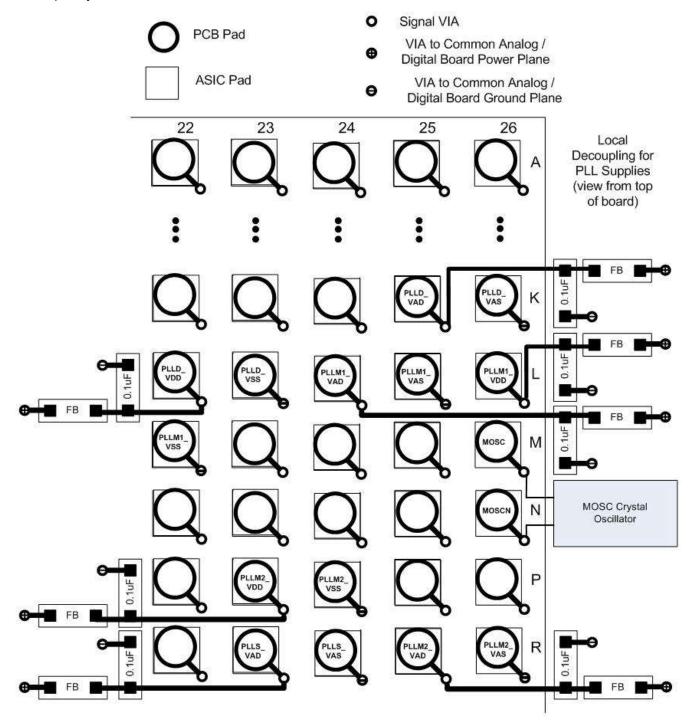


Figure 7-5. PLL Filter Layout

High-frequency decoupling is required for both 1.1V 1.15V, and 1.8V PLL supplies and must be provided as close as possible to each of the PLL supply package pins. It is recommended to place decoupling capacitors under the package on the opposite side of the board. Use high-quality, low-ESR, monolithic, surface mount capacitors. Typically, 0.1µF for each PLL supply is sufficient. The length of a connecting trace increases the parasitic inductance of the mounting and thus, tracing should be avoided, allowing the via to butt up against the land itself. Additionally, the connecting trace has to be made as wide as possible. Further improvement can be made by placing vias to the side of the capacitor lands or doubling the number of vias.

The location of bulk decoupling depends on the system design.

7.4.1.2 PCB Layout Guidelines for Auto-Lock Performance

One of the most important factors in getting good performance from Auto-Lock is to design the PCB with the highest signal integrity possible by following the recommendations below:

- Place the ADC chip as close to the VESA/video connectors as possible.
- Avoid crosstalk to the analog signals by keeping them away from digital signals.
- Do not place the digital ground or power planes under the analog area between the VESA connector to the ADC chip.
- Avoid crosstalk onto the RGB analog signals by separating them from the VESA Hsync and Vsync signals.
- Analog power must not be shared with the digital power directly.
- · Try to keep the trace lengths of the RGB as equal as possible.
- Use good quality (1%) termination resistors for the RGB inputs to the ADC.
- If the green channel must be connected to more than the ADC green input and ADC sync-on-green input, provide a good quality high impendence buffer to avoid adding noise to the green channel.

7.4.1.3 DMD Interface Considerations

High-speed interface waveform quality and timing on the DLPC6422 controller (that is, the LVDS DMD Interface) is dependent on the total length of the interconnect system, the spacing between traces, the characteristic impedance, etch losses, and how well matched the lengths are across the interface. Thus, ensuring a positive timing margin requires attention to many factors.

