

DLPC120-Q1 DLPS096B - NOVEMBER 2017 - REVISED MAY 2022

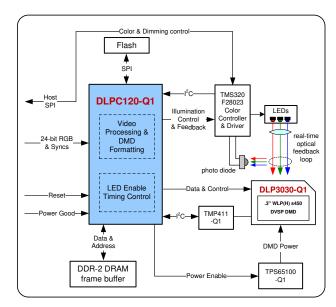
DLPC120-Q1 Automotive DMD Controller

1 Features

- AEC-Q100 qualified for automotive applications:
 - Temperature grade 2: -40°C to 105°C ambient
- Compatibility with three DMD devices:
 - DLP3030-Q1: 0.3 WVGA S450
 - DLP3020-Q1: 0.3 WVGA S247
 - DLP3021-Q1: 0.3 WVGA S247
- Video input interface:
 - 24-bit parallel (RGB888, RGB666, or RGB565)
 - 60-Hz frame rate
 - Input resolutions from QVGA through WVGA
 - Pixel clock up to 40 MHz
- Video processing:
 - Image scaling
 - Programmable de-gamma curve
 - Bezel adjustment
 - Horizontal and vertical image flip
- DMD interface:
 - 78-MHz DDR DMD interface
 - Consistent DMD data loading and reset control overtemperature operating range
 - Automatic DMD parking at power-down
 - DMD temperature management
- External memory support
 - DDR2: 312-MHz clock (624-MHz data rate)
 - Serial flash 39-MHz clock
- System control
 - I²C communication interface
 - Programmable splash screens
 - DMD power and reset driver control
 - Programmable flash-based configuration
- Test support
 - Built-in test pattern generator
 - JTAG with boundary scan support
- Packaged in a 216-pin, 1.0-mm pitch BGA

2 Applications

- Wide field of view and augmented reality head-up display (HUD)
- Interior projection display and lighting
- Digital cluster, navigation, and infotainment windshield displays
- Automotive small light
- Dynamic ground projection


3 Description

The DLPC120-Q1 DMD display controller for automotive applications is part of a chipset compatible with one of three digital micromirror devices (DMDs), DLP3030-Q1, DLP3020-Q1, or DLP3021-Q1. The core DLPC120-Q1 logic is responsible for accepting video input and formatting the data to display on the DMD while simultaneously controlling RGB LEDs in order to create a real-time image. The DLPC120-Q1 is also responsible for controlling the power-up and power-down events of the DMD, based on external system control or temperature input from the DMD. Combined with an external dimming circuit and microcontroller, the DLPC120-Q1 supports a wide dimming range > 5000:1 for HUD applications. Typically, the DLPC120-Q1 is a peripheral device in an I²C interface with a host processor.

Device Information

PART NUMBER ⁽¹⁾	PACKAGE	BODY SIZE (NOM)
DLPC120-Q1	NFBGA (216)	17.00 mm × 17.00 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Typical System Diagram

1 Features1	6.13 JTAG Interface Timing Requirements	19
2 Applications1	6.14 I ² C Interface Timing Requirements	
3 Description1	7 Parameter Measurement Information	
Revision History2	7.1 Parallel Interface Input Source Timing	
5 Pin Configuration and Functions3	7.2 Design for Test Functions	
5.1 LED Driver Interface5	8 Detailed Description	
5.2 DMD Temperature Interface5	8.1 Overview	
General Purpose I/O6	8.2 Functional Block Diagram	
5.3 Main Video and Data Control Interface6	8.3 Feature Description	
5.4 DMD Interface7	8.4 Device Functional Modes	
5.5 Memory Interface8	9 Application and Implementation	26
Board Level Test and Debug9	9.1 Application Information	
Manufacturing Test Support9	9.2 Typical Application	
Test Point Interface9	10 Power Supply Recommendations	
Power and Ground10	10.1 Power Supply Filtering	
6 Specifications12	11 Layout	
6.1 Absolute Maximum Ratings12	11.1 Layout Guidelines	30
6.2 ESD Ratings12	12 Device and Documentation Support	33
6.3 Recommended Operating Conditions12	12.1 Third-Party Products Disclaimer	33
6.4 Thermal Information12	12.2 Device Support	33
6.5 Electrical Characteristics13	12.3 Documentation Support	34
6.6 Electrical Characteristics for I/O13	12.4 Receiving Notification of Documentation Updates	34
6.7 Power Supply and Reset Timing Requirements 13	12.5 Support Resources	
6.8 Reference Clock PLL Timing Requirements15	12.6 Trademarks	
6.9 Parallel Interface General Timing Requirements 16	12.7 Electrostatic Discharge Caution	34
6.10 Parallel Interface Frame Timing Requirements16	12.8 Glossary	34
6.11 Flash Memory Interface Timing Requirements 17	13 Mechanical, Packaging, and Orderable	
6.12 DMD Interface Timing Requirements18	Information	35
4 Revision History		

С	hanges from Revision A (March 2018) to Revision B (April 2022)	Page
•	Added DLP3020-Q1 and DLP3021-Q1 as supported devices. Removed DLP3000-Q1	
•	Included digital cluster, navigation and infotainment windshield displays, automotive small light and dyr ground projection applications	
•	This document is updated per the latest Texas Instruments and industry data sheet standards	
•	Updated the body size from 16 mm × 16 mm to 17 mm × 17 mm, and added the DLP3020-Q1 and DLF Q1 devices as supported devices. Removed DLP3000	
•	This document is updated per the latest Texas Instruments and industry inclusive terminologies. All occurrences of MISO are now POCI; all occurrences of MOSI are now PICO	
•	Updated LED Driver Interface	
	Updated Design Requirements	
	Updated General PCB Recommendations	
_	•	

С	hanges from Revision * (November 2017) to Revision A (March 2018)	Page
•	Changed the device status from Advance Information to Production Data	1
•	Changed case-to-junction thermal coefficient from 0.77°C/W: to 0.28°C/W in Thermal Information table	12
•	Updated Temperature Monitor Function	25
	Updated Application Information	

5 Pin Configuration and Functions

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	VSS	VCCIO _2	DMD_ SAC_ CLK	DMD_ SAC_ BUS	DMD_ DAD_ OEZ	DMD_	DMD_ D14	DMD_ D11	DMD_ D10	DMD_D8	DMD_D5	DMD_D2	DMD_D1	HUD_ INTR	AUX BIT_2	vss	A
В	MEM_ A10	VCCIO _1	vss	DMD_	DMD_ DAD_ BUS	DMD_ SCTRL	DMD_ TRC	DMD_ D12	DMD_D9	DMD_D7	DMD_D3	DMD_D0	AUX BIT_7	AUX BIT_1	VCCIO	LED_S _EN	В
С	MEM_A1	MEM_ WEZ	MEM_ RST	DMD_ JTDO	DMD_ JTMS	vss	DMD_ LOADB	DMD_D1	vss	DMD_D4	DMD_ PWR_EN	vss	AUX BIT_0	HTR_ ENABLE	LED_B _EN	LED_R _EN	С
D	MEM_ A11	MEM_A3	MEM_ RASZ	VCCIO _1	DMD_ JTDI	VCCIO _2	DMD_ DAD_ STRB	VCCIO _2	DMD_D6	VCCIO _2	AUX BIT_6	VCCIO _2	LED_ COMPZ	LED_G _EN	LEDDRV _ON	LED_ B_PWM	D
E	MEM_A9	MEM_ A12	vss	MEM_ ODT								VCCIO	LED_D _EN	LED_ R_PWM	FLASH_ PICO	FLASH_S CLK	E
F	MEM_ CLKZ	MEM_	MEM_A8	MEM_A2								VSSA (PLL)	LED_ G_PWM	FLASH_ POCI	FLASH_ CSZ	LED_EN	F
G	MEM_A5	MEM_A6	MEM_A7	VCCIO _1			vss	VDD	VDD	vss		VCCA (PLL)	PWR GOOD	PLL_REF CLK_O	PLL_REF CLK_I	HW TEST _EN	G
н	MEM_A0	MEM_A4	VSS	MEM_ VREF0			VDD	vss	vss	VDD		TSTPT _6	RESETZ	TSTPT _7	TSTPT _5	TSTPT _4	н
J	MEM_ BAO	MEM_ BA1	MEM_ CASZ	MEM_ZQ			VDD	vss	vss	VDD		VDDQ	JTAG RSTZ	TSTPT _1	TSTPT _2	TSTPT _3	J
ĸ	MEM_ CKE	MEM_ CSZ	MEM_ ATO	VCCIO _1			vss	VDD	VDD	vss		vss	TMP _SDA	JTAG TDO	JTAG TDI	TSTPT _0	K
L	MEM_ DQ7	MEM_ DQ6	MEM_ DQ4	VSS								AST_ CLR0	AST_ INTR0	VCCIO	JTAG TCK	JTAG TMS	L
м	MEM_ DQ5	MEM_ DQ3	VCCIO _1	MEM_ DTO0								AST_ CLR1	AST_ HLD0	AST_ INTR1	I2C _SCL_2	TMP _SCL	М
N	MEM_ DQS0	MEM_ DQSZ0	vss	MEM_ DTO1	VCCIO _1	MEM_ VREF1	vss	P_ DATAEN	PDATA [4]	VCCIO _3	PDATA [14]	PDATA [19]	PDATA [21]	vss	I2C _SDA_1	12C _SDA_2	N
P	MEM_ DQ2	MEM_ DQ0	VCCIO _1	vss	MEM_ DQ12	vss	P_ VSYNC	P_ HSYNC	vss	PDATA [7]	PDATA [10]	PDATA [13]	VCCIO	PDATA [22]	PDATA [23]	12C _SCL_1	P
R	MEM_ DQ1	vss	MEM_ DQ15	MEM_ DQS1	MEM_ DQ11	MEM_ DQ9	VCCIO _1	PDATA [0]	PDATA [2]	PDATA [5]	PDATA [8]	PDATA [11]	PDATA [15]	PDATA [18]	PDATA [20]	AST_ HLD1	R
т	VSS	MEM_ DQ14	MEM_ DQ13	MEM_ DQSZ1	MEM_ DQ10	MEM_ DQ8	VSS	PCLK	PDATA [1]	PDATA [3]	PDATA [6]	PDATA [9]	PDATA [12]	PDATA [16]	PDATA [17]	vss	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	-

