

DLP660TE DLPS163D - APRIL 2019 - REVISED DECEMBER 2023

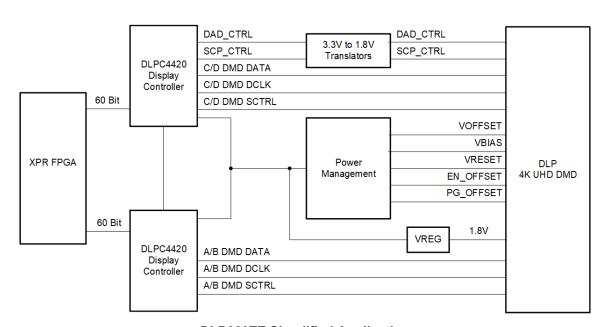
DLP660TE 0.66 4K UHD Digital Micromirror Device

1 Features

- 0.66-inch diagonal micromirror array
 - System displays 4K ultra-high definition (UHD) 3840 × 2160 pixels on the screen
 - 5.4-micron micromirror pitch
 - ±17° micromirror tilt (relative to a flat surface)
 - Bottom illumination
- 2xLVDS input data bus
- The DLP660TE chipset includes:
 - DLP660TE DMD
 - DLPC4420 controller
 - DLPA100 controller power management and motor driver IC

2 Applications

- 4K UHD display
- Digital signage
- Laser TV
- Projection mapping


3 Description

The ΤI DLP® DLP660TE digital micromirror device (DMD) is a digitally controlled micro-optoelectromechanical system (MOEMS) spatial light modulator (SLM) that enables bright, affordable full 4K UHD display solutions. When coupled to an appropriate optical system, DLP660TE DMD displays true 4K UHD resolution (8.3M pixels on screen) and is capable of delivering accurate, detailed images to a variety of surfaces. The DLP660TE DMD, together with the DLPC4420 display controller, the DLPA100 controller power and motor driver, provides the capability to achieve high performance systems and is a great fit for 4K UHD high brightness display applications.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
DLP660TE	FYG (350)	35 mm × 32 mm

For all available packages, see the orderable addendum at the end of the data sheet.

DLP660TE Simplified Application

Table of Contents

	Factoria	
-	Features1	
	Applications1	
	Description1	
4	Pin Configuration and Functions3	
	4.1 Pin Functions—Test Pads10	
5	Specifications11	
	5.1 Absolute Maximum Ratings11	
	5.2 Storage Conditions	
	5.3 ESD Ratings	
	5.4 Recommended Operating Conditions12	
	5.5 Thermal Information15	
	5.6 Electrical Characteristics	ì
	5.7 Capacitance at Recommended Operating	
	Conditions	į
	5.8 Timing Requirements16	i
	5.9 System Mounting Interface Loads	
	5.10 Micromirror Array Physical Characteristics19	
	5.11 Micromirror Array Optical Characteristics21	
	5.12 Window Characteristics	
	5.13 Chipset Component Usage Specification22	
6	Detailed Description23	
	6.1 Overview23	
	6.2 Functional Block Diagram23	
	6.3 Feature Description24	
	6.4 Device Functional Modes24	
	6.5 Optical Interface and System Image Quality	
	Considerations 24	

6.6 Micromirror Array Temperature Calculation	. 25
6.7 Micromirror Power Density Calculation	.27
6.8 Micromirror Landed-On/Landed-Off Duty Cycle	. 28
7 Application and Implementation	
7.1 Application Information	. 31
7.2 Typical Application	. 32
7.3 DMD Die Temperature Sensing	. 34
8 Power Supply Recommendations	
8.1 DMD Power Supply Power-Up Procedure	. 36
8.2 DMD Power Supply Power-Down Procedure	. 36
9 Layout	.39
9.1 Layout Guidelines	. 39
9.2 Layout Example	
10 Device and Documentation Support	.41
10.1 Third-Party Products Disclaimer	. 41
10.2 Device Support	. 41
10.3 Documentation Support	. 42
10.4 Receiving Notification of Documentation Updates.	
10.5 Support Resources	
10.6 Trademarks	.42
10.7 Electrostatic Discharge Caution	.43
10.8 Glossary	
11 Revision History	. 43
12 Mechanical, Packaging, and Orderable	
Information	. 44

4 Pin Configuration and Functions

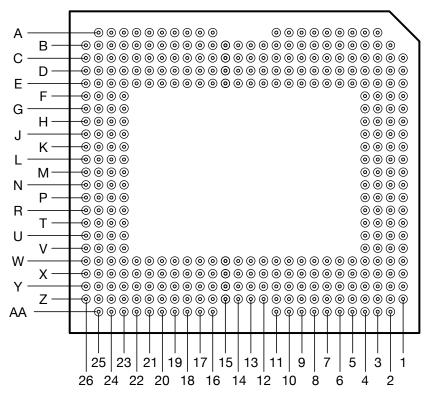


Figure 4-1. Series 610 350-pin FYG Bottom View

CAUTION

For reliable, long-term operation of the 0.66-inch UHD S610 DMD, it is critical to properly manage the layout and operation of the signals identified in the table below. For specific details and guidelines, refer to the PCB Design Requirements for TI DLP Standard TRP Digital Micromirror Devices application report before designing the board.

Table 4-1. Pin Functions

PIN	· .		PIII FUIIC		
NAME	NO.	TYPE	SIGNAL	DATA RATE	DESCRIPTION
DATA INPUTS	-				
D_AN(0)	C7				
D_AP(0)	C8				
D_AN(1)	D4				
D_AP(1)	E4				
D_AN(2)	C5				
D_AP(2)	C4				
D_AN(3)	D6				
D_AP(3)	C6				
D_AN(4)	D8				
D_AP(4)	D7				
D_AN(5)	D3				
D_AP(5)	E3				
D_AN(6)	В3				
D_AP(6)	C3				
D_AN(7)	E11				
D_AP(7)	E10	Input	2xLVDS		LVDS pair for Data Bus A (15:0)
D_AN(8)	E6	Прис	ZXLVDS		LVDO pair for Data Bus A (13.0)
D_AP(8)	E5				
D_AN(9)	B10				
D_AP(9)	C10				
D_AN(10)	B8				
D_AP(10)	В9				
D_AN(11)	C13				
D_AP(11)	C14				
D_AN(12)	D15				
D_AP(12)	E15				
D_AN(13)	B12				
D_AP(13)	B13				
D_AN(14)	B15				
D_AP(14)	B16				
D_AN(15)	C16				
D_AP(15)	C17				

www.ti.com

PIN PIN					
NAME	NO.	TYPE	SIGNAL	DATA RATE	DESCRIPTION
D_BN(0)	Y8				
D_BP(0)	Y7	_			
D_BN(1)	X4	-			
D_BP(1)	W4	-			
D_BN(2)	Z3	-			
D_BP(2)	Y3				
D_BN(3)	X6				
D_BP(3)	Y6				
D_BN(4)	X8				
D_BP(4)	X7				
D_BN(5)	Х3				
D_BP(5)	W3				
D_BN(6)	W15				
D_BP(6)	X15		Input 2xLVDS		
D_BN(7)	W11				
D_BP(7)	W10	Input			LVDS pair for Data Bus B (15:0)
D_BN(8)	W6	Input			LVD3 pail for Data Bus B (13.0)
D_BP(8)	W5				
D_BN(9)	AA9				
D_BP(9)	AA10				
D_BN(10)	Z8				
D_BP(10)	Z 9				
D_BN(11)	Y13				
D_BP(11)	Y14				
D_BN(12)	Z10				
D_BP(12)	Y10				
D_BN(13)	Z12				
D_BP(13)	Z13				
D_BN(14)	Z15				
D_BP(14)	Z16				
D_BN(15)	Y16				
D_BP(15)	Y17				

PIN	ı J				
NAME	NO.	TYPE	SIGNAL	DATA RATE	DESCRIPTION
D_CN(0)	C18				
D_CP(0)	C19				
D_CN(1)	A20				
D_CP(1)	A19				
D_CN(2)	L23				
D_CP(2)	K23				
D_CN(3)	C23				
D_CP(3)	B23				
D_CN(4)	G23				
D_CP(4)	H23				
D_CN(5)	H24				
D_CP(5)	G24				
D_CN(6)	B18				
D_CP(6)	B19				
D_CN(7)	C21		Input 2xLVDS		LVDS pair for Data Bus C (15:0)
D_CP(7)	B21	Input			
D_CN(8)	D23	Input			LVD3 pail for Data Bus C (13.0)
D_CP(8)	E23				
D_CN(9)	D25				
D_CP(9)	C25				
D_CN(10)	L24				
D_CP(10)	K24				
D_CN(11)	K25				
D_CP(11)	J25				
D_CN(12)	B24				
D_CP(12)	A24				
D_CN(13)	D26				
D_CP(13)	C26				
D_CN(14)	G25				
D_CP(14)	F25				
D_CN(15)	K26				
D_CP(15)	J26				

PIN			(continueu)		
NAME	NO.	TYPE	SIGNAL	DATA RATE	DESCRIPTION	
D_DN(0)	Y18					
D_DP(0)	Y19					
D_DN(1)	AA20					
D_DN(1)	AA20 AA19					
D_DN(2)	N23					
D_DP(2)	P23					
D_DN(3)	Y23					
D_DP(3)	Z23					
D_DN(4)	U23					
D_DN(4)	T23					
	T24					
D_DN(5) D_DP(5)	U24					
D_DN(6)	Z18					
D_DP(6)	Z19					
D_DN(7)	Y21					
D_DP(7)	Z21	Input	2xLVDS		LVDS pair for Data Bus D (15:0)	
D_DN(8)	X23					
D_DP(8)	W23					
D_DN(9)	X25					
D_DP(9)	Y25					
D_DN(10)	N24					
D_DP(10)	P24					
D_DN(11)	P25					
D_DP(11)	R25					
D_DN(12)	Z24					
D_DP(12)	AA24					
D_DN(13)	X26					
D_DP(13)	Y26					
D_DN(14)	U25					
D_DP(14)	V25					
D_DN(15)	P26					
D_DP(15)	R26					
DCLK_AN	B6	Input	LVDS		LVDS pair for Data Clock A	
DCLK_AP	B5	Input	LVBO		EVBO pair for Bata Glook //	
DCLK_BN	Z6	Input	LVDS		LVDS pair for Data Clock B	
DCLK_BP	Z5	Input	LVDO		EVDO PAII 101 Data Glock D	
DCLK_CN	G26	Input	LVDS		LVDS pair for Data Clock C	
DCLK_CP	F26	Прис			2000 pair for Data Oldon O	
DCLK_DN	U26	Input	LVDS		LVDS pair for Data Clock D	
DCLK_DP	V26	пірис			LVDO PAII IOI DALA CIOCK D	
DATA CONTROL INPUT	s					
SCTRL_AN	A10	Input	LVDS		LVDS pair for Serial Control (Sync) A	
SCTRL_AP	A9	IIIput	LVDS		LVDO Pali foi Geriai Corilloi (Gyric) A	

	Table 4-1. Pin Functions (continued)							
PIN		TYPE	SIGNAL	DATA RATE	DESCRIPTION			
NAME	NO.							
SCTRL_BN	Y4	Input	LVDS		LVDS pair for Serial Control (Sync) B			
SCTRL_BP	Y5	'						
SCTRL_CN	E24	Input	LVDS		LVDS pair for Serial Control (Sync) C			
SCTRL_CP	D24							
SCTRL_DN	W24	Input	LVDS		LVDS pair for Serial Control (Sync) D			
SCTRL_DP X24								
DAD CONTROL INPUTS								
RESET_ADDR(0)	R3							
RESET_ADDR(1)	R4	Input	LVCMOS		Reset Driver Address Select. The bond pad			
RESET_ADDR(2)	T3		270,000		connects to an internal pulldown circuit.			
RESET_ADDR(3)	U2							
RESET_MODE(0)	P4	Input	LVCMOS		Reset Driver Mode Select. The bond pad			
RESET_MODE(1)	V3	Прис	LVOIVIOO		connects to an internal pulldown circuit.			
RESET_OEZ	R2	Input	LVCMOS		Active low. Output Enable signal for an internal reset driver circuitry. Bond Pad connects to an internal pullup circuit			
RESET_SEL(0)	P3	lanut	LVCMOS		Reset Driver Level Select. The bond pad			
RESET_SEL(1)	V2	- Input	LVCIVIOS		connects to an internal pulldown circuit.			
RESET_STROBE	W8	Input	LVCMOS		Rising edge on RESET_STROBE latches in the control signals. The bond pad connects to an internal pulldown circuit.			
RESETZ	U4	Input	LVCMOS		Active low. Places reset circuitry in known VOFFSET state. The bond pad connects to an internal pulldown circuit.			
SCP CONTROL								
SCPCLK	W17	Input	LVCMOS		Serial communications port clock. SCPCLK is only active when SCPENZ goes low. The bond pad connects to an internal pulldown circuit.			
SCPDI	W18	Input	LVCMOS		Serial communications port data. Synchronous to the rising edge of SCPCLK. The bond pad connects to an internal pulldown circuit.			
SCPENZ	X18	Input	LVCMOS		Active low serial communications port enable. The bond pad connects to an internal pulldown circuit.			
SCPDO	W16	Output	LVCMOS		Serial communications port output			
EXTERNAL REGULATO	R SIGNALS		<u> </u>					
EN_BIAS	J4	Output	LVCMOS		Active high. Enable signal for external VBIAS regulator			
EN_OFFSET	НЗ	Output	LVCMOS		Active high. Enable signal for external VOFFSET regulator			
EN_RESET	J3	Output	LVCMOS		Active high. Enable signal for external VRESET regulator			
OTHER SIGNALS								
RESET_IRQZ	U3	Output	LVCMOS		Active low. Output interrupt to DLP controller (ASIC)			
TEMP_PLUS	E16	Analog			Temperature sensor diode anode ⁽¹⁾			
TEMP_MINUS	E17	Analog			Temperature sensor diode cathode (1)			
POWER								