As an example, the DMD Interface system timing margin can be calculated as follows:

- Setup Margin = (DLPC6422 output setup) (DMD input setup) (PCB routing mismatch) (PCB SI degradation)
- Hold-time Margin = (DLPC6422 output hold) (DMD input hold) (PCB routing mismatch) (PCB SI degradation)

Where *PCB SI degradation* is signal integrity degradation due to PCB effects, which include simultaneously switching output (SSO) noise, crosstalk, and inter-symbol interference (ISI) noise. The controller I/O timing parameters, as well as DMD I/O timing parameters, can be easily found in the corresponding data sheets. Similarly, *PCB routing mismatch* can be budgeted and met through controlled PCB routing. However, PCB SI degradation is not so straightforward.

In an attempt to minimize the signal integrity analysis, the following PCB design guidelines are provided as a reference for an interconnect system that satisfies both waveform quality and timing requirements (accounting for both PCB routing mismatch and PCB SI degradation). Variation from these recommendations may also work, but has to be confirmed with PCB signal integrity analysis or lab measurements

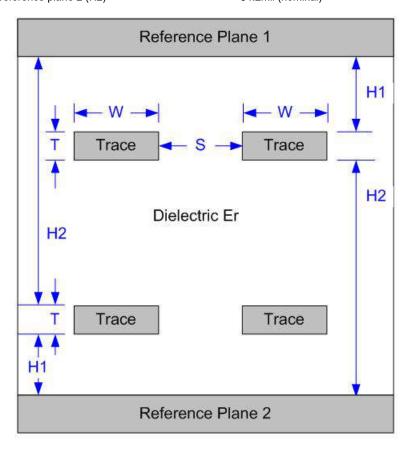
PDB Design:

Configuration
 Etch Thickness
 Flex Etch Thickness
 Single Ended Signal Impedance
 Differential Signal Impedance
 Ohms (+/- 10%)
 Differential Signal Impedance
 Ohms differential (+/- 10%)

PCB Stackup:

- Reference plane 1 is assumed to be a ground plane for the proper return path
- Reference plane 2 is assumed to be the I/O power plane or ground

• Dielectric FR4, (Er):


Signal trace distance to reference plane 1 (H1)

• Signal trace distance to reference plane 2 (H2)

4.2 (nominal)

5.0mil (nominal)

34.2mil (nominal)

PCB Stackup Geometries

Figure 7-6. PCB Stackup Geometries

Table 7-3. General PCB Routing (Applies to All Corresponding PCB Signals)

PARAMETER	APPLICATION	SINGLE-ENDED SIGNAL	DIFFERENTIAL PAIRS	UNIT
	Escape Routing in Ball Field	4 (0.1)	4 (0.1)	mil (mm)
Line width (W) ⁽¹⁾	PCB Etch Data or Control	7 (0.18)	4.25 (0.11)	mil (mm)
	PCB Etch Clocks	7 (0.18)	4.25 (0.11)	mil (mm)
Minimum Line spacing to other signals (S)	Escape Routing in Ball Field	4 (0.1)	4 (0.1)	mil (mm)
	PCB Etch Data or Control	10 (0.25)	20 (0.51)	mil (mm)
	PCB Etch Clocks	20 (0.51)	20 (0.51)	mil (mm)

(1) Line width is expected to be adjusted to achieve impedance requirements.

Table 7-4. DMD I/F, PCB Interconnect Length Matching Requirements

SIGNAL GROUP LENGTH MATCHING				
l/F	SIGNAL GROUP	REFERENCE SIGNAL	MAX MISMATCH	UNIT

Table 7-4. DMD I/F, PCB Interconnect Length Matching Requirements (continued)

SIGNAL GROUP LENGTH MATCHING				
DMD (LVDS)	SCA_P,SCA_N, DDA_P(15:0), DDA_N(15:0)	DCKA_P, DCKA_N	+/-150 (+/–3.81)	mil (mm)
DMD (LVDS)	SCB_P,SCB_N, DDB_P(15:0), DDB_N(15:0)	DCKB_P, DCKB_N	+/-150 (+/–3.81)	mil (mm)

Number of layer changes:

- Single-ended signals: Minimize
- Differential signals: Individual differential pairs can be routed on different layers, but the signals of a given pair typically do not change layers.