Figure 5-1. ZXS Package 216-Pin BGA Top View

Table 5-1. DLPC120-Q1 Device Initialization and Programming Pin Descriptions

PIN		I/O	I/O	CLOCK	bit and Frogramming Fin Descriptions
NAME	NO.	POWER	TYPE	SYSTEM	DESCRIPTION
RESETZ	H13		l ₂	Async	Functional Reset (Active Low). Resets internal logic and causes PLL startup and PLL locking. Assertion is required after power supplies are within limits. See Section 6.7 for timing requirements.
PWRGOOD	G13		I ₂	Async	System Power Good indicator. Should be held low until all DLPC120-Q1 power has been within operating limits. See Section 6.7 for timing requirements. Must be set high to enable normal operation. When set low, the DLPC120-Q1 begins the parking routine for the DMD. Together with pin E14 (LED_R_PWM / PWRGOOD_CNTRL), this signal is critical for DLP30xx-Q1 parking as part of the Pre-Conditioning Sequence and subsequent un-parking. See DLPC120-Q1 Programmer's Guide for implementation details.
PLL_REFCLK_I	G15		l ₂	N/A	Reference Clock Input (16 MHz). Can be driven by crystal across this pin and PLL_REFCLK_O or by external oscillator. See Section 6.7 for timing requirements.
PLL_REFCLK_O	G14		O ₆	N/A	Crystal output. Used with PLL_REFCLK_I.
HUD_INTR	A14	3.30 V	O ₆	N/A	Interrupt signal. This active high signal indicates one of the interrupt sources in the controller has been triggered.
IIC_SCL_1	P16		B ₈	N/A	I ² C Clock for Device configuration and control. Requires external pull-up. Port 1 peripheral command/control interface.
IIC_SDA_1	N15		B ₈	N/A	I ² C Data for Device configuration and control. Requires external pull-up. Port 1 peripheral command/control interface.
IIC_SCL_2	M15		B ₈	N/A	I ² C Clock Debug Port. Requires external pull-up. Port 2 peripheral command/control interface.
IIC_SDA_2	N16		B ₈	N/A	I ² C Data Debug Port. Requires external pull-up. Port 2 peripheral command/control interface.
FLASH_POCI	F14		l ₂	FLASH_SCLK	Serial Data input from the external SPI Flash device. This provides device logical programming data as well as functional configuration parameter data.
FLASH_CSZ	F15	_	O ₆	FLASH_SCLK	Chip Select output for the external SPI Flash device. Active low.
FLASH_SCLK	E16		O ₆	N/A	Clock for the external SPI Flash device.
FLASH_PICO	E15		O ₆	FLASH_SCLK	Serial Data output to the external SPI Flash device. This pin sends address and control information as well as data when programming.

5.1 LED Driver Interface

PIN		I/O	I/O	CLOCK	DESCRIPTION
NAME	NO.	POWER	TYPE	SYSTEM	DESCRIPTION
LED_B_PWM	D16		O ₆	N/A	Function reserved for future use.
LED_R_PWM (PWRGOOD_CNTRL)	E14		O ₆	N/A	Repurposed for power good control. Together with pin G13 (PWRGOOD), this signal is used for DLP30xx-Q1 parking as part of the preconditioning sequence and subsequent unparking. See the DLPC120-Q1 Programmer's Guide for implementation details.
LED_G_PWM	F13		O ₆	N/A	Function reserved for future use.
LED_B_EN	C15		O ₆	N/A	Blue LED enable strobe. Controlled by programmable DMD sequence timing (active high)
LED_R_EN	C16		O ₆	N/A	Red LED enable strobe. Controlled by programmable DMD sequence timing (active high)
LED_G_EN	D14		O ₆	N/A	Green LED enable strobe. Controlled by programmable DMD sequence timing (active high)
LED_S_EN	B16		O ₆	N/A	LED shunt enable. Controlled by programmable DMD sequence timing (active high)
LED_D_EN	E13		O ₆	N/A	LED drive enable. Controlled by programmable DMD sequence timing (active high)
LEDDRV_ON	D15	3.30 V	O ₆	Async	LED driver enable. Active high output control to external LED drive logic
LED_EN	F16		I ₂	Async	LED enable (active high input). A logic low on this signal forces LEDDRV_ON low and RGB strobes low. These signals are enabled 100 ms after LED_EN transitions to a high (assuming corresponding SW parameters are also set to enable LED operation).
LED_COMPZ	D13		l ₂	Async	LED threshold compare (active low input). A logic low on this signal indicates a threshold is reached, and in discontinuous mode controls shunt enable (LED_S_EN).
AST_CLR0	L12	-	O ₆	N/A	Function reserved for future use
AST_HLD0	M13		O ₆	N/A	Function reserved for future use
AST_INTR0	L13		O ₆	N/A	Sequence timer interrupt port
AST_CLR1	M12		O ₆	N/A	Function reserved for future use
AST_HLD1	R16		O ₆	N/A	Function reserved for future use
AST_INTR1	M14		O ₆	N/A	Function reserved for future use

5.2 DMD Temperature Interface

PIN		I/O	I/O	CLOCK	
NAME	NO.	POWER	TYPE	SYSTEM	DESCRIPTION
TMP_SDA	K13		B ₈	Async	Temperature control serial data. This signal is used to communicate with the TMP411 to read the temperature values. Follows I ² C protocol as required by TMP411.
TMP_SCL	M16	3.30 V	В ₈	Async	Temperature control serial clock. This signal is used to communicate with the TMP411 to read the temperature values. Follows I ² C protocol as required by TMP411.
HTR_ENABLE	C14		O ₆	Async	Reserved pin

General Purpose I/O

PIN		I/O	I/O	CLOCK	
NAME	NO.	POWER	TYPE	SYSTEM	DESCRIPTION
AUXBIT_0 (FLICKER_SELECT)	C13		O ₆	Async	This pin is configured by default to be asserted at the lowest brightness mode to activate flicker reduction logic in the LED driver circuit. It is deasserted, otherwise, to deactivate the flicker reduction logic for normal operation. Contact a TI Applications Engineer for implementation details.
AUXBIT_1	B14	3.30 V	O ₆	Async	DMD sequencer reset AUX Bit 1. Intended for system debug. Can be routed to a testpoint or left unconnected
AUXBIT_2	A15		O ₆	Async	DMD sequencer reset AUX Bit 2. Intended for system debug. Can be routed to a testpoint or left unconnected
AUXBIT_6	D11		O ₆	Async	DMD sequencer reset AUX Bit 6. Intended for system debug. Can be routed to a testpoint or left unconnected
AUXBIT_7	B13		O ₆	Async	DMD sequencer reset AUX Bit 7. Intended for system debug. Can be routed to a testpoint or left unconnected

5.3 Main Video and Data Control Interface

PIN		I/O	I/O	CLOCK	
NAME	NO.	POWER	TYPE	SYSTEM	DESCRIPTION
PCLK	T8		l ₂	N/A	Pixel clock ⁽¹⁾
P_VSYNC	P7		l ₂		Vertical sync ⁽²⁾
P_HSYNC	P8		l ₂		Horizontal sync ⁽²⁾
P_DATAEN	N8		l ₂		Data valid ⁽²⁾
PDATA[0]	R8		l ₂		
PDATA[1]	Т9		l ₂		
PDATA[2]	R9		l ₂		
PDATA[3]	T10		l ₂		
PDATA[4]	N9		l ₂		
PDATA[5]	R10		l ₂		
PDATA[6]	T11		l ₂		
PDATA[7]	P10		l ₂		
PDATA[8]	R11		l ₂		
PDATA[9]	T12	3.30 V	l ₂		
PDATA[10]	P11	0.00 V	l ₂	PCLK	
PDATA[11]	R12		l ₂		Data ⁽³⁾
PDATA[12]	T13		l ₂		Data
PDATA[13]	P12		l ₂		
PDATA[14]	N11		l ₂		
PDATA[15]	R13		l ₂		
PDATA[16]	T14		l ₂		
PDATA[17]	T15		l ₂		
PDATA[18]	R14		l ₂		
PDATA[19]	N12		l ₂		
PDATA[20]	R15		l ₂		
PDATA[21]	N13		l ₂		
PDATA[22]	P14		l ₂		
PDATA[23]	P15		l ₂		

(1) Pixel clock capture edge is software programmable.

www.ti.com

- VSYNC, HSYNC, and data valid polarity are software programmable. The 24-bit PDATA bus can be mapped based on pixel format. By default PDATA[23-16]=Red[7-0], PDATA[15-8]=Green[7-0], and PDATA[7-0]=Blue[7-0]. See the *DLPC120-Q1 Programmer's Guide* for more information. (3)