Table 4-1. Pin Functions (continued)								
PIN	١	TYPE	SIGNAL	DATA RATE	DESCRIPTION			
NAME	NO.	1112	OIOITAL	DAIANAIL	BEOOK!! HON			
VBIAS	A5, A6, A7	Power			Power supply for positive bias level of micromirror reset signal			
V _{CC}	A8, B2, C1, D1, D10, D12, D19, E1, E19, E20, E21, F1, K1, L1, M1, N1, P1,V1, W1, W19, W20, W21, X1, X10, X12, X19, Y1, Z1, Z2, AA2, AA8, A11, A16, A17, A18,	Power			Power supply for low voltage CMOS logic. Power supply for normal high voltage at micromirror address electrodes. Power supply for offset level during power down sequence			
V _{CCI}	A21, A22, A23, AA11, AA16, AA17, AA18, AA21, AA22, AA23,	Power			Power supply for low voltage CMOS LVDS interface			
V _{OFFSET}	A3, A4, A25, B26, L26, M26, N26, Z26, AA3, AA4, AA25	Power			Power supply for high voltage CMOS logic. Power supply for stepped high voltage at micromirror address electrodes. Power supply for offset level of MBRST(15:0)			
V _{RESET}	G1, H1, J1, R1, T1, U1	Power			Power supply for the negative reset level of the micromirror reset signal			
V _{SS} (Ground)	B4, B7, B11, B14, B17, B20, B22, B25, C2, C9, C20, C22, C24, D2, D5, D9, D11, D14, D18, D20, D21, D22, E2, E7, E9, E22, E25, E26, F4, F23, F24, H2, H4, H25, H26, J23, J24, K2, L2, L3, L4, L25, M2, M3, M4, M23, M24, M25, P2,R23, R24, T2, T4, T25, T26, V4, V23, V24, W2, W7, W9, W22, W25, W26, X2, X5, X9, X11, X20, X21, X22, Y2, Y9, Y20, Y22, Y24, Z4, Z7, Z11, Z14, Z17, Z20, Z22, Z25	Ground			Common return for all power			
RESERVED_PFE	E18	Ground			Connect to ground on the printed circuit board (PCB). The bond pad connects to an internal pulldown circuit.			
RESERVED_TM	G4	Ground			Connect to ground on the printed circuit board (PCB). The bond pad connects to an internal pulldown circuit.			
RESERVED_TP0	E8	Input			Do not connect on the printed circuit board (PCB).			
RESERVED_TP1	J2	Input			Do not connect on the printed circuit board (PCB).			
RESERVED_TP2	G2	Input			Do not connect on the printed circuit board (PCB).			
RESERVED_BA	N4	Output			Do not connect on the printed circuit board (PCB).			
RESERVED_BB	K4	Output			Do not connect on the printed circuit board (PCB).			

PIN	PIN TYPE SIGNAL DATA R		DATA RATE	DESCRIPTION	
NAME	NO.	ITPE	PE SIGNAL		DESCRIPTION
RESERVED_BC	X17	Output			Do not connect on the printed circuit board (PCB).
RESERVED_BD	D17	Output			Do not connect on the printed circuit board (PCB).

⁽¹⁾ Connect VSS for proper DMD operation.

4.1 Pin Functions—Test Pads

PIN NUMBER	SYSTEM BOARD		
E13	Do not connect.		
C12	Do not connect.		
D13	Do not connect.		
C11	Do not connect.		
E14	Do not connect.		
E12	Do not connect.		
C15	Do not connect.		
D16	Do not connect.		
W13	Do not connect.		
Y12	Do not connect.		
X13	Do not connect.		
Y11	Do not connect.		
W14	Do not connect.		
W12	Do not connect.		
Y15 Do not connect.			
X16	Do not connect.		

5 Specifications

5.1 Absolute Maximum Ratings

Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

		MIN	MAX	UNIT
Supply Voltages				
V _{CC}	Supply voltage for LVCMOS core logic ⁽¹⁾	-0.5	2.3	V
V _{CCI}	Supply voltage for LVDS receivers ⁽¹⁾	-0.5	2.3	V
V _{OFFSET}	Supply voltage for HVCMOS and micromirror electrode ^{(1) (2)}	-0.5	11	V
V _{BIAS}	Supply voltage for micromirror electrode ⁽¹⁾	-0.5	19	V
V _{RESET}	Supply voltage for micromirror electrode ⁽¹⁾	-15	-0.3	V
V _{CC} - V _{CCI}	Supply voltage delta (absolute value) ⁽³⁾		0.3	V
V _{BIAS} – V _{OFFSET}	Supply voltage delta (absolute value) ⁽⁴⁾		11	V
V _{BIAS} – V _{RESET}	Supply voltage delta (absolute value) ⁽⁵⁾		34	V
Input Voltages				
	Input voltage for all other LVCMOS input pins ⁽¹⁾	-0.5	V _{CC} + 0.5	V
	Input voltage for all other LVDS input pins ^{(1) (5)}	-0.5	V _{CCI} + 0.5	V
V _{ID}	Input differential voltage (absolute value) ⁽⁵⁾		500	mV
I _{ID}	Input differential current ⁽⁶⁾		6.25	mA
Clocks				
f_{CLOCK}	Clock frequency for LVDS interface, DCLK_A		400	MHz
fCLOCK	Clock frequency for LVDS interface, DCLK_B		400	MHz
fCLOCK	Clock frequency for LVDS interface, DCLK_C		400	MHz
fCLOCK	Clock frequency for LVDS interface, DCLK_D		400	MHz
Environmental				
T	Temperature, operating ⁽⁷⁾	0	90	°C
T _{ARRAY} and T _{WINDOW}	Temperature, non-operating ⁽⁷⁾	-40	90	°C
T _{DELTA}	Absolute Temperature delta between any point on the window edge and the ceramic test point TP1 ⁽⁸⁾		30	°C
T _{DP}	Dew Point Temperature, operating and non-operating (noncondensing)		81	°C

- (1) All voltages are referenced to common ground V_{SS}. V_{BIAS}, V_{CC}, V_{CCI}, V_{OFFSET}, and V_{RESET} power supplies are all required for proper DMD operation. V_{SS} must also be connected.
- (2) V_{OFFSET} supply transients must fall within specified voltages.
- (3) Exceeding the recommended allowable voltage difference between V_{CC} and V_{CCI} may result in excessive current draw.
- (4) Exceeding the recommended allowable voltage difference between V_{BIAS} and V_{OFFSET} may result in excessive current draw.
- (5) Exceeding the recommended allowable voltage difference between V_{BIAS} and V_{RESET} may result in excessive current draw.
- (6) LVDS differential inputs must not exceed the specified limit or damage may result to the internal termination resistors.
- (7) The highest temperature of the active array (as calculated using Section 6.6) or of any point along the window edge as defined in Figure 6-1. The locations of thermal test points TP2, TP3, TP4 and TP5 in Figure 6-1 are intended to measure the highest window edge temperature. If a particular application causes another point on the window edge to be at a higher temperature, that point is used.
- (8) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in Figure 6-1. The window test points TP2, TP3, TP4 and TP5 shown in Figure 6-1 are intended to result in the worst case delta. If a particular application causes another point on the window edge to result in a larger delta temperature, that point is be used.

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

5.2 Storage Conditions

Applicable for the DMD as a component or non-operating in a system

		MIN	MAX	UNIT
T_{DMD}	DMD storage temperature	- 40	80	°C
T _{DP-AVG}	Average dew point temperature (non-condensing) (1)		28	°C
T _{DP-MAX}	Elevated dew point temperature range (non-condensing) (2)	28	36	°C
CT _{ELR}	Cumulative time in elevated dew point temperature range		24	Months

- (1) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.
- (2) Exposure to dew point temperatures in the elevated range during storage and operation is limited to less than a total cumulative time of CT_{ELR}.

5.3 ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V	
	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V	

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.4 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in this data sheet is achieved when operating the device within the limits defined by recommended operating conditions. No level of performance is implied when operating the device above or below the limits.

		MIN	NOM	MAX	UNIT
Voltage Supp	oly				
V _{CC}	LVCMOS logic supply voltage ⁽¹⁾	1.65	1.8	1.95	V
V _{CCI}	LVCMOS LVDS Interface supply voltage ⁽¹⁾	1.65	1.8	1.95	V
V _{OFFSET}	Mirror electrode and HVCMOS voltage ⁽¹⁾ (2)	9.5	10	10.5	V
V _{BIAS}	Mirror electrode voltage ⁽¹⁾	17.5	18	18.5	V
V _{RESET}	Mirror electrode voltage ⁽¹⁾	-14.5	-14	-13.5	V
V _{CC} - V _{CCI}	Supply voltage delta (absolute value) ⁽³⁾		0	0.3	V
V _{BIAS} – V _{OFFSET}	Supply voltage delta (absolute value) ⁽⁴⁾			10.5	V
V _{BIAS} – V _{RESET}	Supply voltage delta (absolute value) ⁽⁵⁾			33	V
LVCMOS Inte	erface			-	
V _{IH(DC)}	DC input high voltage ⁽⁶⁾	0.7 × V _{CC}		V _{CC} + 0.3	V
V _{IL(DC)}	DC input low voltage ⁽⁶⁾	-0.3		0.3 × V _{CC}	V
V _{IH(AC)}	AC input high voltage ⁽⁶⁾	0.8 × V _{CC}		V _{CC} + 0.3	V
V _{IL(AC)}	AC input low voltage ⁽⁶⁾	-0.3		0.2 × V _{CC}	V
t _{PWRDNZ}	PWRDNZ pulse width ⁽⁷⁾	10			ns
SCP Interfac	е			1	
$f_{\sf SCPCLK}$	SCP clock frequency ⁽⁸⁾			500	kHz
t _{SCP_PD}	Propagation delay, clock to Q, from rising edge of SCPCLK to valid SCPDO ⁽⁹⁾	0		900	ns
t _{SCP_NEG_ENZ}	Time between the falling edge of SCPENZ and the first rising edge of SCPCLK	2			μs
t _{SCP_POS_ENZ}	Time between the falling edge of SCPCLK and the rising edge of SCPENZ	2			μs
t _{SCP_DS}	SCPDI clock setup time (before SCPCLK falling edge) ⁽⁹⁾	800			ns

5.4 Recommended Operating Conditions (continued)

Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in this data sheet is achieved when operating the device within the limits defined by recommended operating conditions. No level of performance is implied when operating the device above or below the limits.