Termination requirements:

DMD Interface—None, the DMD receiver is differentially terminated to 100 ohms internally

Connector (DMD-LVDS I/F bus only)—High Speed Connectors that meet the following requirements must be used:

• Differential Crosstalk <5%

• Differential Impedance 75 ohms–125 ohms

Routing requirements for right angle connectors:

When using right angle connectors, P-N pairs have to be routed in same row to minimize delay mismatch and propagation delay difference for each row has to be accounted for on associated PCB etch lengths.

Copyright © 2025 Texas Instruments Incorporated

7.4.1.4 Layout Example

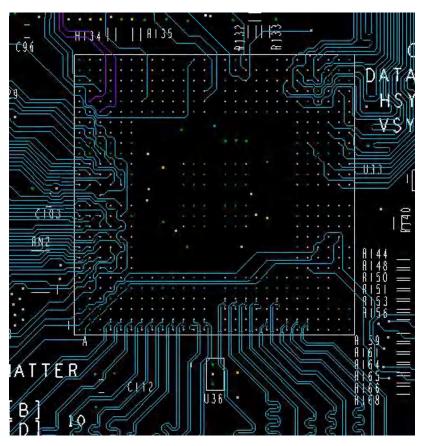


Figure 7-7. Layer 3

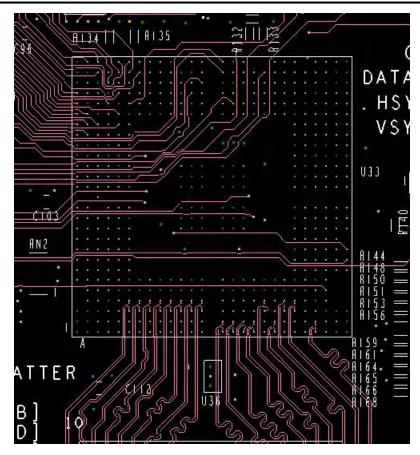


Figure 7-8. Layer 4

7.4.1.5 Thermal Considerations

The underlying thermal limitation for the DLPC6422 controller requires that the maximum operating junction temperature (T_J) must not be exceeded (this is defined in the Section 5.2). This temperature is dependent on operating ambient temperature, airflow, PCB design (including the component layout density and the amount of copper used), the power dissipation of the DLPC6422 device, and the power dissipation of surrounding components. The DLPC6422 package is designed primarily to extract heat through the power and ground planes of the PCB; thus, copper content and airflow over the PCB are important factors.

The recommended maximum operating ambient temperature (T_A) is provided primarily as a design target and is based on maximum DLPC6422 power dissipation and $R_{\theta JA}$ at 1m/s of forced airflow, where $R_{\theta JA}$ is the thermal resistance of the package as measured using a JEDEC-defined standard test PCB. This JEDEC test PCB is not necessarily representative of the DLPC6422 PCB, and thus, the reported thermal resistance may not be accurate in the actual product application. Although the actual thermal resistance may be different, it is the best information available during the design phase to estimate thermal performance. However, after the PCB is designed and the product is built, it is highly recommended that thermal performance be measured and validated.

To do this, the top center case temperature has to be measured under the worst case product scenario (max power dissipation, max voltage, max ambient temp) and validated not to exceed the maximum recommended case temperature (T_C). This specification is based on the measured ϕ_{JT} for the DLPC6422 package, and provides a relatively accurate correlation to junction temperature. Note that care must be taken when measuring this case temperature to prevent accidental cooling of the package surface. A small (approximately 40-gauge) thermocouple is recommended. The bead and the thermocouple wire must contact the top of the package and be covered with a minimal amount of thermally conductive epoxy. The wires must be routed closely along the package and the board surface to avoid cooling the bead through the wires.