5.4 DMD Interface

PIN		I/O	I/O	CLOCK	
NAME	NO.	POWER	TYPE	SYSTEM	DESCRIPTION
DMD_D0	B12				
DMD_D1	A13				
DMD_D2	A12				
DMD_D3	B11				
DMD_D4	C10				
DMD_D5	A11				
DMD_D6	D9				
DMD_D7	B10		O ₅	DMD_DCLK	DMD data pins. DMD data pins are DDR (Double Data Rate) signals that are clocked on both edges of DMD DCLK.
DMD_D8	A10				signals that are discissed on both edges of binb_both.
DMD_D9	В9				
DMD_D10	A9				
DMD_D11	A8				
DMD_D12	B8				
DMD_D13	C8				
DMD_D14	A7				
DMD_DCLK	A6		O ₅	N/A	DMD data clock (DDR)
DMD_LOADB	C7		O ₅	DMD_DCLK	DMD data load signal (active low)
DMD_SCTRL	B6	1.80 V	O ₅	DMD_DCLK	DMD data serial control signal
DMD_TRC	B7		O ₅	DMD_DCLK	DMD data toggle rate control
DMD_DAD_OEZ	A5		O ₅	Async	DMD DAD output enable (active low). A pullup (10 k Ω to 100 k Ω) to the 1.8-V rail for the DMD interface is needed to keep this signal inactive when tristated.
DMD_DAD_BUS	B5		O ₅	DMD_SAC_CLK	DMD DAD bus data
DMD_DAD_STRB	D7		O ₅	DMD_DCLK	DMD DAD bus strobe.
DMD_SAC_BUS	A4		O ₅	DMD_SAC_CLK	DMD SAC bus data
DMD_SAC_CLK	A3		O ₅	N/A	DMD SAC bus clock
DMD_JTCK	B4		O ₄	N/A	DMD interface test clock. Signal connected to DMD JTAG interface to allow the verification of the interface. The interface is tristated when not active.
DMD_JTMS	C5		O ₄	N/A	DMD interface test mode. Signal connected to DMD JTAG interface to allow the verification of the interface. The interface is tristated when not active.
DMD_JTDI	D5		O ₄	N/A	DMD interface test data output. Signal connected to DMD JTAG interface to allow the verification of the interface. This signal connects to the DMD JTAG TDI. The interface is tristated when not active.
DMD_JTDO	C4		I ₁	N/A	DMD interface test data input. Signal connected to DMD JTAG interface to allow the verification of the interface. This signal connects to the DMD JTAG TDO. Internal pulldown.
DMD_PWR_EN	C11	3.30 V	O ₆	Async	DMD power regulator enable (active high)

5.5 Memory Interface

PIN		I/O	I/O	CLOCK	
NAME	NO.	POWER	TYPE	SYSTEM	DESCRIPTION
MEM_CLK	F2			N1/A	DDD
MEM_CLKZ	F1	1	Os	N/A	DDR memory, Differential Memory Clock.
MEM_A0	H1	1			
MEM_A1	C1	1			
MEM_A2	F4	1			
MEM_A3	D2	1			
MEM_A4	H2	1			
MEM_A5	G1	1			
MEM_A6	G2	1	Os	MEM_CLK	DDR memory, Multiplexed Row and Column Address.
MEM_A7	G3	1			
MEM_A8	F3	1			
MEM_A9	E1	1			
MEM_A10	B1				
MEM_A11	D1	1			
MEM_A12	E2	1			
MEM_BA0	J1	1			
MEM_BA1	J2	1	O _s	MEM_CLK	DDR memory, Bank Select.
MEM_RASZ	D3	1	Os	MEM_CLK	DDR memory, Row Address Strobe (Active low).
MEM_CASZ	J3	1.80 V	Os	MEM_CLK	DDR memory, Column Address Strobe (Active low).
MEM_WEZ	C2	1.00 V	Os	MEM_CLK	DDR memory, Write Enable (Active low).
MEM_CSZ	K2		O _s	MEM_CLK	DDR memory, Chip Select (Active low).
MEM_CKE	K1	1	Os	MEM_CLK	DDR memory, Clock Enable (Active high).
MEM_ODT	E4		O _s	MEM_CLK	DDR memory, On die termination (ODT). ODT is not verified and supported operational mode. This pin should be left open or connected to corresponding DDR2 pin.
MEM_RST	C3		Os	MEM_CLK	DDR memory, Reset. Do Not connect.
MEM_ZQ	J4		Os	MEM_CLK	DDR memory, External pad where to connect the external impedance calibration resistor. The user connects the PAD pin through an external 240 Ω ± 1% resistor to ground.
MEM_DQS0	N1	1	B _{SD}	N/A	DDR memory, Lower Byte, R/W Data Strobe.
MEM_DQSZ0	N2	1	B _{SD}	N/A	DDR memory, Lower Byte, R/W Data Strobe, inverted.
MEM_DQ0	P2	1			
MEM_DQ1	R1	1			
MEM_DQ2	P1	1			
MEM_DQ3	M2			MEM DOCC	DDD mamon, Lawer Bute, Biding History J. DAM Date
MEM_DQ4	L3	1	B _s	MEM_DQS0	DDR memory, Lower Byte, Bidirectional R/W Data.
MEM_DQ5	M1	1			
MEM_DQ6	L2	1			
MEM_DQ7	L1	1			

PIN I/O I/O CLOCK **SYSTEM** NAME NO. **POWER TYPE DESCRIPTION** MEM DQS1 R4 B_s N/A DDR memory, Upper Byte, R/W Data Strobe. MEM_DQSZ1 T4 B_{SD} N/A DDR memory, Upper Byte, R/W Data Strobe, inverted. MEM_DQ8 T6 MEM_DQ9 R6 MEM_DQ10 T5 1.80 V MEM_DQ11 R5 B_s MEM_DQS1 DDR memory, Upper Byte, Bidirectional R/W Data. MEM_DQ12 P5 MEM_DQ13 Т3 MEM_DQ14 T2 MEM_DQ15 R3

Board Level Test and Debug

PIN I/O		I/O	I/O	CLOCK	
NAME	NO.	POWER	TYPE	SYSTEM	DESCRIPTION
JTAGRSTZ	J13		l ₂	Async	JTAG, Reset. Includes weak internal pull-up. Holds TAP controller and associated JTAG logic in idle state under normal operation. This pin should be pulled down with a 5 k Ω or smaller resistor for normal operation.
JTAGTDI	K15	3.30 V	l ₂	JTAGTCK	JTAG, Serial Data In. Includes weak internal pull-up.
JTAGTCK	L15		l ₂	N/A	JTAG, Serial Data Clock. Includes weak internal pull-up.
JTAGTMS	L16		l ₂	JTAGTCK	JTAG, Test Mode Select. Includes weak internal pull-up.
JTAGTDO	K14		O ₆	JTAGTCK	JTAG, Serial Data Out.

Manufacturing Test Support

PIN		I/O	I/O	CLOCK	
NAME	NO.	POWER	TYPE	SYSTEM	DESCRIPTION
HWTEST_EN	G16	3.30 V	l ₂	N/A	Manufacturing Test Enable signal. Should be connected directly to ground on the PCB for normal operation. Weak Internal Pulldown.
MEM_ATO	K3	N/A	0	N/A	Memory Controller Analog Test Output. Factory Test purposes only, should be left unconnected in system.
MEM_DTO0	M4	3.30 V	Os	N/A	Memory Controller Digital Test Output #1. Factory Test purposes only, should be left unconnected in system.
MEM_DTO1	N4	3.30 V	O _s	N/A	Memory Controller Digital Test Output #2. Factory Test purposes only, should be left unconnected in system.

Test Point Interface

PIN		I/O	I/O	CLOCK						
NAME	NO.	POWER	TYPE	SYSTEM	DESCRIPTION					
TSTPT_0	K16									
TSTPT_1	J14									
TSTPT_2	J15				Reserved for Test Outputs. These test I/O should be left open or unconnected for normal operation in final product design.					
TSTPT_3	J16	3.30 V	3.30 V	3.30 V	B ₈	B ₈	B ₈	B ₈	Async	(DO NOT tie to GND), Internal Pullup on all signals. TSTPT_4
TSTPT_4	H16				should be pulled up using external 10 kΩ resistor to ensure proper initialization.					
TSTPT_5	H15				propor minanzation.					
TSTPT_6	H12									

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

PIN		I/O	I/O	CLOCK	
NAME	NO.	POWER	TYPE	SYSTEM	DESCRIPTION
TSTPT_7 (CM_DM)	H14	3.30 V	В ₈	Async	This pin is configured by default to indicate whether the system is in Continuous Mode (High) or Discontinuous Mode (Low). Contact a TI Applications Engineer for implementation details. It can also be reserved as a Test Output.

Power and Ground

	PIN	I/O	
NAME	NO.	1/0	DESCRIPTION
VCCIO_1	B2, D4, G4, K4, M3, N5, P3, R7	PWR	1.8 V (DDR2 MEM).
VCCIO_2	BA2, D10, D12, D6, D8	PWR	1.8 V (DMD I/F).
VCCIO_3	B15, E12, L14, N10, P13	PWR	3.3 V (MISC IO).
MEM_VREF0	H4		Voltage Referenced Input (50% of DDR Memory Voltage).
MEM_VREF1	N6		Voltage Referenced Input (50% of DDR Memory Voltage).
VCCA	G12	PWR	PLL Power Input.
VSSA	F12		PLL R-C Return Path (NOT a GND).
VDD	G8, G9, H7, H10, J7, J10, K8, K9	PWR	1.2-V core logic power supply.
VDDQ	J12	GND	EFUSE Programming voltage (Used in Manufacturing Test only.) Should be tied to GND.
GND	A1, A16, B3, C6, C9, C12, E3, G7, G10, H3, H8, H9, J8, J9, K7, K10, K12, L4, N3, N7, N14, P4, P6, P9, R2, T1, T7, T16	GND	Common Ground (I/O Ground).