		MIN	NOM	MAX	UNIT
t _{SCP_DH}	SCPDI hold time (after SCPCLK falling edge) ⁽⁹⁾	900			ns
t _{SCP_PW_ENZ}	SCPENZ inactive pulse width (high level)	2			μs
LVDS Interfa	ace				
f_{CLOCK}	Clock frequency for LVDS interface (all channels), DCLK ⁽¹⁰⁾			400	MHz
V _{ID}	Input differential voltage (absolute value) ⁽¹¹⁾	150	300	440	mV
V _{CM}	Common mode voltage ⁽¹¹⁾	1100	1200	1300	mV
V _{LVDS}	LVDS voltage ⁽¹¹⁾	880		1520	mV
t _{LVDS_RSTZ}	Time required for LVDS receivers to recover from PWRDNZ			2000	ns
Z _{IN}	Internal differential termination resistance	80	100	120	Ω
Z _{LINE}	Line differential impedance (PWB/trace)	90	100	110	Ω
ENVIRONM	ENTAL				
т	Array temperature, long-term operational ⁽¹²⁾ (13) (14) (15) (22)	10		40 to 70	°C
T _{ARRAY}	Array temperature, short-term operational, 500-hr max ⁽¹³⁾ (16)	0		10	°C
T _{WINDOW}	Window temperature – operational ⁽¹⁷⁾			85	°C
T _{DELTA}	Absolute temperature delta between any point on the window edge and the ceramic test point TP1 ⁽¹⁸⁾			14	°C
T _{DP -AVG}	Average dew point temperature (non-condensing) ⁽¹⁹⁾			28	°C
T _{DP-ELR}	Elevated dew point temperature range (non-condensing) ⁽²⁰⁾	28		36	°C
CT _{ELR}	Cumulative time in elevated dew point temperature range			24	Months
ILL _θ	Illumination marginal ray angle ⁽²¹⁾			55	0
SOLID STAT	E ILLUMINATION			1	
ILL _{UV}	Illumination power < 410 nm ⁽¹²⁾ (23)			10	mW/cm ²
ILL _{VIS}	Illumination power ≥ 410 nm and ≤ 800 nm ⁽²²⁾ (23)			22	W/cm ²
ILL _{IR}	Illumination power > 800 nm ⁽²³⁾			10	mW/cm ²
ILL _{BLU}	Illumination power ≥ 410 nm and ≤ 475 nm ⁽²²⁾ (23)			7	W/cm ²
ILL _{BLU1}	Illumination power ≥ 410 nm and ≤ 440 nm ⁽²²⁾ (23)			1.1	W/cm ²
LAMP ILLUI	MINATION			'	
ILL _{UV}	Illumination power < 395 nm ⁽¹²⁾ (23)			2	mW/cm ²
ILL _{VIS}	Illumination power ≥ 395 nm and ≤ 800 nm ⁽²²⁾ (23)			18	W/cm ²
ILL _{IR}	Illumination power > 800 nm ⁽²³⁾			10	mW/cm ²

- (1) All voltages are referenced to common ground VSS. VBIAS, VCC, VCCI, VOFFSET, and VRESET power supplies are all required for proper DMD operation. VSS must also be connected.
- (2) VOFFSET supply transients must fall within specified max voltages.
- (3) To prevent excess current, the supply voltage delta |VCCI VCC| must be less than specified limit. See Section 8, Figure 8-1, and Table 8-1.
- (4) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than specified limit. See Section 8, Figure 8-1, and Table 8-1.
- (5) To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than specified limit. See Section 8, Figure 8-1, and Table 8-1.
- (6) Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC Standard No. 209B, "Low-Power Double Data Rate (LPDDR)" JESD209B.Tester Conditions for VIH and VIL.
 - Frequency = 60 MHz. Maximum Rise Time = 2.5 ns @ (20% 80%)
 - Frequency = 60 MHz. Maximum Fall Time = 2.5 ns @ (80% 20%)
- (7) PWRDNZ input pin resets the SCP and disables the LVDS receivers. PWRDNZ input pin overrides SCPENZ input pin and tristates the SCPDO output pin.
- (8) The SCP clock is a gated clock. Duty cycle must be 50% ± 10%. SCP parameter is related to the frequency of DCLK.

- (9) See Figure 5-2.
- (10) See LVDS Timing Requirements in Section 5.8 and Figure 5-6.
- (11) See Figure 5-5 LVDS Waveform Requirements.
- (12) Simultaneous exposure of the DMD to the maximum Section 5.4 for temperature and UV illumination reduces device lifetime.
- (13) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point (TP1) shown in Figure 6-1 and the package thermal resistance using the calculation in Section 6.6.
- (14) Per Figure 5-1, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD experiences in the end application. Refer to Section 6.8 for a definition of micromirror landed duty cycle.
- (15) Long-term is defined as the usable life of the device.
- (16) Short-term is the total cumulative time over the useful life of the device.
- (17) The locations of thermal test points TP2, TP3, TP4, and TP5 shown in Figure 6-1 are intended to measure the highest window edge temperature. For most applications, the locations shown are representative of the highest window edge temperature. If a particular application causes additional points on the window edge to be at a higher temperature, test points should be added to those locations.
- (18) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in Figure 6-1. The window test points TP2, TP3, TP4, and TP5 shown in Figure 6-1 are intended to result in the worst case delta temperature. If a particular application causes another point on the window edge to result in a larger delta in temperature, that point should be used.
- (19) The average over time (including storage and operating) that the device is not in the 'elevated dew point temperature range'.
- (20) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total cumulative time of CT_{FLR}.
- (21) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including pond of micromirrors (POM), should not exceed 55 degrees from the normal to the device array plane. The device window aperture has not necessarily been designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance has not been tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array (including POM) will contribute to thermal limitations described in this document and may negatively affect lifetime.
- (22) The maximum allowable optical power incident on the DMD is limited by the maximum optical power density for each wavelength range specified and the micromirror array temperature (T_{ARRAY}).
- (23) To calculate, see the Micromirror Power Density Calculation.

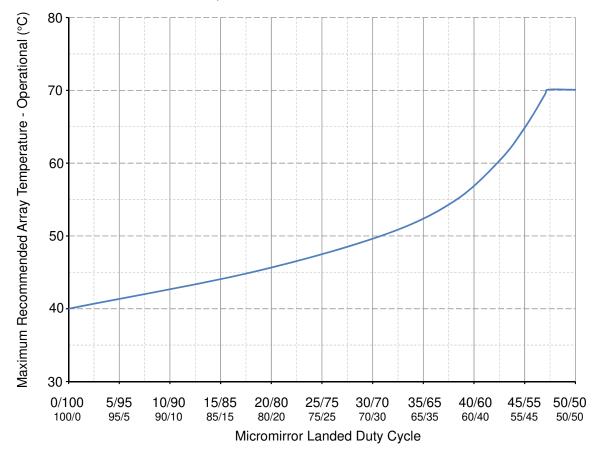


Figure 5-1. Max Recommended Array Temperature—Derating Curve

5.5 Thermal Information

	DLP660TE	
THERMAL METRIC	FYG Package	UNIT
	350 PINS	
Thermal resistance, active area to test point 1 (TP1) ⁽¹⁾	0.60	°C/W

(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of maintaining the package within the temperature range specified in the Section 5.4. The total heat load on the DMD is largely driven by the incident light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array. Optical systems need to be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.

5.6 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V _{OH}	High level output voltage	V _{CC} = 1.8 V, I _{OH} = – 2 mA	0.8 × V _{CC}		V
V _{OL}	Low level output voltage	V _{CC} = 1.95 V, I _{OL} = 2 mA		0.2 × V _{CC}	V
l _{OZ}	High impedance output current	V _{CC} = 1.95 V	-40	25	μA
I _{IL}	Low level input current	V _{CC} = 1.95 V, VI = 0	-1		μA
I _{IH}	High level input current (1)	V _{CC} = 1.95 V, VI = V _{CC}		110	μA
I _{cc}	Supply current VCC	V _{CC} = 1.95 V		1200	mA
I _{CCI}	Supply current VCCI	V _{CCI} = 1.95 V		330	mA
I _{OFFSET}	Supply current VOFFSET (2)	V _{OFFSET} = 10.5 V		13.2	mA
I _{BIAS}	Supply current VBIAS (2) (3)	V _{BIAS} = 18.5 V		-3.641	mA
I _{RESET}	Supply current VRESET (3)	V _{RESET} = - 14.5 V		9.02	mA
	Supply power dissipation total			3320.25	mW

- (1) Applies to LVCMOS pins only. Excludes LVDS pins and test pad pins.
- (2) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than the specified limit in Section 5.4.
- (3) To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than specified limit in Section 5.4.

5.7 Capacitance at Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C_{I_lvds}	LVDS Input Capacitance 2xLVDS	f = 1 MHz			20	pF
C _{I_nonlvds}	Non-LVDS Input capacitance 2xLVDS	f = 1 MHz			20	pF
C _{I_tdiode}	Temp Diode Input capacitance 2xLVDS	f= 1 MHz			30	pF
Co	Output Capacitance	f = 1 MHz			20	pF

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

5.8 Timing Requirements

	ng Requirement		MIN	NOM	MAX	UNIT
SCP ⁽¹⁾					-	
t _r	Rise time	20% to 80% reference points			30	ns
t _f	Fall time	80% to 20% reference points			30	ns
LVDS ⁽²⁾					<u> </u>	
t _r	Rise slew rate	20% to 80% reference points	0.7	1		V/ns
t _f	Fall slew rate	80% to 20% reference points	0.7	1		V/ns
t _C	Clock Cycle	DCLK_A, LVDS pair	2.5			ns
t _C	Clock Cycle	DCLK_B, LVDS pair	2.5			ns
t _C	Clock Cycle	DCLK_C,LVDS pair	2.5			ns
t _C	Clock Cycle	DCLK_D, LVDS pair	2.5			ns
t _W	Pulse Width	DCLK_A LVDS pair	1.19	1.25		ns
t _W	Pulse Width	DCLK_B LVDS pair	1.19	1.25		ns
t _W	Pulse Width	DCLK_C LVDS pair	1.19	1.25		ns
t _W	Pulse Width	DCLK_D LVDS pair	1.19	1.25		ns
t _{Su}	Setup Time	D_A(15:0) before DCLK_A, LVDS pair	0.325			ns
t _{Su}	Setup Time	D_B(15:0) before DCLK_B, LVDS pair	0.325			ns
t _{Su}	Setup Time	D_C(15:0) before DCLK_C, LVDS pair	0.325			ns
t _{Su}	Setup Time	D_D(15:0) before DCLK_D, LVDS pair	0.325			ns
t _{Su}	Setup Time	SCTRL_A before DCLK_A, LVDS pair	0.325			ns
t _{Su}	Setup Time	SCTRL_B before DCLK_B, LVDS pair	0.325			ns
t _{Su}	Setup Time	SCTRL_C before DCLK_C, LVDS pair	0.325			ns
t _{Su}	Setup Time	SCTRL_D before DCLK_D, LVDS pair	0.325			ns
t _h	Hold Time	D_A(15:0) after DCLK_A, LVDS pair	0.145			ns
t _h	Hold Time	D_B(15:0) after DCLK_B, LVDS pair	0.145			ns
t _h	Hold Time	D_C(15:0) after DCLK_C, LVDS pair	0.145			ns
t _h	Hold Time	D_D(15:0) after DCLK_D, LVDS pair	0.145			ns
t _h	Hold Time	SCTRL_A after DCLK_A, LVDS pair	0.145			ns
t _h	Hold Time	SCTRL_B after DCLK_B, LVDS pair	0.145			ns
t _h	Hold Time	SCTRL_C after DCLK_C, LVDS pair	0.145			ns
t _h	Hold Time	SCTRL_D after DCLK_D, LVDS pair	0.145			ns
LVDS ⁽²⁾		'			l	
t _{SKEW}	Skew Time	Channel B relative to Channel A ⁽³⁾ (4), LVDS pair	-1.25		+1.25	ns
t _{SKEW}	Skew Time	Channel D relative to Channel C ⁽⁵⁾ (6), LVDS pair	-1.25		+1.25	ns

- (1) See Figure 5-3 for Rise Time and Fall Time for SCP.
- (2) See Figure 5-5 for Timing Requirements for LVDS.

(6) Channel D (Bus D) includes the following LVDS pairs: DCLK_DN and DCLK_DP, SCTRL_DN and SCTRL_DP, D_DN(15:0) and D_DP(15:0).

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

⁽³⁾ Channel A (Bus A) includes the following LVDS pairs: DCLK_AN and DCLK_AP, SCTRL_AN and SCTRL_AP, D_AN(15:0) and D_AP(15:0).

⁽⁴⁾ Channel B (Bus B) includes the following LVDS pairs: DCLK_BN and DCLK_BP, SCTRL_BN and SCTRL_BP, D_BN(15:0) and D_BP(15:0).

⁽⁵⁾ Channel C (Bus C) includes the following LVDS pairs: DCLK_CN and DCLK_CP, SCTRL_CN and SCTRL_CP, D_CN(15:0) and D_CP(15:0).

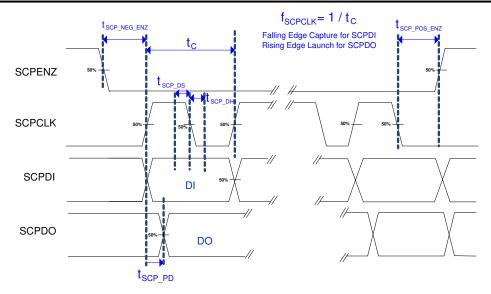


Figure 5-2. SCP Timing Requirements

See Section 5.4 for $f_{SCPCLK},\,t_{SCP_DS},\,t_{SCP_DH}$, and t_{SCP_PD} specifications.

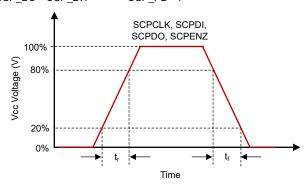


Figure 5-3. SCP Requirements for Rise and Fall

See Section 5.8 for t_r and t_f specifications and conditions.

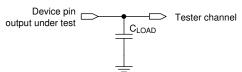


Figure 5-4. Test Load Circuit for Output Propagation Measurement

For output timing analysis, the tester pin electronics and its transmission line effects must be considered. System designers use IBIS or other simulation tools to correlate the timing reference load to a system environment.