8 Device and Documentation Support

8.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

8.2 Device Support

8.2.1 Video Timing Parameter Definitions

- Active Lines Per Frame (ALPF)—Defines the number of lines in a Frame containing displayable data: ALPF
 is a subset of the TLPF.
- Active Pixels Per Line (APPL)—Defines the number of pixel clocks in a line containing displayable data: APPL is a subset of the TPPL
- Horizontal Back Porch Blanking (HBP)—Number of blank pixel clocks after Horizontal Sync but before the first active pixel. Note: HBP times are referenced to the leading (active) edge of the respective sync signal
- **Horizontal Front Porch Blanking (HFP)**—Number of blank pixel clocks after the last active pixel but before Horizontal Sync.
- Horizontal Sync (HS)—Timing reference point that defines the start of each horizontal interval (line). The
 absolute reference point is defined by the "active" edge of the HS signal. The "active" edge (either rising or
 falling edge as defined by the source) is the reference from which all Horizontal Blanking parameters are
 measured.
- **Total Lines Per Frame (TLPF)**—Defines the Vertical Period (or Frame Time) in lines: TLPF = Total number of lines per frame (active and inactive).
- **Total Pixel Per Line (TPPL)**—Defines the Horizontal Line Period in pixel clocks: TPPL = Total number of pixel clocks per line (active and inactive).
- Vertical Back Porch Blanking (VBP)—Number of blank lines after Vertical Sync but before the first active line.
- Vertical Front Porch Blanking (VFP)—Number of blank lines after the last active line but before Vertical Sync.
- Vertical Sync (VS)—A timing reference point that defines the start of the vertical interval (frame). The absolute reference point is defined by the "active" edge of the VS signal. The "active" edge (either rising or falling edge as defined by the source) is the reference from which all Vertical Blanking parameters are measured.

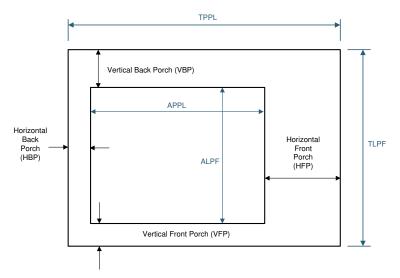


Figure 8-1. Timing Parameter Diagram

8.2.2 Device Nomenclature

Table 8-1. Part Number Description

TI PART NUMBER	DESCRIPTION	
DLPC6422	DLPC6422 Digital Controller	

8.2.3 Device Nomenclature

8.2.4 Device Markings

8.2.4.1 Device Marking

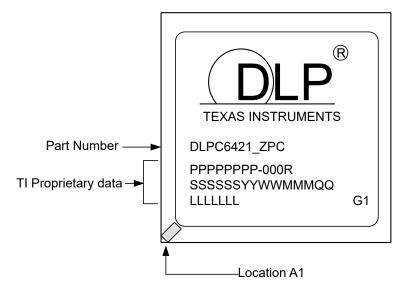


Figure 8-2. DLPC6422 Device Markings

Marking Definitions:

Line 1: DLP Device Name followed by TI Part Number

· XXX: ZPC Package designator

Line 2: Vendor Information

Line 3: SSSSSYYWWMMM-QQ Package Assembly information

- SSSSS: Vendor Country
- YYWW: Vendor Year and Week Code (YY = Year :: WW = Week)
- MMM: Vendor Manufacturing code (ex. HAL, HBL, HAF)
- QQ: Qualification level (optional)

Line 4: LLLLLLe1 Manufacturing Information

- · LLLLLL: Manufacturing Lot code
- · G1: Green package designator

8.3 Documentation Support

8.3.1 Related Documentation

The following documents contain additional information related to the chipset components used with the DLPC6422:

- DLPA100 Controller Power Management and Motor Driver Data Sheet
- DLPA300 DMD Power Management and Motor Driver Data Sheet

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

8.4 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.5 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.6 Trademarks

ARM946[™] is a trademark of ARM.

TI E2E[™] is a trademark of Texas Instruments.

DLP® is a registered trademark of Texas Instruments.

is a registered trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.7 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.8 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025