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

GND

Ground return

Table 5-2. I/O Type Subscript Definition

Table 3-2. I/O Type Subscript Definition						
	I/O	SUPPLY REFERENCE				
SUBSCRIPT	DESCRIPTION	SOFFEI KEI EKENGE				
1	1.8 V	VDD				
2	3.3 V	VCCIO_3				
4	8 mA	VDD				
5	6, 10, or 12 mA	VCCIO_2				
6	8 mA	VCCA				
S	SSTL_18	VCCIO_1				
8	8 mA	VCCIO_3				
SD	SSTL_18 Differential	VCCIO_1				
TYPE						
I	Input					
0	Output					
В	Bidirectional	N/A				
PWR	Power					

Table 5-3. Internal Pullup and Pulldown Characteristics

INTERNAL PULL-UP AND PULL-DOWN RESISTOR CHARACTERISTICS	VCCIO	MIN	ТҮР	MAX	UNIT
Weak pull-up resistance	3.3 V	27	39	61	kΩ
Weak pull-down resistance	3.3 V	32	46	79	kΩ
weak pull-down resistance	1.8 V	52	91	180	kΩ

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted) (1)

	MIN	MAX	UNIT
SUPPLY VOLTAGE ⁽²⁾			
VCCIO_1	0	1.98	V
VCCIO_2	0	3.6	V
VCCIO_3	0	3.6	V
VCCA (PLL)	0	1.32	V
VDD	0	1.32	V
GENERAL			
T _J Operating junction temperature	-40	125	°C
T _{stg} Storage temperature	-40	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

				VALUE	UNIT
V _(ESD) Electrostatic discharge	Human-body model (HBM), per AEC Q100-002	±2000			
	Flectrostatic discharge	Charged device model (CDM), per AEC	All pins	±500	V
	Q 100-011	Corner pins (A1, A16, T1, and T16)	±750		

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
VDD	1.2-V supply voltage, core logic	1.14	1.2	1.26	V
VCCA	Analog voltage for PLL	1.14	1.2	1.26	V
VCCIO_0	DDR2 memory interface	1.71	1.8	1.89	V
VCCIO_1	1.8-V supply voltage for DMD	1.71	1.8	1.89	V
VCCIO_2	Pixel interface supply voltage	3.135	3.3	3.465	V
VDDQ	EFuse programming voltage	0.0	0.0	0.0	V
T _J	Operating junction temperature	-40		125	°C
T _A	Operating ambient temperature ⁽¹⁾	-40		105	°C

⁽¹⁾ Operating ambient temperature is dependent on system thermal design. Operating junction temperature may not exceed its specified range across ambient temperature conditions.

6.4 Thermal Information

	DLPC120-Q1	
THERMAL METRIC ⁽¹⁾	ZXS (BGA)	UNIT
	216 PINS	
ψ _{JT} Case-to-junction thermal coefficient	0.28	°C/W

Submit Document Feedback

⁽²⁾ All voltage values are with respect to GND.

6.4 Thermal Information (continued)

		DLPC120-Q1	
	THERMAL METRIC(1)	ZXS (BGA)	UNIT
		216 PINS	
T_{JA}	Junction-to-ambient thermal coefficient	26.32	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the , Semiconductor and IC Package Thermal Metrics Application Report (SPRA953).

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{VDD}	Logic core power (1.2 V)			140	186	mA
I _{VCCA}	PLL power (1.2 V)			3	10	mA
I _{VCCIO_0/1}	DDR2 memory and DMD interface I/O power (1.8 V)			180	245	mA
I _{VCCIO_2}	Pixel data input power (3.3 V)			4	10	mA
	Total power			469	724	mW

6.6 Electrical Characteristics for I/O

		PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
	High-level	1.8-V LVCMOS (I/O Type 1)		1.17	VCCIO + 0.3	
V _{IH}	input threshold	3.3-V LVCMOS (I/O Type 2, 8)		2.0	VCCIO + 0.3	V
	voltage	SSTL_18 (I/O Type S, SD)		1.08	VCCIO + 0.3	
	Low-level input threshold voltage	1.8-V LVCMOS (I/O Type 1)		-0.3	0.63	
V _{IL}		3.3-V LVCMOS (I/O Type 2, 8)		-0.3	0.8	V
		SSTL_18 (I/O Type S, SD)		-0.3	0.73	
		1.8-V LVCMOS fixed current (I/O Type 4)		1.35		
V _{OH}	High-level output	1.8-V LVCMOS variable current (I/O Type 5)		1.35		V
	voltage	3.3-V LVCMOS fixed current (I/O Type 6, 8)		2.4		
		SSTL_18 (I/O Type S, SD)		VCCIO - 0.28		
		1.8-V LVCMOS fixed current (I/O Type 4)			0.45	
V _{OL}	Low-level output	1.8-V LVCMOS variable current (I/O Type 5)			0.45	V
	voltage	3.3-V LVCMOS fixed current (I/O Type 6, 8)			0.4	
		SSTL_18 (I/O Type S, SD)			0.28	

6.7 Power Supply and Reset Timing Requirements

			MIN	MAX	UNIT
t _{ramp}	Time for all DLPC120-Q1 power rails to be applied	Power supplies can be applied in any order if they occur within this maximum timing. Otherwise, refer to Note ⁽¹⁾ .		10	ms
t _{pwr_en}	RESETZ rising edge (or PWRGOOD rising edge—whichever comes second) to DMD_PWR_EN rising edge	PWRGOOD shall be controlled by LED_R_PWM / PWRGOOD_CNTRL signal, which is an output of the DLPC120-Q1 and will automatically be asserted after the device releases from reset.		150	μs

6.7 Power Supply and Reset Timing Requirements (continued)

			MIN	MAX	UNIT
t _{dly}	External delay between DMD_PWR_EN and DMD mirror supply voltages	This delay is not required for supported devices.			ms
t _{oez}	DMD_PWR_EN rising edge to falling edge	of DMD_OEZ		5	ms
t _{precondition}	DMD preconditioning timel	It is required that the DMD executes a Pre-Conditioning Sequence prior to parking. The final action of this sequence is the de-assertion of the LED_R_PWM / PWRGOOD_CNTRL signal, which shall drive the PWRGOOD signal low. See the DLPC120-Q1 Programmer's Guide for instructions on how to execute the Pre-Conditioning Sequence.	800		μs
t _{park}	DMD park time (approximate)		200	200	μs
t _{pd_dmd}	PWRGOOD low to falling edge of DMD_PV	VR_EN		500	μs
t _{fall}	Time for DLPC120-Q1 power supplies to be removed	Power supplies can be removed in any order if they occur within this maximum timing. Otherwise, they shall be removed in the reverse order they were applied, per the t _{ramp} specification and Note ⁽¹⁾ .		10	ms

- (1) If the DLPC120-Q1 supplies cannot be applied according to this timing specification, then they must be applied in the following order, spanning no longer than 100 ms (shall be removed in the reverse order for power down):
 - a. Apply VCCIO 2 (3.3 V)
 - b. Apply VCCIO_0, VCCIO_1 (1.8 V) DDR Memory and DMD, in any order
 - c. Apply VDD (1.2 V) DLPC120-Q1 core supply voltage

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

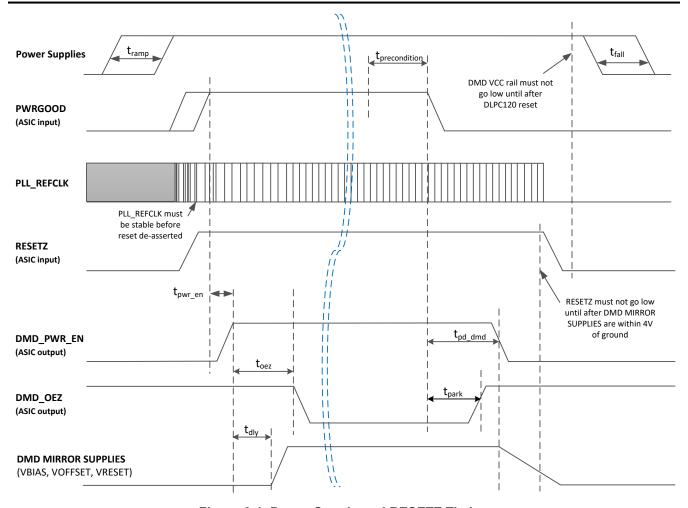


Figure 6-1. Power Supply and RESETZ Timing

6.8 Reference Clock PLL Timing Requirements

			MIN	NOM	MAX	UNIT
$f_{ m clock}$	Clock frequency			16.00		MHz
	Cycle time	No clock spreading ⁽¹⁾		62.5		ns
l _C	With clock spreading ⁽¹⁾			1.02 × t _c		ns
t _w (H)	Pulse duration, high	50% to 50% reference points	0.4 x t _c			ns
t _w (L)	Pulse duration, low	50% to 50% reference points	0.4 x t _c			ns
t _{jp}	Period jitter, PLL_REFCLK_	ļ	-250		250	ps

(1) PLL clock spreading is configurable. See *DLPC120-Q1 Programmer's Guide* for a description of how to select spread spectrum options.

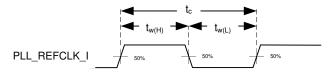


Figure 6-2. PLL Reference Clock Timing

6.9 Parallel Interface General Timing Requirements

			MIN	MAX	UNIT
$f_{ m clock}$	Clock frequency, PCLK ⁽¹⁾		3.1	40.0	MHz
t _{p_clkper}	Clock period, PCLK	VIH/VIL	25.0	320.0	ns
t _{p_wh}	Pulse width low, PCLK	VIH/VIL	6.0		ns
t _{p_wl}	Pulse width high, PCLK	VIH/VIL	6.0		ns
t _{p_su}	Setup time - HSYNC, DATEN, PDATA(23:0) valid before the active edge of PCLK ⁽²⁾	VIH/VIL	2.0		ns
t _{p_h}	Hold time - HSYNC, DATEN, PDATA(23:0) valid after the active edge of PCLK ⁽²⁾	VIH/VIL	2.0		ns
t _t	Transition time - PCLK	10% to 90% reference points	0.2	6	ns

- (1) This range includes the 200 ppm of the external oscillator.
- (2) The active (capture) edge of PCLK for HSYNC, DATEN, and PDATA(23:0) is software programmable, but defaults to rising edge.