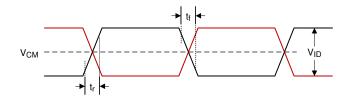


Figure 5-5. LVDS Waveform Requirements

A. See Equation 1 and Equation 2.

$$V_{LVDS (max)} = V_{CM (max)} + \left| \frac{1}{2} \times V_{ID (max)} \right|$$
(1)

$$V_{LVDS (min)} = V_{CM (min)} - \left| \frac{1}{2} \times V_{ID (max)} \right|$$
(2)

See Section 5.4 for V_{CM} , V_{ID} , and V_{LVDS} specifications and conditions.

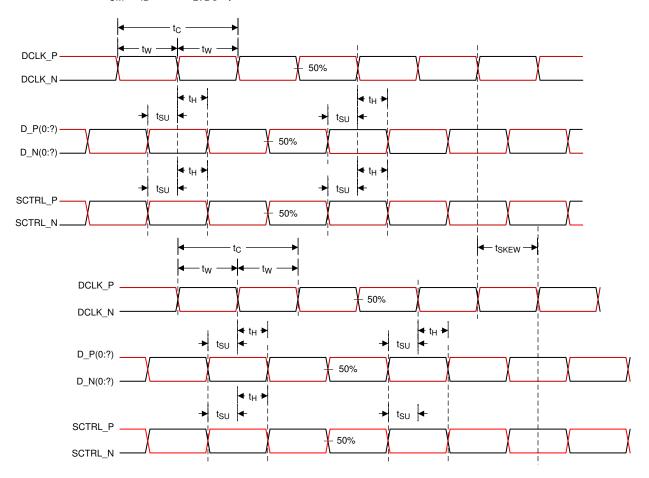


Figure 5-6. Timing Requirements

See Section 5.8 for timing requirements and LVDS pairs per channel (bus) defining D_P(0:?) and D_N(0:?).

5.9 System Mounting Interface Loads

Table 5-1. System Mounting Interface Loads

Table of the System meaning microaco Loude								
MIN	NOM	MAX	UNIT					
When loads are applied on both electrical and thermal interface areas								
		111	N					
		111	N					
When load is applied on the electrical interface areas only								
		222	N					
		0	N					
			MIN NOM MAX 111 111					

(1) The load must be uniformly applied in the corresponding areas shown in Figure 5-7.

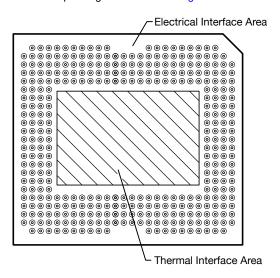


Figure 5-7. System Mounting Interface Loads

5.10 Micromirror Array Physical Characteristics

Table 5-2. Micromirror Array Physical Characteristics

PARAMETER DESCRIPTION						
Number of active columns (1)	2716	micromirrors				
Number of active rows (1)	1528	micromirrors				
Micromirror (pixel) pitch (1)	5.4	μm				
Micromirror pitch x number of active columns	14.67	mm				
Micromirror pitch x number of active rows	8.25	mm				
Pond of micromirror (POM)	56	micromirrors / side				
Pond of micromirror (POM)	20	micromirrors / side				
	Number of active columns (1) Number of active rows (1) Micromirror (pixel) pitch (1) Micromirror pitch x number of active columns Micromirror pitch x number of active rows Pond of micromirror (POM)	Number of active columns (1) 2716 Number of active rows (1) 1528 Micromirror (pixel) pitch (1) 5.4 Micromirror pitch x number of active columns 14.67 Micromirror pitch x number of active rows 8.25 Pond of micromirror (POM) 56				

⁽¹⁾ See Figure 5-8.

⁽²⁾ The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the "Pond Of Mirrors" (POM). These micromirrors are prevented from tilting toward the bright or "on" state but still require an electrical bias to tilt toward "off."

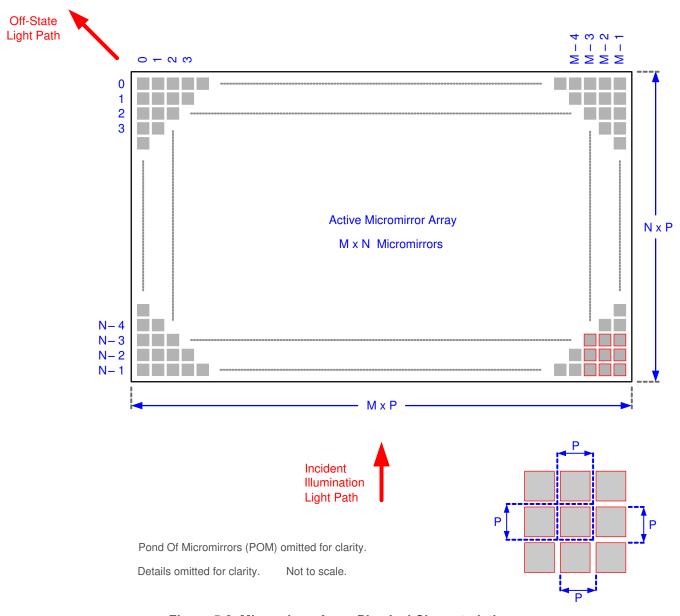


Figure 5-8. Micromirror Array Physical Characteristics

Refer to Section 5.10 for M, N, and P specifications.

5.11 Micromirror Array Optical Characteristics

Table 5-3. Micromirror Array Optical Characteristics

rabio o di mioronimio i furaj optical characteriolico								
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Micromirror tilt an	gle ^{(2) (3) (4) (5)}	Landed state (1)	15.6	17.0	18.4	degrees		
Micromirror cross	over time ⁽⁶⁾	typical performance		1		μs		
Micromirror switc	hing time ⁽⁷⁾	typical performance	6			μs		
DMD Efficiency (420 nm — 680 nm) ⁽⁸⁾				68		%		
	Bright pixel(s) in active area ⁽¹⁰⁾	Gray 10 screen ⁽¹³⁾	0 2 8		0			
	Bright pixel(s) in the POM ⁽¹⁰⁾ (12)	Gray 10 screen ⁽¹³⁾			_		2	
Image performance ⁽⁹⁾	Dark pixel(s) in the active area ⁽¹¹⁾	White screen ⁽¹⁴⁾					micromirrors	
portormanoc	Adjacent pixel(s) ⁽¹⁵⁾	Any screen	0		0			
	Unstable pixel(s) in active area ⁽¹⁶⁾	Any screen			0			

- (1) Measured relative to the plane formed by the overall micromirror array.
- (2) Additional variation exists between the micromirror array and the package datums.
- (3) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different devices.
- (4) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result in colorimetry variations, system efficiency variations or system contrast variations.
- (5) See Figure 5-9.
- (6) The time required for a micromirror to nominally transition from one landed state to the opposite landed state.
- (7) The minimum time between successive transitions of a micromirror.
- (8) Efficiency numbers assume 34-degree illumination angle, F/1.7 illumination and collection cones, uniform source spectrum, and uniform pupil illumination. Efficiency numbers assume 100% electronic micromirror duty cycle and do not include optical overfill loss. The efficiency is a photopically-weighted number corresponding to 17.5-degree tilt angle. Note that this number is specified under conditions described above and deviations from the specified conditions could result in decreased efficiency.
- (9) Conditions of Acceptance: all DMD image performance returns are evaluated using the following projected image test conditions: Test set degamma shall be linear.
 - Test set brightness and contrast shall be set to nominal.
 - The diagonal size of the projected image shall be a minimum of 60 inches.
 - The projections screen shall be 1× gain.
 - The projected image shall be inspected from an 8-foot minimum viewing distance.
 - The image shall be in focus during all image performance tests.
- (10) Bright pixel definition: a single pixel or mirror that is stuck in the ON position and is visibly brighter than the surrounding pixels.
- (11) Dark pixel definition: a single pixel or mirror that is stuck in the OFF position and is visibly darker than the surrounding pixels.
- (12) POM definition: rectangular border of off-state mirrors surrounding the active area.
- (13) Gray 10 screen definition: a full screen with RGB values set to R = 10/255, G = 10/255, B = 10/255
- (14) White screen definition: a full screen with RGB values set to R=255/255, G = 255/255, B = 255/255
- (15) Adjacent pixel definition: Two or more stuck pixels sharing a common border or common point, also referred to as a cluster.
- (16) Unstable pixel definition: A single pixel or mirror that does not operate in sequence with parameters loaded into memory. The unstable pixel appears to be flickering asynchronously with the image.

Copyright © 2023 Texas Instruments Incorporated

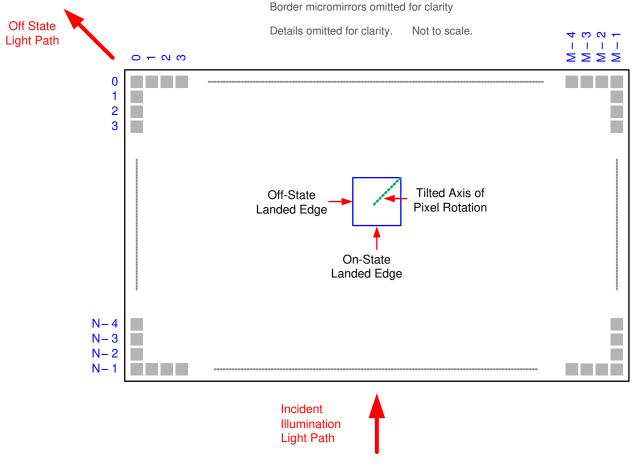


Figure 5-9. Micromirror Landed Orientation and Tilt

Refer to Section 5.10 for M, N, and P specifications.

5.12 Window Characteristics

Table 5-4. DMD Window Characteristics

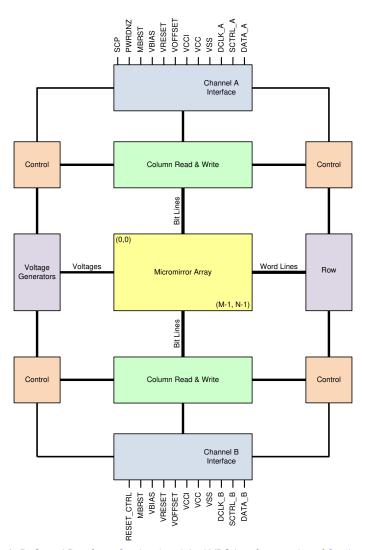
Table of the Billion of the action of the ac							
PARAMETER	MIN	NOM	MAX	UNIT			
Window material		Corning Eagle XG					
Window refractive index at 546.1 nm		1.5119					
Window transmittance, minimum within the wavelength range 420–680 nm. Applies to all angles 0° – 30° AOI $^{(1)}$ $^{(2)}$	97%						
Window Transmittance, average over the wavelength range 420–680 nm. Applies to all angles 30°–45° AOI. (1) (2)	97%						

- (1) Single-pass through both surfaces and glass
- (2) AOI–angle of incidence is the angle between an incident ray and the normal to a reflecting or refracting surface.

5.13 Chipset Component Usage Specification

Reliable function and operation of the DLP660TE DMD requires that it be used in conjunction with the other components of the applicable DLP chipset, including those components that contain or implement TI DMD control technology. TI DMD control technology is the TI technology and devices for operating or controlling a DLP DMD.

6 Detailed Description


6.1 Overview

The DMD is a 0.66-inch diagonal spatial light modulator which consists of an array of highly reflective aluminum micromirrors. The DMD is an electrical input, optical output micro-electrical-mechanical system (MEMS). The electrical interface is low voltage differential signaling (LVDS). The DMD consists of a two-dimensional array of 1-bit CMOS memory cells. The array is organized in a grid of M memory cell columns by N memory cell rows. Refer to Section 6.2. The positive or negative deflection angle of the micromirrors can be individually controlled by changing the address voltage of underlying CMOS addressing circuitry and micromirror reset signals (MBRST).

The DLP660TE DMD is part of the chipset comprising of the DLP660TE DMD, the DLPC4420 display controller and the DLPA100 power and motor driver. For reliable operation, the DLP660TE DMD must always be used with the DLPC4420 display controller and the DLPA100 power and motor driver.

6.2 Functional Block Diagram

Not to Scale. Details Omitted for Clarity. See Accompanying Notes in this Section.

For pin details on Channels A, B, C, and D, refer to Section 4 and the LVDS Interface section of Section 5.8. RESET_CTRL is used in applications when an external reset signal is required.

6.3 Feature Description

6.3.1 Power Interface

The DMD requires 5 DC voltages: DMD_P3P3V, DMD_P1P8V, VOFFSET, VRESET, and VBIAS. DMD_P3P3V is created by the DLPA100 power and motor driver and is used on the DMD board to create the other 4 DMD voltages, as well as powering various peripherals (TMP411, I2C, and TI level translators). DMD_P1P8V is created by the TI PMIC LP38513S and provides the VCC voltage required by the DMD. VOFFSET (10V), VRESET (-14V), and VBIAS(18V) are made by the TI PMIC TPS65145 and are supplied to the DMD to control the micromirrors.