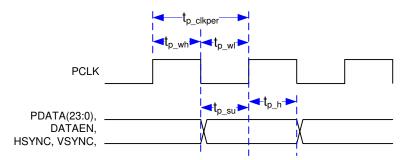


Figure 6-3. Parallel Video Interface General Timing

6.10 Parallel Interface Frame Timing Requirements

		O .		
			MIN N	IAX UNIT
t _{p_vsw}	Vertical sync width	50% reference points	1	Lines
t _{p_vbp}	Vertical back porch	50% reference points	6	Lines
t _{vfp}	Vertical front porch	50% reference points	4 ⁽¹⁾	Lines
t _{hsw}	Horizontal sync width	50% reference points	5	PCLKs
t _{hbp}	Horizontal back porch	50% reference points	4	PCLKs
t _{hfp}	Horizontal front porch	50% reference points	40 ⁽¹⁾	PCLKs

(1) Values depend on many factors and may need to be higher depending on scaling ratio and other factors. See resolution table for typical values that have been verified.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

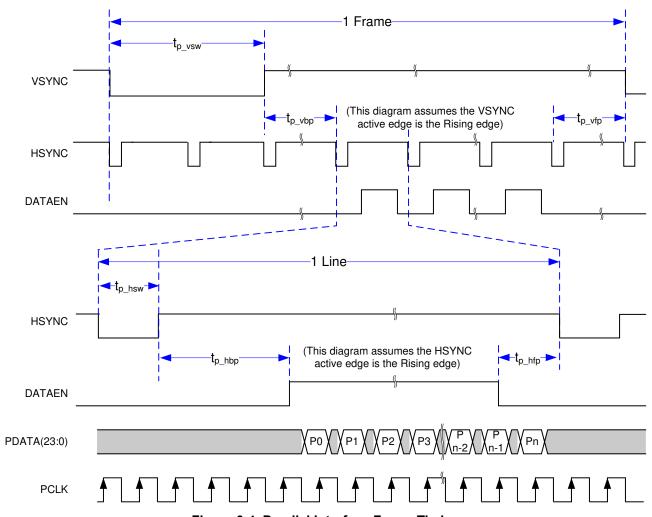


Figure 6-4. Parallel Interface Frame Timing

6.11 Flash Memory Interface Timing Requirements

			MIN	NOM	MAX	UNIT
f_{clock}	Clock frequency, FLASH_SCLK ⁽¹⁾			39.00		MHz
t _{clkper}	Clock period, FLASH_SCLK	50% reference points		25.64		ns
t _{wh}	Pulse width high, FLASH_SCLK	50% reference points	10			ns
t _{wl}	Pulse width low, FLASH_SCLK	50% reference points	10			ns
t _t	Transition time, all signals	20% to 80% reference points, C _{load} = 20 pF	1		3	ns
t _{valid_POCI}	Flash POCI valid data max delay after FLASH_SCLK falling edge	50% reference points			10	ns
t _{valid_PICO_b}	PICO valid before rising edge of FLASH_SCLK	50% reference points	2.2			ns
t _{valid_PICO_a}	PICO valid after rising edge of FLASH_SCLK	50% reference points	5.2			ns

⁽¹⁾ Spread Spectrum clock modulation, when enabled, will affect the nominal frequency of the FLASH_SCLK.

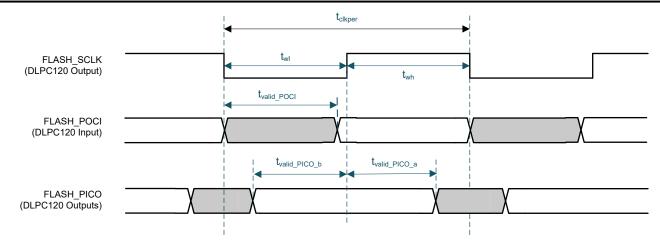


Figure 6-5. Flash Interface Timing

6.12 DMD Interface Timing Requirements

			MIN	NOM	MAX	UNIT
$f_{ m clock}$	Clock frequency, DMD_DCLK and DMD_SAC_CL	((1)	75.00	78.00	80.00	MHz
t _{p_clkper}	Clock period, DMD_DCLK and DMD_SAC_CLK	50% reference points	12.5		15.0	ns
t _{p_clkjit}	Clock jitter, DMD_DCLK and DMD_SAC_CLK	Maximum f _{clock}			200	ps
t _{p_wh}	Pulse width high, DMD_DCLK and DMD_SAC_CLK	50% reference points	6.2			ns
t _{p_wl}	Pulse width low, DMD_DCLK and DMD_SAC_CLK	50% reference points	6.2			ns
t _t	Transition time, all signals	20% to 80% reference points	0.5		1.5	ns
t _{p_su}	Output setup time – DMD_D(14:0), DMD_SCTRL, DMD_LOADB and DMD_TRC relative to both rising and falling edges of DMD_DCLK ⁽²⁾	50% reference points			1.5	ns
t _{p_h}	Output hold time – DMD_D(14:0), DMD_SCTRL, DMD_LOADB and DMD_TRC signals relative to both rising and falling edges of DMD_DCLK ⁽²⁾	50% reference points			1.5	ns
t _{p_d1_skew}	DMD data skew – DMD_D(14:0), DMD_SCTRL, DMD_LOADB and DMD_TRC signals relative to each other	50% reference points			0.20	ns
t _{p_d2_skew}	DAD/ SAC data skew - DMD_SAC_BUS, DMD_DAD_OEZ and DMD_DAD_BUS signals relative to DMD_SAC_CLK	50% reference points			1.65	ns
t _{p_d3_skew}	DMD_DAD_STRB signal relative to DMD_DCLK	50% reference points			1.65	ns
t _{p_clk_skew}	Clock skew – DMD_DCLK and DMD_SAC_CLK relative to each other	50% reference points			0.25	ns

 $^{(1) \}quad \text{This range includes the 200 PPM of the external oscillator.} \\$

⁽²⁾ Output setup and hold numbers already account for ASIC clock jitter. Only routing skew and DMD setup/ hold need be considered in system timing analysis.

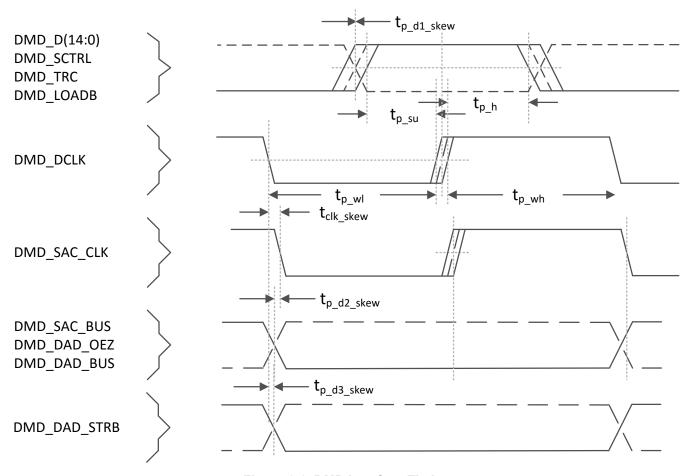


Figure 6-6. DMD Interface Timing

6.13 JTAG Interface Timing Requirements

			MIN	MAX	UNIT
$f_{ m clock}$	Clock frequency, JTAGTCK	Clock frequency, JTAGTCK			
t _c	Cycle time, JTAGTCK		100		ns
t _{w(H)}	Pulse duration high	50% to 50% reference points	40		ns
t _{w(L)}	Pulse duration low	50% to 50% reference points	40		ns
t _t	Transition time, $t_t = t_f = t_r$	20% to 80% reference points		5	ns
t _{su}	Setup time, JTAGTDI valid before JTAGTC JTAGTCK rising edge	K rising edge, and JTAGTMS valid before	10		ns
t _h	Hold time, JTAGTDI valid after JTAGTCK,	and JTAGTMS valid after JTAGTCK	10		ns
t _{pd}	Output propagation, clock to Q. JTAGTCK	falling edge to JTAGTDO	3	20	ns

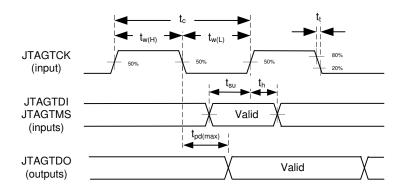


Figure 6-7. JTAG Interface Timing

6.14 I²C Interface Timing Requirements

		MIN	MAX	UNIT
$f_{\sf scl}$	Clock frequency	20	400	kHz
t _{sch}	Clock duration high	0.6		μs
t _{scl}	Clock duration low	1.3		μs
t _{sp}	Spike time	0	400	ns
t _{sds}	Setup time	100 ⁽³⁾		ns
t _{sdh}	Hold time	0 ⁽¹⁾	0.9(2)	μs
t _{icr}	Input rise time	20 + 0.1 x C _b ⁽⁴⁾	300	ns
t _{ocf}	Output fall time	1 + 0.1 x C _b ⁽⁴⁾	300	ns
t _{buf}	Bus free time between stop and start conditions	1.3		μs
t _{sts}	Start or repeated start condition setup	0.6		μs
t _{sth}	Start or repeated start condition hold	0.6		μs
t _{sph}	Stop condition hold	0.6		μs

⁽¹⁾ A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.

(4) $C_b = \text{total capacitance of one bus line in pF.}$

⁽²⁾ The maximum $t_{HD\ DAT}$ has only to be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal.

⁽³⁾ A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, but the requirement t_{SU_DAT} 250 ns must then be met. This is automatically the case since the device does not stretch the LOW period of the SCL signal.

7 Parameter Measurement Information

7.1 Parallel Interface Input Source Timing

The supported sources with typical timings are shown in Table 7-1.

Table 7-1. Parallel Interface Supported Resolutions (Typical Timing)

RESOL	UTION		ORIZONTA			VERTICAL		CLOCK
HORIZONTAL	VERTICAL	FP	ВР	SYNC WIDTH	FP	ВР	SYNC WIDTH	MHz
320	120	40	32	6	4	7	1	3.1
320	160	42	32	6	7	7	1	4.2
320	240	42	32	6	15	7	1	6.3
400	240	48	50	6	16	6	1	7.8
480	240	96	24	6	8	14	1	9.4
500	250	50	24	6	36	15	1	10.2
640	160	41	41	6	11	19	1	8.3
640	240	104	50	6	14	8	1	12.6
640	480	84	70	6	35	9	1	25.2
800	480	144	50	6	35	9	1	31.5
852	480	68	74	6	35	9	1	31.5
853	480	67	74	6	35	9	1	31.5
854	240	68	72	6	14	9	1	15.8
854	480	68	72	6	35	9	1	31.5
864	480	60	70	6	35	9	1	31.5
960	160	164	70	6	5	9	1	12.6
960	240	164	70	6	13	9	1	18.9
960	250	164	70	6	14	9	1	19.7
960	480	164	70	6	35	9	1	37.8
608	684 ⁽¹⁾	46	40	6	104	30	1	33.33

⁽¹⁾ Optical Bypass Mode.

7.2 Design for Test Functions

The DLPC120-Q1 has several built-in test features. These tests can be run to verify ASIC functionality on startup or during normal operation. Refer to *DLPC120-Q1 Programmer's Guide* for more detail regarding test usage. Table 7-2 defines the execution time of each test.

Table 7-2. Test Execution Times

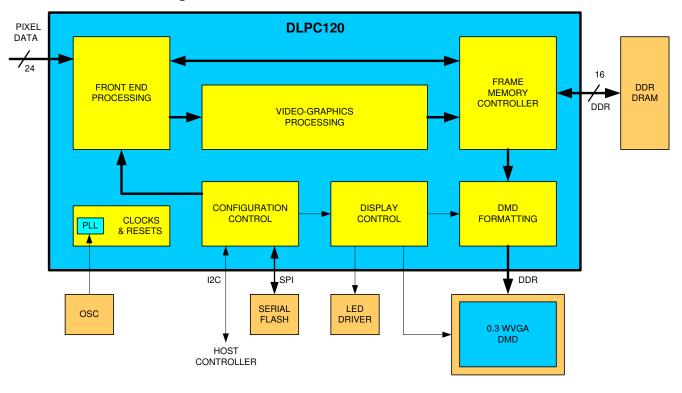
TEST NAME	LENGTH (ms)	SUMMARY
DDR2 BIST (Short)	145	The Short DDR2 BIST implements a memory check using a March13 Algorithm to verify the external DDR2 SDRAM frame buffer space. It runs at power-up or also can be executed on demand, but it is recommended to run only at power-up, since the image will flash if executed on demand. The short version runs a portion of the long test.
DDR2 BIST (Long)	470	The Long DDR2 BIST is the same as the Short DDR2 BIST, but it runs the test multiple times.
FLASH BIST (1 MByte)	215	The Flash BIST calculates configuration memory checksum (32 bits) for data integrity of the Flash data and interface. Flash checksum is recommended to be done at power-up to verify configuration settings. The Flash BIST memory range to perform checksum is programmable to up to 32M.
System BIST ⁽²⁾	See ⁽¹⁾	The System BIST validates the DLPC120-Q1 internal logic. It sends a known test pattern image through the ASIC to verify the checksum at the last stage before the data reaches the DMD. When enabled, the checksum for each frame of data is calculated and stored in an I ² C register.
DMD Interface Test	6.93	The DMD JTAG BIST validates the connection between the ASIC and DMD. It uses the DMD JTAG interface to sample the ASIC pins and compare against expected values, and it also tries to detect shorts between signals. The BIST is run on demand.

Table 7-2. Test Execution Times (continued	Table 7-2	Test Execution	Times ((continued
--	-----------	----------------	---------	------------

TEST NAME	LENGTH (ms)	SUMMARY
Front End Video Checksum	See ⁽¹⁾	The Front End Video Checksum is used to verify that the video is received correctly at the front end on the specified region of the frame. When enabled, it calculates the checksum for the specified region of the video frame and stored in an I ² C register.
Video Detect Test	See ⁽¹⁾	The Video Detect test shall be used to monitor external video VSYNC. If external video is not valid, the DMD must be put into a safe state (e.g. switched to an internal black test pattern).

- (1) The length of these tests will vary depending on frame rate but will not exceed 2 frames.
- (2) Some processing options must be turned off for this test.

8 Detailed Description


8.1 Overview

The DLPC120-Q1 is compatible with three DMD components:

- DLP3030-Q1 0.3 WVGA S450 DMD
- DLP3020-Q1 0.3 WVGA FQR DMD
- DLP3021-Q1 0.3 WVGA FQR DMD

The DLPC120-Q1 formats incoming video data from a parallel interface and drives the DMD timing to display the video. It also controls illumination enables to strobe illuminators synchronously with the DMD mirror movement. The DLPC120-Q1 is designed for automotive applications with a wide operating temperature range and diagnostic features to identify certain failure modes.

8.2 Functional Block Diagram

Copyright © 2017, Texas Instruments Incorporated

Figure 8-1. Functional Block Diagram

8.3 Feature Description

8.3.1 Serial Flash Interface

The DLPC120-Q1 utilizes an external SPI serial flash memory device for configuration support. The minimum required size is dependent on the desired minimum number of Sequences, CMT tables, and Splash options, while the maximum supported size is 64 Mb. The DLPC120-Q1 can be used to Read, Erase, and program the serial flash. Refer to *DLPC120-Q1 Programmer's Guide* for details of Flash configuration information.

The DLPC120-Q1 utilizes a single SPI interface, employing SPI mode 0 protocol, operating at a frequency of 39.0 MHz. All read operations assume the Flash supports address auto-incrementing. The DLPC120-Q1 should support any flash device that meets these criteria plus the criteria listed in Table 8-1.

Table 8-1. SPI Flash Instruction Op Code Compatibility Requirements

FLASH COMMAND	OPCODE
Fast Read (Single Output)	0x0B
Read Electronic Signature	0xAB
Others	May vary

The DLPC120-Q1 does not have any specific Page, Block or Sector size requirements. If the user would like to use a portion of the serial flash for storing external data (such as calibration data) via the I²C interface, then the minimum sector size needs to be considered as it will drive minimum erase size. Note that use of serial flash for storing external data may impact the number of features that can be supported.

The DLPC120-Q1 does not drive the /HOLD (active low Hold) or /WP (active low Write Protect) pins on the flash device and thus these pins should be tied to a logic high on the PCB via an external pull-up.

Table 8-2. DLPC120-Q1 Compatible SPI Flash Device Options

VENDOR	PART NUMBER	DENSITY (Mb)	SUPPLY VOLTAGE SUPPORTED ⁽¹⁾
ISSI	IS25LP064A-JMLE	64	3.3 V
Winbond	W25Q64CVSFAG	64	3.3 V
Spansion	S25FL064P0XMFV000	64	3.3 V
Micron	M25P64-VMF3TPB	64	3.3 V

⁽¹⁾ The Flash supply voltage must match VCCIO_2 on the DLPC120-Q1. Multiple voltage options are often available under the same base part number.

8.3.2 Serial Flash Programming

The external serial flash may also be programmed via the same SPI interface which is connected to the DLPC120-Q1. In order to avoid conflicting data on this interface, the DLPC120-Q1 must be held in reset while the flash memory is programmed. See flash specification for details of the programming configuration.

8.3.3 DDR2 Memory Interface

The DLPC120-Q1 ASIC DDR2 Memory interface consists of a 16-bit wide, 312-MHz (nominal) DDR2 interface with standard signaling. The DLPC120-Q1 only support DDR2 interface with external termination. The DDR2 interface is a very high speed signaling interface.

A DDR2 memory should be selected that supports the 312-MHz clock frequency and compliant to the JEDEC standard for DDR2 memories (JESD79-2A).

Table 8-3. Compatible JEDEC DDR2 Devices

PARAMETER	MIN	MAX	UNITS
JEDEC DDR2 device speed grade ⁽¹⁾	DDR2-800		
JEDEC DDR2 device bit width	X16		Bits
JEDEC DDR2 device count	1		Device(s)
JEDEC DDR2 Memory size	512	1024	MByte

Copyright © 2022 Texas Instruments Incorporated

Table 8-3. Compatible JEDEC DDR2 Devices (continued)

PARAMETER	MIN	MAX	UNITS
CAS Latency	5	5	

(1) The DDR2 interface operates with a clock frequency of 312 MHz, higher DDR2 speed grades are supported due to inherent JEDEC DDR2 backwards compatibility.

Table 8-4. DLPC120-Q1 Com	patible DDR2 Device Options
---------------------------	-----------------------------

VENDOR	PART NUMBER	SIZE	ORGANIZATION	SPEED GRADE	CL
ISSI	IS46DR16320C-25DBLA2	512 Mb	32Mx16	DDR2-800	5
Micron	MT47H64M16HR-25E AAT	1 Gb	32Mx16	DDR2-800	5
Micron	MT47H32M16HR-25E AAT	512 Mb	32Mx16	DDR2-800	5

8.3.4 JTAG and DMD Interface Test

The DLPC120-Q1 has two test interfaces using JTAG protocol:

- A standard JTAG (IEEE-1149) function of the ASIC is provided. The TI-provided BSDL file contains the
 details of the DLPC120-Q1 boundary scan chain. This JTAG interface is provided to enable system level
 validation of proper assembly of the DLPC120-Q1 onto a PCB.
- The DLPC120-Q1's DMD interface is designed to be the controller for an in-system DMD interface test. The DMD interface should be connected directly to the DMD's JTAG pins. This interface is exclusively designed and verified to support the DLP3030-Q1, DLP3020-Q1 and DLP3021-Q1.

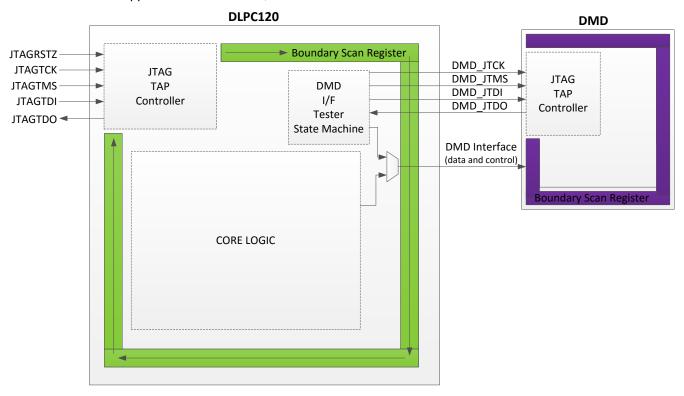


Figure 8-2. JTAG and DMD Interface Test

Using the DMD JTAG function, the DMD interface signals are toggled, and the connection at the DMD is verified by using the DMD JTAG signals to sample the inputs, and then toggled back to the DLPC120-Q1 for comparison to expected values. All DMD logic signals, except DAD OEZ, are tested individually for stuck high or low independently. Alternating data pattern for adjacent pins, as well as "walking 1's" and "walking 0's" patterns are used during the test. The DAD_OEZ is only tested in the high state as asserting this signal and toggling the inputs could cause damage to the DMD. Refer to Figure 8-3 for recommended connections for the DLPC120-Q1 boundary scan test configuration. Refer to Figure 8-4 for recommended connections of the DLPC120-Q1 to DMD

interface test. For additional information about the DMD Boundary scan function refer to the specific DMD device datasheet.