6.3.2 Timing

The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be considered. Figure 5-4 shows an equivalent test load circuit for the output under test. Timing reference loads are not intended as a precise representation of any particular system environment or depiction of the actual load presented by a production test. System designers use IBIS or other simulation tools to correlate the timing reference load to a system environment. The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving.

6.4 Device Functional Modes

DMD functional modes are controlled by the DLPC4420 display controller. See the DLPC4420 display controller data sheet or contact a TI applications engineer.

6.5 Optical Interface and System Image Quality Considerations

6.5.1 Optical Interface and System Image Quality

TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical performance involves making trade-offs between numerous component and system design parameters. Optimizing system optical performance and image quality strongly relate to optical system design parameter trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical performance is contingent on compliance to the optical system operating conditions described in the following sections.

6.5.1.1 Numerical Aperture and Stray Light Control

The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area are the same. This angle cannot exceed the nominal device micromirror tilt angle unless appropriate apertures are added in the illumination or projection pupils to block out flat-state and stray light from the projection lens. The micromirror tilt angle defines DMD capability to separate the "ON" optical path from any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the micromirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination numerical aperture angle, objectionable artifacts in the display's border and active area can occur.

6.5.1.2 Pupil Match

TI's optical and image quality specifications assume that the exit pupil of the illumination optics is nominally centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable artifacts in the display's border and active area, which may require additional system apertures to control, especially if the numerical aperture of the system exceeds the pixel tilt angle.

Product Folder Links: DLP660TE

Copyright © 2023 Texas Instruments Incorporated

6.5.1.3 Illumination Overfill

The active area of the device is surrounded by an aperture on the inside DMD window surface that masks structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window aperture opening and other surface anomalies that may be visible on the screen. Design he illumination optical system to limit light flux incident anywhere on the window aperture from exceeding approximately 10% of the average flux level in the active area. Depending on the particular system's optical architecture, overfill light may have to be further reduced below the suggested 10% level in order to be acceptable.

6.6 Micromirror Array Temperature Calculation

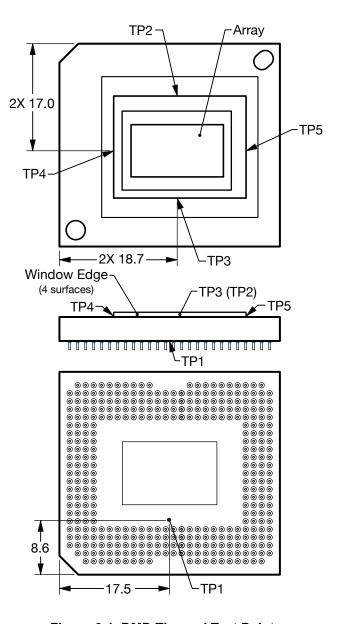


Figure 6-1. DMD Thermal Test Points

Micromirror array temperature cannot be measured directly, therefore it must be computed analytically from a measurement point on the outside of the package, the package thermal resistance, the electrical power, and the illumination heat load. The following equations show the relationship between array temperature and the reference ceramic temperature, thermal test TP1, shown above:

$$T_{ARRAY} = T_{CERAMIC} + (Q_{ARRAY} \times R_{ARRAY-TO-CERAMIC})$$
(3)

$$Q_{ARRAY} = Q_{ELECTRICAL} + Q_{ILLUMINATION}$$
(4)

where

- T_{ARRAY} = Computed array temperature (°C)
- T_{CERAMIC} = Measured ceramic temperature (°C) (TP1 location)
- R_{ARRAY-TO-CERAMIC} = Thermal resistance of package specified in Section 5.5 from array to ceramic TP1 (°C/Watt)
- Q_{ARRAY} = Total DMD power on the array (W) (electrical + absorbed)
- Q_{ELECTRICAL} = Nominal electrical power (W)
- Q_{INCIDENT} = Incident illumination optical power (W)
- Q_{ILLUMINATION} = (DMD average thermal absorptivity × Q_{INCIDIENT}) (W)
- DMD average thermal absorptivity = 0.40

The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating frequencies. A nominal electrical power dissipation to use when calculating array temperature is 3.0 W. The absorbed power from the illumination source is variable and depends on the operating state of the micromirrors and the intensity of the light source. The equations shown above are valid for a single chip or multichip DMD system. It assumes an illumination distribution of 83.7% on the active array, and 16.3% on the array border.

The sample calculation for a typical projection application is as follows

Q_{INCIDENT} = 30 W (measured)

T_{CERAMIC} = 55.0 °C (measured)

Q_{FI FCTRICAL} = 3.0 W

 $Q_{ARRAY} = 3.0 W + (0.40 \times 30 W) = 15.0 W$

 $T_{ARRAY} = 55.0$ °C + (15.0 W × 0.6°C/W) = 64.0 °C

6.7 Micromirror Power Density Calculation

The calculation of the optical power density of the illumination on the DMD in the different wavelength bands uses the total measured optical power on the DMD, percent illumination overfill, area of the active array, and ratio of the spectrum in the wavelength band of interest to the total spectral optical power.

- ILL_{UV} = [OP_{UV-RATIO} × Q_{INCIDENT}] × 1000 ÷ A_{ILL} (mW/cm²)
- ILL_{VIS} = [OP_{VIS-RATIO} × Q_{INCIDENT}] ÷ A_{ILL} (W/cm²)
- ILL_{IR} = [OP_{IR-RATIO} × Q_{INCIDENT}] × 1000 ÷ A_{ILL} (mW/cm²)
- ILL_{BLU} = [OP_{BLU-RATIO} × Q_{INCIDENT}] ÷ A_{ILL} (W/cm²)
- ILL_{BLU1} = [OP_{BLU1-RATIO} × Q_{INCIDENT}] ÷ A_{ILL} (W/cm²)
- $A_{ILL} = A_{ARRAY} \div (1 OV_{ILL}) (cm^2)$

where:

- ILL_{UV} = UV illumination power density on the DMD (mW/cm²)
- ILL_{VIS} = VIS illumination power density on the DMD (W/cm²)
- ILL_{IR} = IR illumination power density on the DMD (mW/cm²)
- ILL_{BLU} = BLU illumination power density on the DMD (W/cm²)
- ILL_{BLU1} = BLU1 illumination power density on the DMD (W/cm²)
- A_{II I} = illumination area on the DMD (cm²)
- Q_{INCIDENT} = total incident optical power on DMD (W) (measured)
- A_{ARRAY} = area of the array (cm²) (data sheet)
- OV_{ILL} = percent of total illumination on the DMD outside the array (%) (optical model)
- OP_{UV-RATIO} = ratio of the optical power for wavelengths <410 nm to the total optical power in the illumination spectrum (spectral measurement)
- OP_{VIS-RATIO} = ratio of the optical power for wavelengths ≥410 and ≤800 nm to the total optical power in the illumination spectrum (spectral measurement)
- OP_{IR-RATIO} = ratio of the optical power for wavelengths >800 nm to the total optical power in the illumination spectrum (spectral measurement)
- OP_{BLU-RATIO} = ratio of the optical power for wavelengths ≥410 and ≤475 nm to the total optical power in the illumination spectrum (spectral measurement)
- OP_{BLU1-RATIO} = ratio of the optical power for wavelengths ≥410 and ≤440 nm to the total optical power in the illumination spectrum (spectral measurement)

The illumination area varies and depends on the illumination overfill. The total illumination area on the DMD is the array area and overfill area around the array. The optical model is used to determine the percent of the total illumination on the DMD that is outside the array (OV_{ILL}) and the percent of the total illumination that is on the active array. From these values the illumination area (A_{ILL}) is calculated. The illumination is assumed to be uniform across the entire array.

From the measured illumination spectrum, the ratio of the optical power in the wavelength bands of interest to the total optical power is calculated.

Sample calculation:

Q _{INCIDENT} = 30 W (measured)	(5)
$A_{ARRAY} = (14.6664 \text{ mm} \times 8.2512 \text{ mm}) \div 100 = 1.2102 \text{ cm}^2 \text{ (data sheet)}$	(6)
OV _{ILL} = 16.3% (optical model)	(7)
OP _{UV-RATIO} = 0.00017 (spectral measurement)	(8)
OP _{VIS-RATIO} = 0.99977 (spectral measurement)	(9)
OP _{IR-RATIO} = 0.00006 (spectral measurement)	(10)
OP _{BLU-RATIO} = 0.28100 (spectral measurement)	(11)
OP _{BLU1-RATIO} = 0.03200 (spectral measurement)	(12)
$A_{ILL} = 1.2102 \text{ cm}^2 \div (1 - 0.163) = 1.4458 \text{ cm}^2$	(13)
$ILL_{UV} = [0.00017 \times 30 \text{ W}] \times 1000 \div 1.4458 \text{ cm}^2 = 3.527 \text{ mW/cm}^2$	(14)
$ILL_{VIS} = [0.99977 \times 30 \text{ W}] \div 1.4458 \text{ cm}^2 = 20.74 \text{ W/cm}^2$	(15)
$ILL_{IR} = [0.00006 \times 30 \text{ W}] \times 1000 \div 1.4458 \text{ cm}^2 = 1.245 \text{ mW/cm}^2$	(16)
$ILL_{BLU} = [0.28100 \times 30 \text{ W}] \div 1.4458 \text{ cm}^2 = 5.83 \text{ W/cm}^2$	(17)
$ILL_{BLU1} = [0.03200 \times 30 \text{ W}] \div 1.4458 \text{ cm}^2 = 0.66 \text{ W/cm}^2$	(18)

6.8 Micromirror Landed-On/Landed-Off Duty Cycle

6.8.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle

The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a percentage) that an individual micromirror is landed in the On state versus the amount of time the same micromirror is landed in the Off state.

As an example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the On state 100% of the time (and in the Off state 0% of the time); whereas 0/100 indicates that the pixel is in the Off state 100% of the time. Likewise, 50/50 indicates that the pixel is On 50% of the time and Off 50% of the time.

Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other state (OFF or ON) is considered negligible and is thus ignored.

Since a micromirror can only be landed in one state or the other (On or Off), the two numbers (percentages) always add to 100.

6.8.2 Landed Duty Cycle and Useful Life of the DMD

Knowing the long-term average landed duty cycle (of the end product or application) is important because subjecting all (or a portion) of the DMD's micromirror array (also called the active array) to an asymmetric landed duty cycle for a prolonged period of time can reduce the DMD's usable life.

Note that it is the symmetry or asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly asymmetrical.

6.8.3 Landed Duty Cycle and Operational DMD Temperature

Operational DMD Temperature and Landed Duty Cycle interact to affect the DMD's usable life, and this interaction can be exploited to reduce the impact that an asymmetrical Landed Duty Cycle has on the DMD's usable life. This is quantified in the de-rating curve shown in Figure 5-1. The importance of this curve is that:

- · All points along this curve represent the same usable life.
- All points above this curve represent lower usable life (and the further away from the curve, the lower the usable life).
- All points below this curve represent higher usable life (and the further away from the curve, the higher the usable life).

In practice, this curve specifies the Maximum Operating DMD Temperature that the DMD ideally will be operated at for a given long-term average Landed Duty Cycle.

6.8.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application

During a given period of time, the Landed Duty Cycle of a given pixel follows from the image content being displayed by that pixel.

For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel will experience a 100/0 Landed Duty Cycle during that time period. Likewise, when displaying pure-black, the pixel will experience a 0/100 Landed Duty Cycle.

Between the two extremes (ignoring for the moment color and any image processing that may be applied to an incoming image), the Landed Duty Cycle tracks one-to-one with the gray scale value, as shown in Table 6-1.

Table 6-1. Gravscale Value and Landed Duty Cycle

GRAYSCALE VALUE	LANDED DUTY CYCLE
0%	0/100
10%	10/90
20%	20/80
30%	30/70
40%	40/60
50%	50/50
60%	60/40
70%	70/30
80%	80/20
90%	90/10
100%	100/0

Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from 0% to 100%) for each constituent primary color (red, green, and blue) for the given pixel as well as the color cycle time for each primary color, where "color cycle time" is the total percentage of the frame time that a given primary must be displayed in order to achieve the desired white point.

During a given period of time, the landed duty cycle of a given pixel can be calculated as follows:

Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) + (Blue_Cycle_% × Blue_Scale_Value)

where

- Red_Cycle_% represents the percentage of the frame time that Red displays to achieve the desired white point.
- Green_Cycle_% represents the percentage of the frame time that Green displays to achieve the desired white point.
- Blue_Cycle_% represents the percentage of the frame time that Blue displays to achieve the desired white point.

For example, assume that the red, green and blue color cycle times are 50%, 20%, and 30% respectively (in order to achieve the desired white point), then the Landed Duty Cycle for various combinations of red, green, blue color intensities will be as shown in Table 6-2 and Table 6-3.