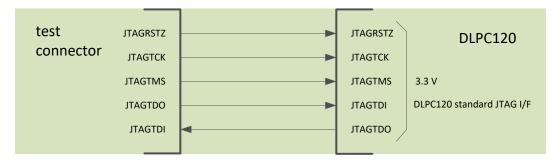


Figure 8-3. DLPC120-Q1 JTAG Boundary Scan Connection Example

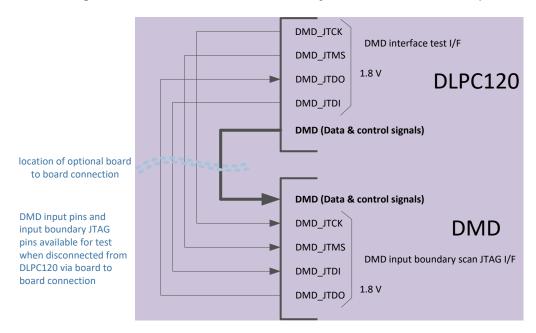


Figure 8-4. DLPC120-Q1 JTAG to DMD Interface Connection Example

8.3.5 Temperature Monitor Function

The DLPC120-Q1 connects with the TMP411 through a standard I²C bus protocol using the TMP_SDA and TMP_SCL pins. The internal temperature controller initializes the TMP411 to read the temperature of the DMD.

The TMP controller issues a set of read commands at eight times per second through the I^2C interface to read the remote temperature (DMD) and local temperature from the TMP411.

The TMP411 monitors the DMD temperature and controls the DMD park operation when the DMD is operated beyond the required specification. See the *DLP3030-Q1*, *DLP3020-Q1* and *DLP3021-Q1* Data Sheet for the DMD operating temperature. If the DMD park operation is used, then a 1-degree hysteresis is applied. See the *DLPC120-Q1* Programmer's Guide for description of this function.

8.3.6 Host Command Interface

The DLPC120-Q1 provides two I²C interface port for host commands. Only one of these ports is intended to be used at a time. The unused port is meant for system debug or development purposes. The I²C protocol and register definitions are defined in the *DLPC120-Q1 Programmer's Guide*.

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

8.4 Device Functional Modes

The DLPC120-Q1 has three operational display modes, which are selected with command list execution via the Host control interface. These display modes are External Video, Splash Screen, and Test Pattern.

8.4.1 External Video Mode

Upon the release of reset and initialization, the DLPC120-Q1 will automatically enter in External Video mode. This mode will process the video source on the parallel RGB input interface at a given resolution and frame rate. The system supports multiple input video resolutions, and the resolution expected by the DLPC120-Q1 can be configured via command list execution. See Table 7-1 for the different external video resolutions supported by the system.

8.4.2 Splash Screen Mode

This mode displays a custom, static image, which is stored in the DLPC120-Q1 Application Serial Flash memory. The content of the splash image is configurable. The Flash memory can store multiple Splash Screens, where the quantity is limited by the size of the splash images, size of the memory chip, and capacity of the remaining memory contents. Splash Screens are displayed via command list execution. Contact a TI Applications Engineer in order to change the splash images stored in the Flash memory.

8.4.3 Test Pattern Mode

This mode displays a fixed, static image, which is stored in the DLPC120-Q1 Application Serial Flash memory. The content of the test patterns are pre-defined, limited by the design of the DLPC120-Q1. Test Patterns are displayed via command list execution. See *DLPC120-Q1 Programmer's Guide* for a list and image of the supported Test Patterns.

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The DLPC120-Q1 is a DLP display processor that supports automotive head-up display (HUD) applications. It accepts data from a variety of video input resolutions and provides the digital image processing and control necessary to drive an LED based DLP display system. This document reflects the operation, pinout, and timing associated with the DLPC120-Q1 device only.

The DLPC120-Q1 is compatible with three DMD components:

- DLP3030-Q1 0.3 WVGA S-450 DMD
- DLP3020-Q1 0.3 WVGA FQR DMD
- DLP3021-Q1 0.3 WVGA FQR DMD

9.2 Typical Application

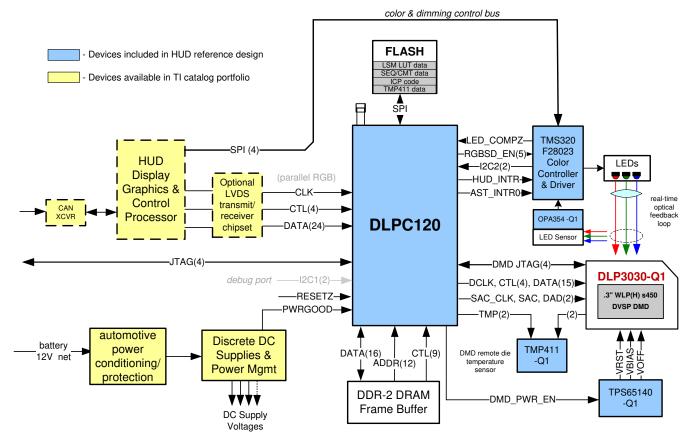


Figure 9-1. DLPC120-Q1 System Block Diagram

9.2.1 Design Requirements

The Figure 9-1 shows a typical projector application. For this application, the DLPC120-Q1 is controlled by a separate control processor, and the image data is received through the parallel RGB interface.

As with prior DLP® electronics solutions, image data is 100% digital from the DLPC120-Q1 input port to the image projected on to the display screen. The image stays in digital form and is never converted into an analog signal. The DLPC120-Q1 processes the digital input image and converts the data into a bit-plane format, as needed by the DMD. The DMD then reflects light to the screen using binary pulse-width-modulation (PWM) for each pixel mirror. The viewer's eyes integrate this light to form brilliant, crisp images.

The DLPC120-Q1 provides signals that enable red, green, and blue LEDs to synchronize to the DMD PWM bit planes. These signals combined with an external MCU (TMS320F28023) can be used to create a very high dynamic dimming range necessary for automotive heads-up display (HUD) applications.

The DLPC120-Q1 also features temperature monitoring of the DMD in order to automatically park the micromirrors when the DMD temperature is beyond the operating range.

The DLPC120-Q1 uses the DDR2 SDRAM as a frame buffer to convert RGB video data into the necessary bit plane format required by the DMD. The DLPC120-Q1 also supports multiple input resolutions and scales them to match the native .3" WVGA DMD format. These images can also be electronically bezel-adjusted on the DMD, which could allow the displayed image to be electronically adjusted for mechanical misalignment. The DLPC120-Q1 is configured at power up with data stored in the Flash memory via SPI. The Flash interface is the primary method to configure the controller.

The DLPC120-Q1 supports system diagnostic and self-check features, such as video detection, DDR2 memory Built-in Self Test (BIST), System BIST, Flash BIST, and JTAG (in system and DMD interface).

Due to the mechanical nature of the micromirrors, the latency of the DMD and DLPC120-Q1 chipset is fixed across all temperature and operating conditions. The observed video latency is one frame, or 16.67 ms at an input frame rate of 60 Hz. However, please note that the use of the DLPC120-Q1 bezel adjustment feature, if enabled, requires an additional frame of processing.

Contact a TI Applications Engineer in order to gain access to a fully functional reference design based on the DLP30xx-Q1 chipset.

10 Power Supply Recommendations

10.1 Power Supply Filtering

The following filtering circuits are recommended for the various supply inputs.

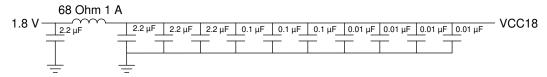


Figure 10-1. VCC18 Recommended Filter

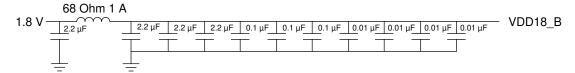


Figure 10-2. VDD18_B Recommended Filter

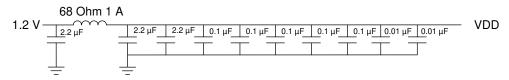


Figure 10-3. VDD Recommended Filter

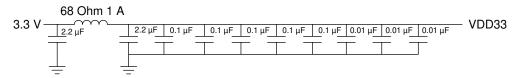


Figure 10-4. VDD33 Recommended Filter

11 Layout

11.1 Layout Guidelines

11.1.1 PCB layout guidelines for internal ASIC PLL power

The PLL's two analog supplies, VCCA and VSSA, shall be filtered with two series ferrite beads and two shunt 0.1-µF and 0.01-µF capacitors. The ferrite on VSSA is preferred but optional.

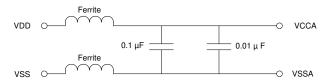
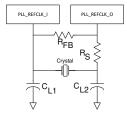


Figure 11-1. PLL Power Guidelines

Table 11-1. Recommended PLL Filter Components

COMPONENT	PARAMETER	RECOMMENDED VALUE	UNIT
Shunt Capacitor	Capacitance	0.1	μF
Shunt Capacitor	Capacitance	0.01	μF
	Impedance at 10 MHz	>= 180	Ω
Series Ferrite	Impedance at 100 MHz	>= 600	Ω
	DC Resistance	< 0.40	Ω

Example ferrite bead recommendations are listed in Table 11-2.


Table 11-2. PLL Power Ferrite Bead Recommendations

PART NUMBER	R @ DC	Z @ 10 MHz	Z @ 100 MHz	Z @1-GHz SIZE
BLM18EG601SN1	0.35	200	600	0603
BLM15AX601SN1	0.34	190	600	0402

The capacitors should be mounted as close to the package balls as possible.

11.1.2 DLPC120-Q1 Reference Clock

The DLPC120-Q1 requires an external reference clock to feed its internal PLL. A crystal or oscillator can supply this reference. The recommended crystal configurations and reference clock frequencies are listed in Table 11-3, with additional required discrete components shown in Figure 11-2 and defined in Table 11-3.

- A. C_L = Crystal load capacitance
- B. R_{FB} = Feedback Resistor

Figure 11-2. Discrete Components Required When Using Crystal

11.1.2.1 Recommended Crystal Oscillator Configuration

Table 11-3. Recommended Crystal Configuration

rabio 11 of Nocommonada di Jotai domigaration			
PARAMETER	RECOMMENDED	UNIT	
Crystal circuit configuration	Parallel resonant		
Crystal type	Fundamental (first harmonic)		

Table 11-3. Recommended Crystal Configuration (continued)

Table 11-3: Neconfinenced Orystal Configuration (Continued)					
PARAMETER	RECOMMENDED	UNIT			
Crystal nominal frequency	16	MHz			
Crystal frequency tolerance (including accuracy, temperature, aging and trim sensitivity)	±200	PPM			
Maximum crystal equivalent series resistance (ESR)	80	Ω			
Temperature range	-40°C to +105°C	°C			
R _{FB} feedback resistor (nominal)	1	ΜΩ			
C _{L1} external crystal load capacitor	See equation in ⁽¹⁾	pF			
C _{L2} external crystal load capacitor	See equation in ⁽²⁾	pF			
PCB layout	A ground isolation ring around the crystal is recommended				

⁽¹⁾ CL1 = 2 × (CL – Cstray_pll_refclk_i), where: Cstray_pll_refclk_i = Sum of package and PCB stray capacitance at the crystal pin associated with the ASIC pin PLL_REFCLK_I. PLL_REFCLK_I device capacitance is approximately 3 pF.

11.1.3 General PCB Recommendations

TI provides PCB design files that serve as a reference for DLPC120-Q1 and DLP30xx-Q1 chipset PCB schematics and layout designs. Please contact a TI Applications Engineer to access these files.

11.1.4 PCB Routing Guidelines

All signals should follow a 0.005-in width 0.015-in spacing design rule. Minimum trace clearance from the ground ring around the PCB shall be 0.1-in minimum. Actual trace widths and clearances will be determined based on an analysis of impedance and stack-up requirements, some variation is expected.

Table 11-4. PCB Trace Matching Recommendations

GROUP	SIGNAL	CONSTRAINTS(1)
DDR2 I/F	MEM_CLK MEM_CLKZ MEM_DQS0 MEM_DQSZ0 MEM_DQS1 MEM_DQSZ1	Lengths Matched to 25 mils Max Total Length: 1500 mils Impedance: 100-Ω differential (± 10%)
	MEM_DQ[0:15]	Lengths Matched to 50 mils Max Total Length: 1500 mils Impedance: 50 Ω (± 10%)
	MEM_RASZ MEM_CASZ MEM_WEZ MEM_CSZ MEM_CKE MEM_A[0:12]	Lengths Matched to 100 mils Max Total Length: 1500 mils Impedance: 50 Ω (± 10%)
DMD I/F	DMD_D[0:14] DMD_DCLK DMD_BUS DMD_STRB DMD_OEZ DMD_LOADB DMD_SAC_CLK DMD_SAC_BUS DMD_SCTRL DMD_TRC DMD_JTCK DMD_JTDI DMD_JTMS	Lengths Matched to 50 mils Max Total Length: 10000 mils Impedance: 50 Ω (± 10%)

⁽²⁾ CL2 = 2 × (CL – Cstray_pll_refclk_o), where: Cstray_pll_refclk_o = Sum of package and PCB stray capacitance at the crystal pin associated with the ASIC pin PLL_REFCLK_O. PLL_REFCLK_O device capacitance is approximately 3 pF.

Table 11-4. PCB Trace Matching Recommendations (continued)

GROUP	SIGNAL	CONSTRAINTS ⁽¹⁾
Serial Flash I/F	FLASH_DCLK, FLASH_POCI, FLASH_PICO, FLASH_CSZ	Lengths Matched to 100 mils Max Total Length: 2500 mils Impedance: 50 Ω (± 10%)

(1) Trace lengths on Layers 1 and 10 should be less than 50 mils.

11.1.5 Number of Layer Changes

- As a reference, the TI design uses no more than three layer changes per trace.
- Individual differentially matched signal pairs can be routed on different layers, but the signals of a given pair should not change.

11.1.6 Terminations

- All DMD I/F signals should be terminated at the source with a 20-Ω series resistor.
- MEM_CLK and MEM_CLKZ should be terminated with an external 100-Ω differential resistor across the two
 signals as close to the DRAM as possible. All other DDR2 control and data signals should be pulled to
 VTT(0.9 V) with a 56-Ω resistor as close to the DRAM as possible.

11.1.7 General Handling Guidelines for Unused CMOS-Type Pins

To avoid potentially damaging current caused by floating CMOS input-only pins, it is recommended that unused ASIC input pins be tied through a pull-up resistor to its associated power supply or a pull-down to ground. For ASIC inputs with an internal pull-up or pull-down resistors, it is unnecessary to add an external pullup or pulldown unless specifically recommended. Note that internal pull-up and pull-down resistors are weak and should not be expected to drive the external line. The DLPC120-Q1 implements very few internal resistors and these are noted in the pin list.

Unused output-only pins can be left open. When possible, it is recommended that unused Bi-directional I/O pins be configured to their output state such that the pin can be left open. If this control is not available and the pins may become an input, then they should be pulled-up (or down) using an appropriate resistor.

Product Folder Links: DLPC120-Q1

12 Device and Documentation Support

12.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Device Support

12.2.1 Device Nomenclature

12.2.1.1 Device Markings

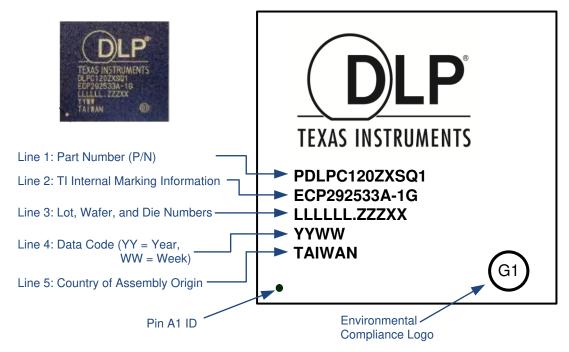


Figure 12-1. Device Marking

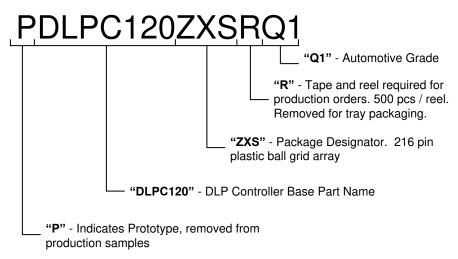


Figure 12-2. Part Number Definition

12.3 Documentation Support

12.3.1 Related Documentation

For related documentation see the following:

- DLP3030-Q1 product folder for the DLP3030-Q1 Data Sheet.
- DLP3020-Q1 product folder for the DLP3020-Q1 Data Sheet.
- DLP3021-Q1 product folder for the DLP3021-Q1 Data Sheet.

12.4 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.5 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.6 Trademarks

TI E2E™ is a trademark of Texas Instruments.

DLP® is a registered trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.7 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.8 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
	(1)	(2)			(5)	(4)	(5)		(0)
DLPC120ZXSQ1	Active	Production	NFBGA (ZXS) 216	90 JEDEC TRAY (5+1)	Yes	SNAGCU	Level-3-260C-168 HR	-40 to 105	DLPC120ZXSQ1 ECP292533A-1G
DLPC120ZXSQ1.B	Active	Production	NFBGA (ZXS) 216	90 JEDEC TRAY (5+1)	Yes	SNAGCU	Level-3-260C-168 HR	-40 to 105	DLPC120ZXSQ1 ECP292533A-1G
DLPC120ZXSRQ1	Active	Production	NFBGA (ZXS) 216	500 SMALL T&R	Yes	SNAGCU	Level-3-260C-168 HR	-40 to 105	DLPC120ZXSQ1 ECP292533A-1G
DLPC120ZXSRQ1.B	Active	Production	NFBGA (ZXS) 216	500 SMALL T&R	Yes	SNAGCU	Level-3-260C-168 HR	-40 to 105	DLPC120ZXSQ1 ECP292533A-1G

⁽¹⁾ Status: For more details on status, see our product life cycle.

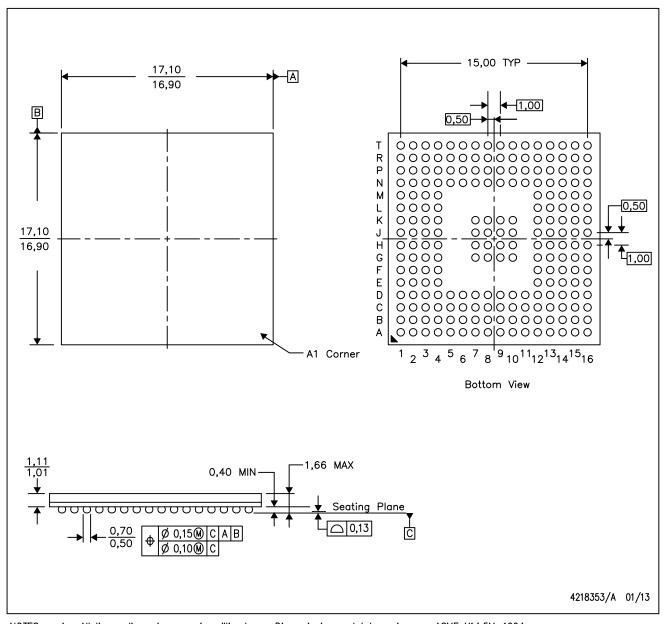
- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.



PACKAGE OPTION ADDENDUM

www.ti.com 9-Nov-2025

ZXS (S-PBGA-N216)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. This is a Pb-free solder ball design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025