Table 6-2. Example Landed Duty Cycle for Full-Color, Color Percentage

Red Cycle Percentage	Green Cycle Percentage	Blue Cycle Percentage
50%	20%	30%

Table 6-3. Example Landed Duty Cycle for Full-Color

Red Scale Value	Green Scale Value	Blue Scale Value	Landed Duty Cycle
0%	0%	0%	0/100
100%	0%	0%	50/50
0%	100%	0%	20/80
0%	0%	100%	30/70
12%	0%	0%	6/94
0%	35%	0%	7/93
0%	0%	60%	18/82
100%	100%	0%	70/30
0%	100%	100%	50/50
100%	0%	100%	80/20
12%	35%	0%	13/87
0%	35%	60%	25/75
12%	0%	60%	24/76
100%	100%	100%	100/0

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

Texas Instruments DLP technology is a micro-electro-mechanical systems (MEMS) technology that modulates light using a digital micromirror device (DMD). DMDs vary in resolution and size and can contain over 8-million micromirrors. Each micromirror of a DMD can represent either one or more pixels on the display and is independently controlled, synchronized with color sequential illumination, to create stunning images on any surface. DLP technology enables a wide variety of display products worldwide, from tiny projection modules embedded in smartphones to high powered digital cinema projectors, and emerging display products such as digital signage and laser TV.

The most recent class of chipsets from Texas Instruments is based on a breakthrough micromirror technology, called TRP. With a smaller pixel pitch of 5.4 µm and increased tilt angle of 17 degrees, TRP chipsets enable higher resolution in a smaller form factor and enhanced image processing features while maintaining high optical efficiency. DLP chipsets are a great fit for any system that requires high resolution and high brightness displays.

The following orderables have been replaced by the DLP660TE.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)	MECHANICAL ICD
2715-7132P	FYG (350)	35 mm × 32 mm	2514366
2715-7137P	FYG (350)	35 mm × 32 mm	2514366
2715-7139P	FYG (350)	35 mm × 32 mm	2514366
2715-713AP	FYG (350)	35 mm × 32 mm	2514366

Copyright © 2023 Texas Instruments Incorporated

Product Folder Links: DLP660TE

7.2 Typical Application

The DLP660TE DMD is the first full 4K UHD DLP digital micromirror device. When combined with two display controllers (DLPC4420), an FPGA, a power management device (DLPA100), and other electrical, optical and mechanical components the chipset enables bright, affordable, full 4K UHD display solutions. Figure 7-1 and Figure 7-2 shows a typical 4K UHD system application using the DLP660TE DMD.

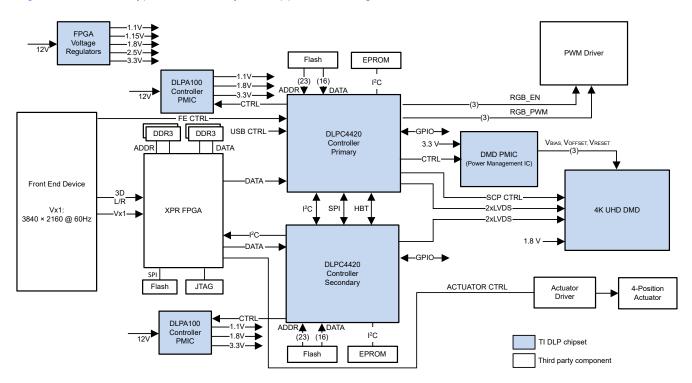


Figure 7-1. Typical DLPC4420 4K UHD LED Illumination Application

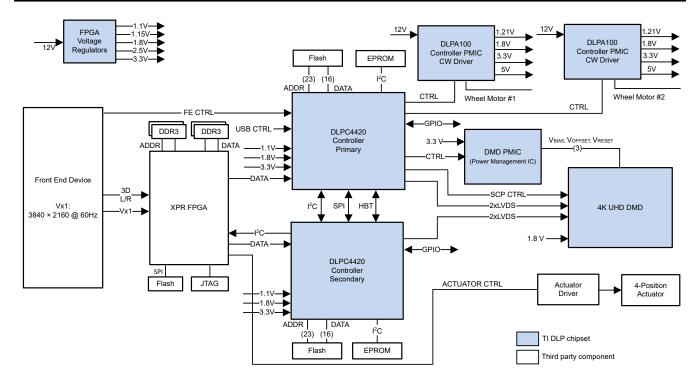


Figure 7-2. Typical DLPC4420 4K UHD Laser Phosphor Illumination Application

7.2.1 Design Requirements

At the high level, DLP660TE DMD systems will include an illumination source, a light engine, electronic components, and software. The designer must first choose an illumination source and design the optical engine taking into consideration the relationship between the optics and the illumination source. The designer must then understand the electronic components of a DLP660TE DMD system, which is made up of a DMD board and formatter board. The DMD board channels image data to and powers the DMD chip. The formatter board supports the rest of the electronic components, which can include an FPGA, the DLPC4420 display controller, power supplies, and drivers for illumination sources, color wheels, fans, and dynamic optical components.

7.2.2 Detailed Design Procedure

For connecting the DLPC4420 display controller and the DLP660TE DMD, see the reference design schematic. Follow the layout guidelines to achieve a reliable projector. To complete the DLP system, an optical module or light engine is required that contains the DLP660TE DMD, associated illumination sources, optical elements, and necessary mechanical components.

7.2.3 Application Curves

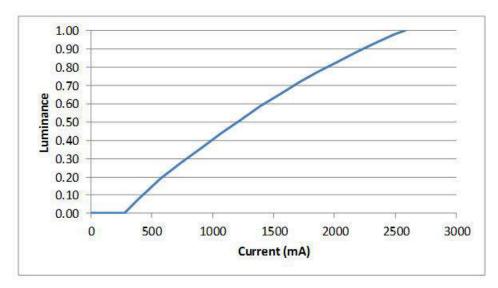
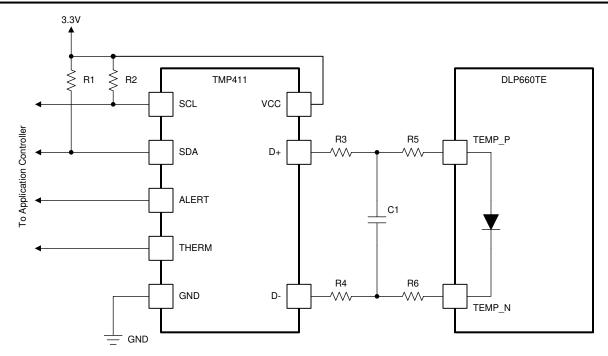



Figure 7-3. Luminance vs. Current

7.3 DMD Die Temperature Sensing

The DMD features a built-in thermal diode that measures the temperature at one corner of the die outside the micromirror array. The thermal diode can be interfaced with the TMP411 temperature sensor as shown in Figure 7-4. The serial bus from the TMP411 can be connected to the DLPC4420 display controller to enable its temperature sensing features. See the DLPC4420 Programmers' Guide for instructions on installing the DLPC4420 controller support firmware bundle and obtaining the temperature readings.

The software application contains functions to configure the TMP411 to read the DMD temperature sensor diode. This data can be leveraged to incorporate additional functionality in the overall system design such as adjusting illumination, fan speeds, and so forth. All communication between the TMP411 and the DLPC4420 controller will be completed using the I²C interface. The TMP411 connects to the DMD via pins E16 and E17 as outlined in Section 4.

- A. Details omitted for clarity, see the TI Reference Design for connections to the DLPC4420 controller.
- B. See the TMP411 data sheet for system board layout recommendation.
- C. See the TMP411 data sheet and the TI reference design for suggested component values for R1, R2, R3, R4, and C1.
- D. R5 = 0Ω . R6 = 0Ω . Zero ohm resistors need to be located close to the DMD package pins.

Figure 7-4. TMP411 Sample Schematic

8 Power Supply Recommendations

The following power supplies are all required to operate the DMD:

- VSS
- VCC
- VCCI
- VBIAS
- VOFFSET
- VRESET

DMD power-up and power-down sequencing is strictly controlled by the DLP display controller.

CAUTION

For reliable operation of the DMD, the following power supply sequencing requirements must be followed. Failure to adhere to any of the prescribed power-up and power-down requirements may affect device reliability. See Figure 8-1 DMD Power Supply Sequencing Requirements.

VBIAS, VCC, VCCI, VOFFSET, and VRESET power supplies must be coordinated during power-up and power-down operations. Failure to meet any of the below requirements will result in a significant reduction in the DMD's reliability and lifetime. Common ground VSS must also be connected.

8.1 DMD Power Supply Power-Up Procedure

- During power-up, VCC and VCCI must always start and settle before VOFFSET plus Delay1 specified in Table 8-1, VBIAS, and VRESET voltages are applied to the DMD.
- During power-up, it is a strict requirement that the voltage delta between VBIAS and VOFFSET must be within the specified limit shown in Section 5.4.
- During power-up, there is no requirement for the relative timing of VRESET with respect to VBIAS.
- Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the requirements specified in Section 5.1, in Section 5.4, and in Figure 8-1.
- During power-up, LVCMOS input pins must not be driven high until after VCC and VCCI have settled at operating voltages listed in Section 5.4.

8.2 DMD Power Supply Power-Down Procedure

- During power-down, VCC and VCCI must be supplied until after VBIAS, VRESET, and VOFFSET are discharged to within the specified limit of ground. See Table 8-1.
- During power-down, it is a strict requirement that the voltage delta between VBIAS and VOFFSET must be within the specified limit shown in Section 5.4.
- During power-down, there is no requirement for the relative timing of VRESET with respect to VBIAS.
- Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the requirements specified in Section 5.1, in Section 5.4, and in Figure 8-1.
- During power-down, LVCMOS input pins must be less than specified in Section 5.4.

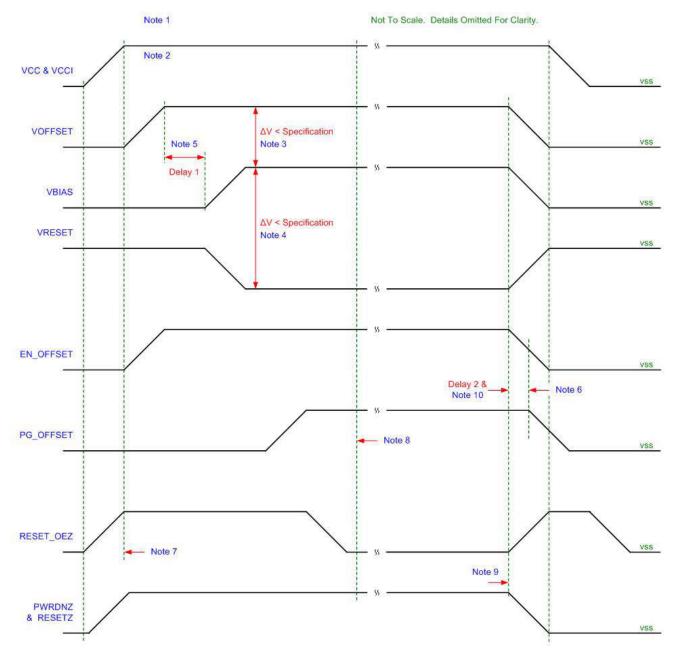


Figure 8-1. DMD Power Supply Requirements

- 1. See Section 4 and Section 5.4.
- 2. To prevent excess current, the supply voltage delta |VCCI VCC| must be less than specified limit in Section 5.4.
- 3. To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than specified in Section 5.4.
- 4. To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than specified limit in Section 5.4.
- 5. VBIAS must power up after VOFFSET has powered up, per the Delay1 specification in Table 8-1.
- 6. PG_OFFSET must turn off after EN_OFFSET has turned off, per the Delay2 specification in Table 8-1.
- 7. DLP controller software enables the DMD power supplies to turn on after RESET OEZ is at logic high.
- 8. DLP controller software initiates the global VBIAS command.

- 9. After the DMD micromirror park sequence is complete, the DLP controller software initiates a hardware power-down that activates PWRDNZ and disables VBIAS, VRESET and VOFFSET.
- 10. Under power-loss conditions where emergency DMD micromirror park procedures are being enacted by the DLP controller hardware, EN_OFFSET may turn off after PG_OFFSET has turned off. The OEZ signal goes high prior to PG_OFFSET turning off to indicate the DMD micromirror has completed the emergency park procedures.

Table 8-1. DMD Power-Supply Requirements

PARAMETER	DESCRIPTION	MIN	NOM	MAX	UNIT
Delay1	Delay from VOFFSET settled at recommended operating voltage to VBIAS and VRESET power up	1	2		ms
Delay2	PG_OFFSET hold time after EN_OFFSET goes low	100			ns

Product Folder Links: DLP660TE

9 Layout

9.1 Layout Guidelines

The DLP660TE DMD is part of a chipset that is controlled by the DLPC4420 display controller in conjunction with the DLPA100 power and motor driver. These guidelines help to design a PCB board with the DLP660TE DMD. The DLP660TE DMD board is a high-speed multilayer PCB, with primarily high-speed digital logic using dual-edge clock rates up to 400 MHz for DMD LVDS signals. The remaining traces are comprised of low speed digital LVTTL signals. TI recommends that mini power planes are used for VOFFSET, VRESET, and VBIAS. Solid planes are required for DMD_P3P3V(3.3 V), DMD_P1P8V, and Ground. The target impedance for the PCB is $50~\Omega~\pm10\%$ with the LVDS traces being $100-\Omega~\pm10\%$ differential. TI recommends using an 8-layer stack-up as described in Table 9-1.

9.2 Layout Example

9.2.1 Layers

The layer stack-up and copper weight for each layer is shown in Table 9-1. Small sub-planes are allowed on signal routing layers to connect components to major sub-planes on top or bottom layers if necessary.

		Table 9-1	i. Layer Stack-Up				
LAYER NO.	LAYER NAME	COPPER WT. (oz.)	COMMENTS				
1	1 Side A - DMD only 1.5 I		DMD, escapes, low frequency signals, power sub-planes.				
2	Ground	1	Solid ground plane (net GND). 50 Ω and 100 Ω differential signals				
3	Signal	0.5					
4	4 Ground 1 5 DMD_P3P3V 1		1 Solid ground plane (net GND)				
5			+3.3-V power plane (net DMD_P3P3V)				
6	Signal	0.5	50 $Ω$ and 100 $Ω$ differential signals				
7	Ground	1	Solid ground plane (net GND).				
8	Side B - All other Components	1.5	Discrete components, low frequency signals, power sub-planes				

Table 9-1. Layer Stack-Up

9.2.2 Impedance Requirements

TI recommends that the board has matched impedance of 50 Ω ±10% for all signals. The exceptions are listed in Table 9-2.

Table 9-2. S	pecial Im	pedance F	Requirements
--------------	-----------	-----------	--------------

SIGNAL TYPE	SIGNAL NAME	IMPEDANCE (Ω)
	D_AP(0:15), D_AN(0:15)	100 100/ 1155 11.1
A channel LVDS differential pairs	DCLKA_P, DCLKA_N	100 ±10% differential across each pair
	SCTRL_AP, SCTRL_AN	- Pa
	D_BP(0:15), D_BN(0:15)	
B channel LVDS differential pairs	DCLKB_P, DCLKB_N	100 ±10% differential across each pair
	SCTRL_BP, SCTRL_BN	
	D_CP(0:15), D_CN(0:15)	100 100/ 1155 11.1
C channel LVDS differential pairs	DCLKC_P, DCLKC_N	100 ±10% differential across each pair
	SCTRL_CP, SCTRL_CN	
	D_DP(0:15), D_DN(0:15)	
D channel LVDS differential pairs	DCLKD_P, DCLKD_N	100 ±10% differential across each pair
	SCTRL_DP, SCTRL_DN	- r

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

9.2.3 Trace Width, Spacing

Unless otherwise specified, TI recommends that all signals follow the 0.005-inch/0.005-inch design rule. Minimum trace clearance from the ground ring around the PWB has a 0.1-inch minimum. An analysis of impedance and stack-up requirements determine the actual trace widths and clearances.

9.2.3.1 Voltage Signals

Table 9-3. Special Trace Widths, Spacing Requirements

SIGNAL NAME	MINIMUM TRACE WIDTH TO PINS (MIL)	LAYOUT REQUIREMENT				
GND	15	Maximize trace width to connecting pin				
DMD_P3P3V	15	Maximize trace width to connecting pin				
DMD_P1P8V	15	Maximize trace width to connecting pin				
VOFFSET	15	Create mini plane from U2 to U3				
VRESET 15		Create mini plane from U2 to U3				
VBIAS	15	Create mini plane from U2 to U3				
All LI3 control		Use 10 mil etch to connect all signals/voltages to DMD pads				

Product Folder Links: *DLP660TE*

10 Device and Documentation Support

10.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

10.2 Device Support

10.2.1 Device Nomenclature

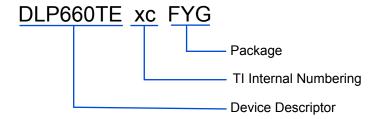


Figure 10-1. Part Number Description

10.2.2 Device Markings

The device marking will include both human-readable information and a 2-dimensional matrix code. The 2-dimensional matrix code is an alpha-numeric character string that contains the DMD part number, Part 1 of Serial Number, and Part 2 of Serial Number. The first character of the DMD Serial Number (part 1) is the manufacturing year. The second character of the DMD Serial Number (part 1) is the manufacturing month. The last character of the DMD Serial Number (part 2) is the bias voltage bin letter.

Example: DLP660TE GHXXXXX LLLLLLM

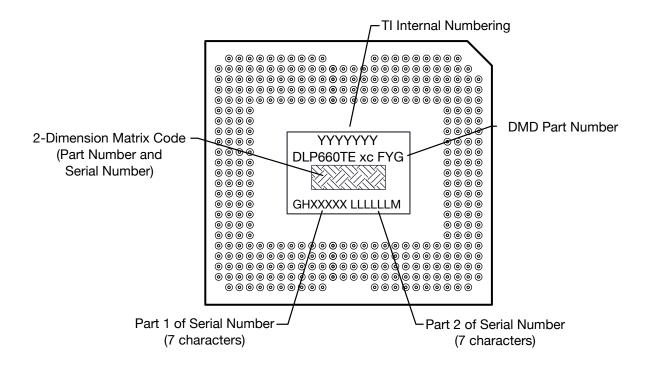


Figure 10-2. DMD Marking Locations

10.3 Documentation Support

10.3.1 Related Documentation

The following documents contain additional information related to the chipset components used with the DLP660TE:

- DLPC4420 Display Controller
- DLPA100 Power and Motor Driver Data Sheet

10.4 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.5 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.6 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

DLP® is a registered trademark of Texas Instruments.

All trademarks are the property of their respective owners.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

10.7 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.8 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

11 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (February 2023) to Revision D (December 2023)	Page
Updated the description Absolute Maximum Ratings	11
Updated Recommended Operating Conditions	
Updated table and max values in System Mounting Interface Loads	
Updated the table format in Micromirror Array Physical Characteristics	
Updated Micromirror Array Optical Characteristics	
Updated values in Micromirror Array Temperature Calculation	25
Added section on Micromirror Power Density Calculations	
Updated DLP660TE Device Nomenclature	41
Updated DLP660TE Device Markings	
Changes from Basisian B. (July 2022) to Basisian C. (Fahman, 2022)	Dana
Changes from Revision B (July 2022) to Revision C (February 2023)	Page
Changes from Revision B (July 2022) to Revision C (February 2023) Changed controller to DLPC4420, linked the chipset components to product pages	Page
Changed controller to DLPC4420, linked the chipset components to product pages	1
 Changed controller to DLPC4420, linked the chipset components to product pages Changed controller to DLPC4420, updated the diagram 	1 1
Changed controller to DLPC4420, linked the chipset components to product pages	1 1 23
 Changed controller to DLPC4420, linked the chipset components to product pages Changed controller to DLPC4420, updated the diagram Changed controller to DLPC4420 Changed controller to DLPC4420 	
 Changed controller to DLPC4420, linked the chipset components to product pages Changed controller to DLPC4420, updated the diagram Changed controller to DLPC4420 Changed controller to DLPC4420 Changed controller to DLPC4420, added a table with legacy part numbers and mechan 	
 Changed controller to DLPC4420, linked the chipset components to product pages Changed controller to DLPC4420, updated the diagram Changed controller to DLPC4420 Changed controller to DLPC4420, added a table with legacy part numbers and mechar Changed controller to DLPC4420 	
 Changed controller to DLPC4420, linked the chipset components to product pages Changed controller to DLPC4420, updated the diagram Changed controller to DLPC4420 Changed controller to DLPC4420 Changed controller to DLPC4420, added a table with legacy part numbers and mechan 	
 Changed controller to DLPC4420, linked the chipset components to product pages Changed controller to DLPC4420, updated the diagram Changed controller to DLPC4420 Changed controller to DLPC4420, added a table with legacy part numbers and mechar Changed controller to DLPC4420 Changed the controller to DLPC4420 	
 Changed controller to DLPC4420, linked the chipset components to product pages Changed controller to DLPC4420, updated the diagram. Changed controller to DLPC4420 Changed controller to DLPC4420, added a table with legacy part numbers and mechar Changed controller to DLPC4420 Changed the controller to DLPC4420. Changed the controller to DLPC4420. Changed controller to DLPC4420. 	

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: *DLP660TE*

Copyright © 2023 Texas Instruments Incorporated

www.ti.com 7-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
DLP660TEAAFYG	Active	Production	CPGA (FYG) 350	1 JEDEC TRAY (5+1)	Yes	Call TI	N/A for Pkg Type	0 to 70	
DLP660TEAAFYG.B	Active	Production	CPGA (FYG) 350	1 JEDEC TRAY (5+1)	Yes	Call TI	N/A for Pkg Type	0 to 70	

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

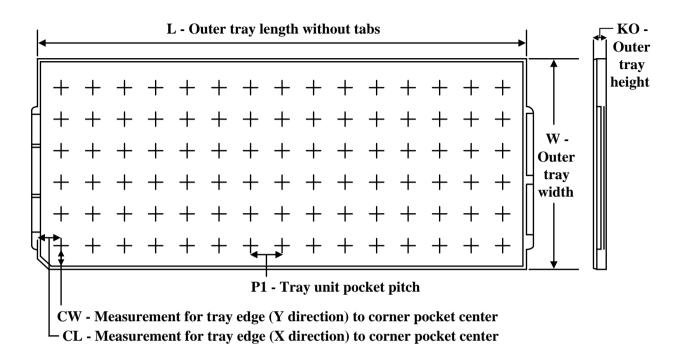
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

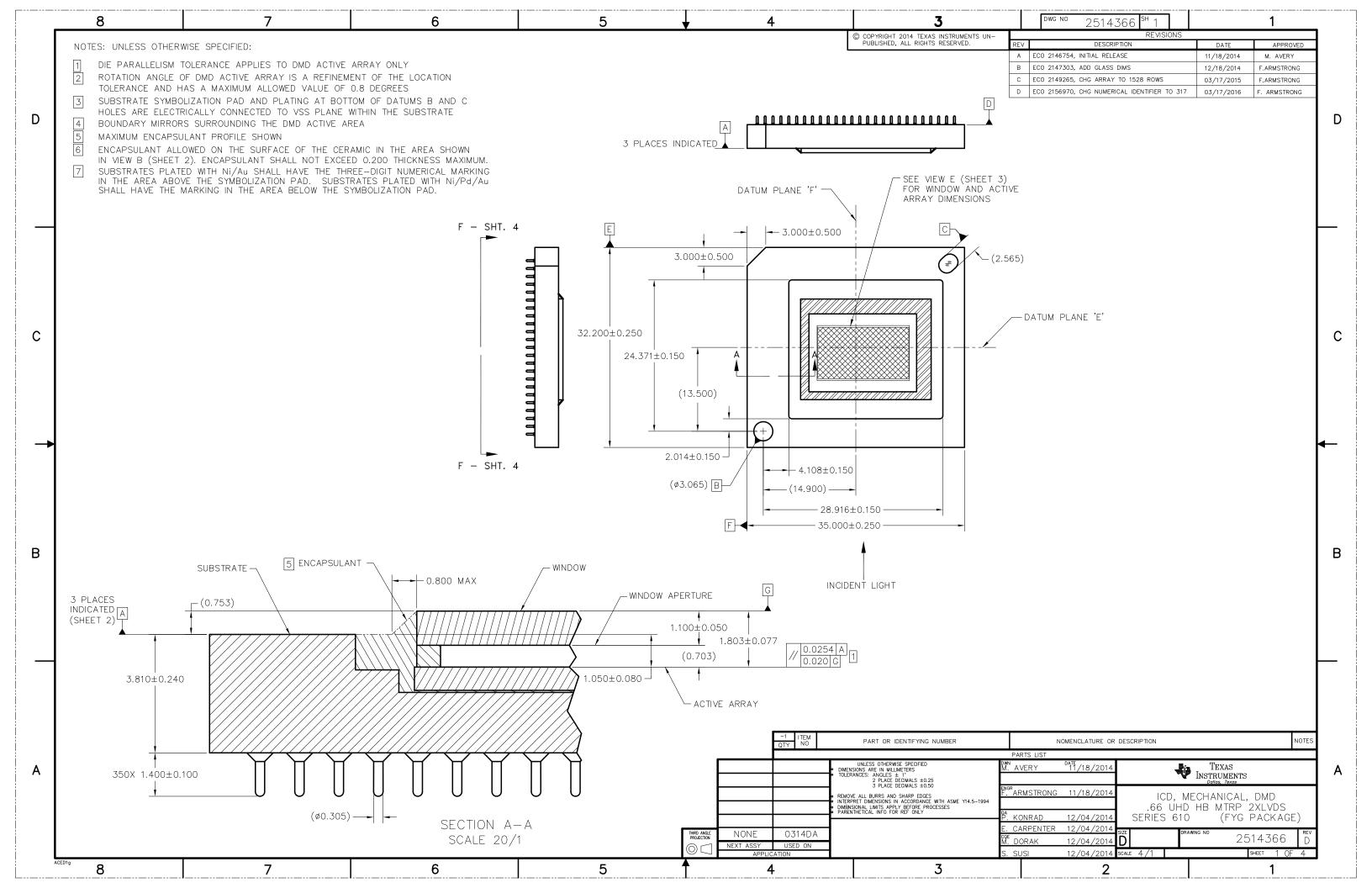
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

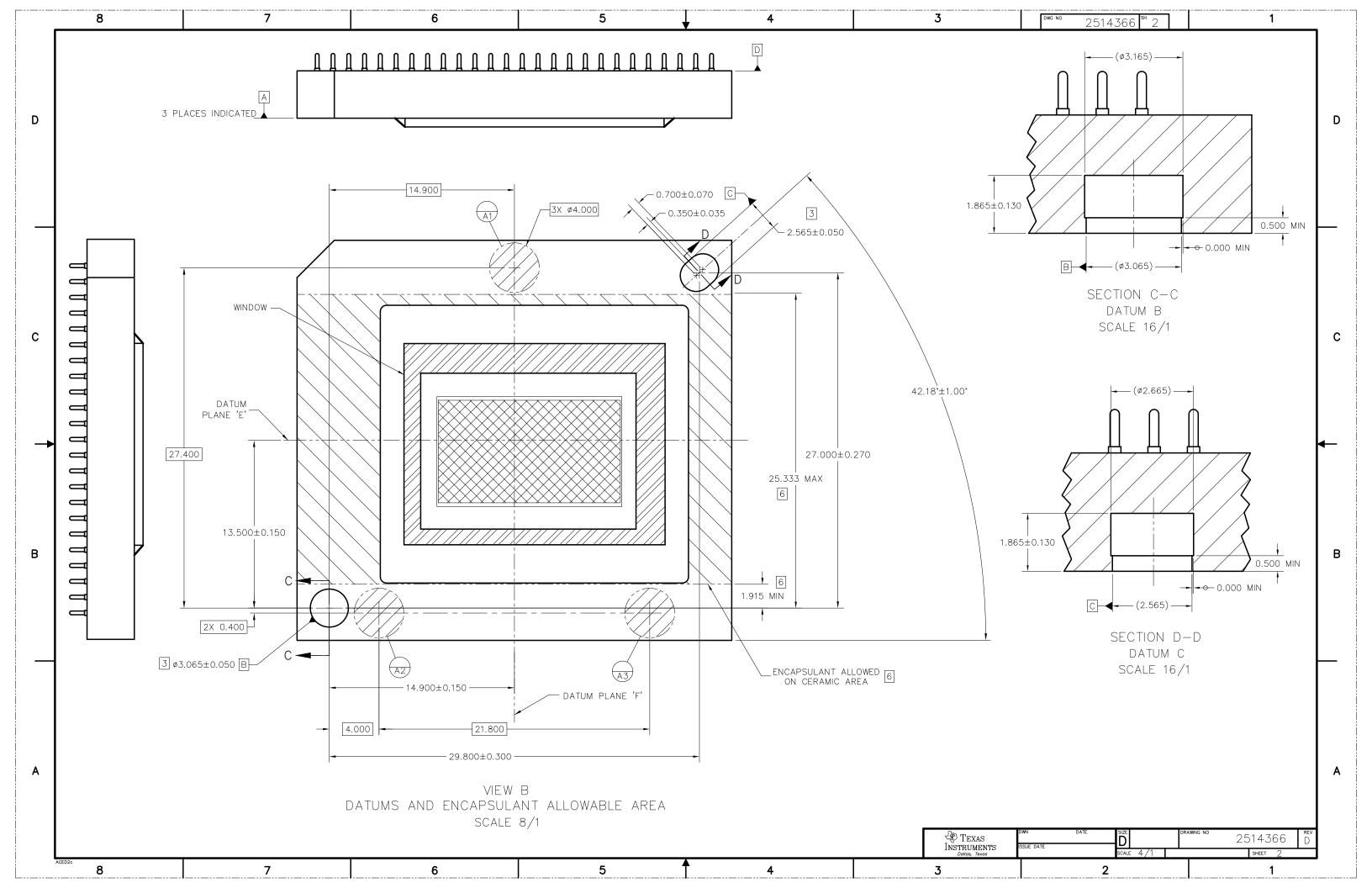
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

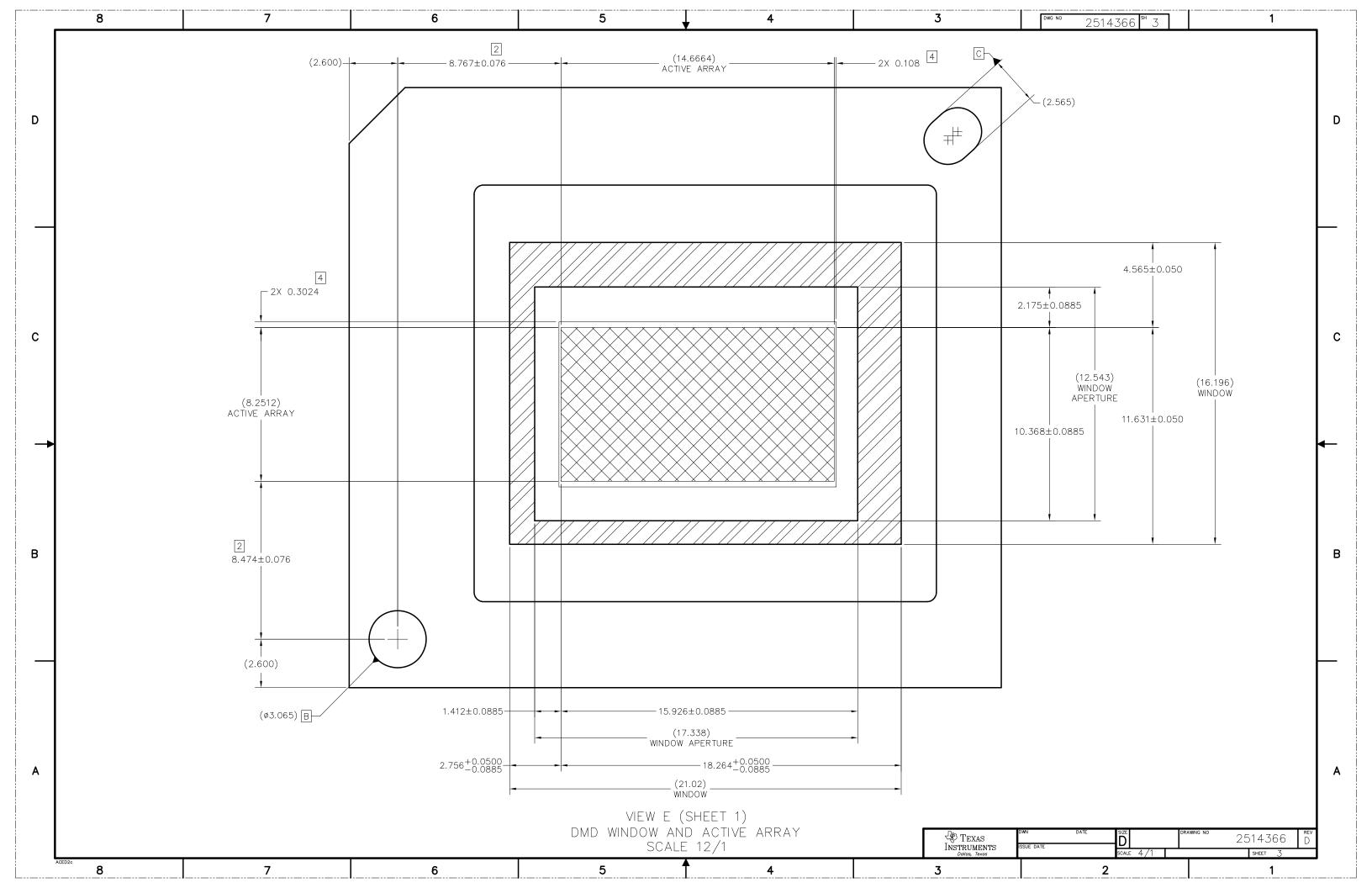

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

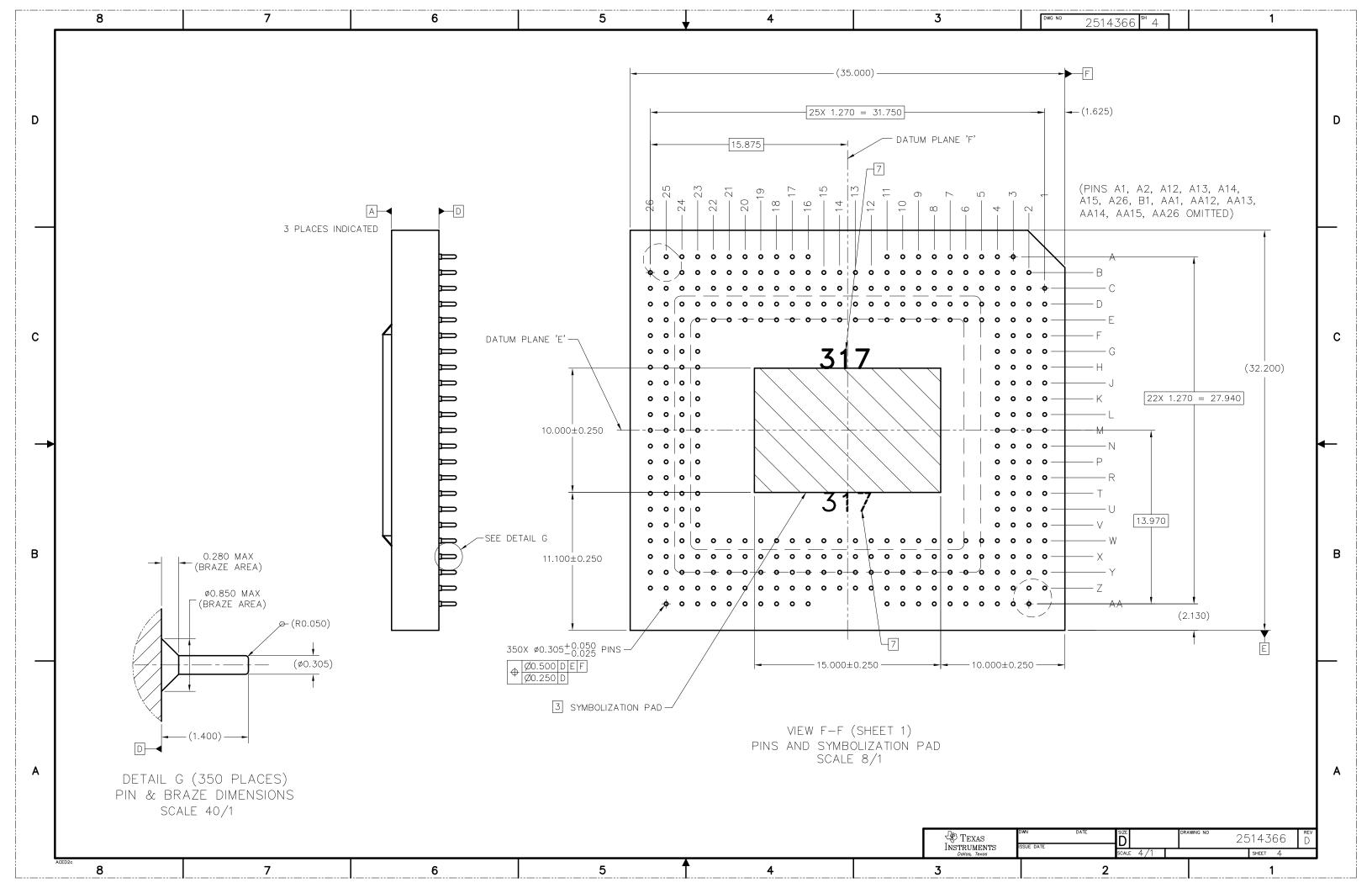
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

www.ti.com 23-May-2025


TRAY




Chamfer on Tray corner indicates Pin 1 orientation of packed units.


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	Κ0 (μm)	P1 (mm)	CL (mm)	CW (mm)
DLP660TEAAFYG	FYG	CPGA	350	1	3 x 7	150	315	135.9	12190	43.9	25.8	26.85
DLP660TEAAFYG.B	FYG	CPGA	350	1	3 x 7	150	315	135.9	12190	43.9	25.8	26.85

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025