

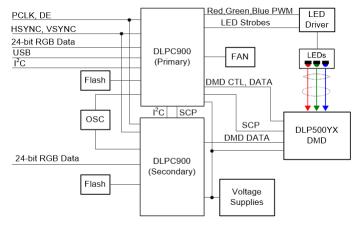
DLP500YX 0.50 2048×1200 DMD

1 Features

- High resolution 2048 × 1200 array
 - >2.4M mirrors
 - 0.50-inch micromirror array diagonal
 - 5.4-micron micromirror pitch
 - ±17.5° micromirror tilt angle (relative to flat surface)
 - Designed for bottom illumination
 - Integrated micromirror driver circuitry
- Designed for use with broadband visible light (420 nm - 700 nm)
 - Window transmission 97% (single pass, through two window surfaces)
 - Micromirror reflectivity 88%
 - Array diffraction efficiency 84% (@f/2.4)
 - Array fill factor 93%
- Four 16-bit, low-voltage differential signaling (LVDS), double data rate (DDR) input-data buses
- Driven by dual DLPC900 digital controllers
 - Up to 16.1-kHz 1-bit patterns/second
 - Equivalent of 39.6 gigabits/second pixel data rate in prestored pattern mode
 - Up to 2016-Hz 8-bit gray pattern rate (prestored) patterns with illumination modulation)
 - Up to 1008-Hz 16-bit gray pattern rate (prestored patterns with illumination modulation)
 - Up to 247-Hz 8-bit pattern rate (external video pattern input)

2 Applications

- Industrial
 - 3D scanners for machine vision
 - 3D touchless metrology and quality control
 - 3D printing
- Medical
 - Ophthalmology
 - 3D scanners for limb and skin measurement
 - Hyper-spectral scanning and imaging
- Displays
 - 3D imaging microscopes
 - Intelligent and adaptive lighting


3 Description

DLP500YX digital micromirror device (DMD) is a spatial light modulator (SLM) that modulates the amplitude, direction, and/or phase of incoming light. This DMD coupled with the four 2xLVDS input data buses enables the display of high resolution patterns at blazing pattern update rates. The high resolution and fast pattern rates offered by the DLP500YX make it well suited to support a wide variety of industrial, medical, and advanced imaging applications. Reliable function and operation of the DLP500YX is enabled through use in conjunction with dual DLPC900 Digital Controllers. This dedicated chipset provides flexible and easy-to-program pattern streams at the high pattern rates necessary to meet the requirements of a variety of end equipment solutions.

Table 3-1. Device Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
DLP500YX	FXK (257)	32.2 mm × 22.3 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1 Features1	7.5 Optical Interface and System Image Quality	
2 Applications1	Considerations	. 26
3 Description1	7.6 Micromirror Array Temperature Calculation	27
4 Revision History2	7.7 Micromirror Landed-On/Landed-Off Duty Cycle	. 29
5 Pin Configuration and Functions3	8 Application and Implementation	32
6 Specifications 11	8.1 Application Information	. 32
6.1 Absolute Maximum Ratings 11	8.2 Typical Application	
6.2 Storage Conditions	8.3 DMD Die Temperature Sensing	. 34
6.3 ESD Ratings	9 Power Supply Recommendations	35
6.4 Recommended Operating Conditions12	9.1 DMD Power Supply Power-Up Procedure	35
6.5 Thermal Information14	9.2 DMD Power Supply Power-Down Procedure	. 35
6.6 Electrical Characteristics15	9.3 Restrictions on Hot Plugging and Hot Swapping	37
6.7 Capacitance at Recommended Operating	10 Layout	37
Conditions	10.1 Layout Guidelines	37
6.8 Timing Requirements16	10.2 Layout Example	40
6.9 Typical Characteristics19	11 Device and Documentation Support	42
6.10 System Mounting Interface Loads20	11.1 Third-Party Products Disclaimer	. 42
6.11 Micromirror Array Physical Characteristics20	11.2 Device Support	42
6.12 Micromirror Array Optical Characteristics22	11.3 Documentation Support	. 43
6.13 Window Characteristics24	11.4 Receiving Notification of Documentation Updates.	43
6.14 Chipset Component Usage Specification24	11.5 Support Resources	. 43
7 Detailed Description25	11.6 Trademarks	43
7.1 Overview	11.7 Electrostatic Discharge Caution	43
7.2 Functional Block Diagram25	11.8 Glossary	43
7.3 Feature Description26	12 Mechanical, Packaging, and Orderable	
7.4 Device Functional Modes26	Information	. 44

4 Revision History

C	hanges from Revision * (November 2020) to Revision A (July 2022)	Page
•	This document is updated per the latest Texas Instruments and industry data sheet standards	1
•	Updated Timing Requirements	16

5 Pin Configuration and Functions

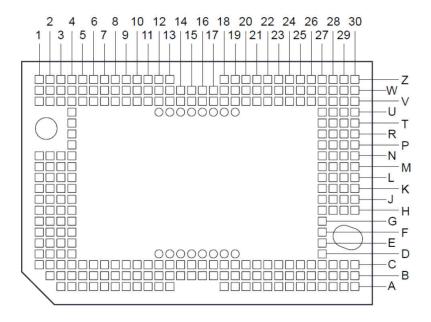


Figure 5-1. FXK Package 257-Pin CLGA Bottom View

CAUTION

To ensure reliable, long-term operation of the DLP500YX DMD, it is critical to properly manage the layout and operation of the signals identified in Pin Functions . For specific details and guidelines, refer to Section 10.1 section before designing the board.

Table 5-1. Pin Functions

PIN		(2)		DATA	INTERNAL	(1)	TRACE
NAME	NO.	TYPE ⁽²⁾	SIGNAL	RATE ⁽⁶⁾	TERMINATION ⁽⁷⁾	DESCRIPTION ⁽¹⁾	LENGTH (mil ⁽⁸⁾)
D_AN(0)	C6						
D_AN(1)	C3						
D_AN(2)	E1						
D_AN(3)	C4						
D_AN(4)	D1						
D_AN(5)	В8						
D_AN(6)	F4			DDB	Differential	Data negative	805
D_AN(7)	E3	Innut	LVDS				
D_AN(8)	C11	Input	LVDS	DDR	Dillerential	Data negative	603
D_AN(9)	F3						
D_AN(10)	K4						
D_AN(11)	НЗ						
D_AN(12)	J3						
D_AN(13)	C13						
D_AN(14)	A5						
D_AN(15)	A3						

PIN				DATA	INTERNAL		TRACE
NAME	NO.	TYPE ⁽²⁾	SIGNAL	RATE ⁽⁶⁾	TERMINATION ⁽⁷⁾	DESCRIPTION ⁽¹⁾	LENGTH (mil ⁽⁸⁾)
D_AP(0)	C7						
D_AP(1)	C2						
D_AP(2)	E2						
D_AP(3)	B4						
D_AP(4)	C1						
D_AP(5)	B7						
D_AP(6)	E4						
D_AP(7)	D3	Innut	LVDS	DDR	Differential	Data positiva	905
D_AP(8)	C12	Input	LVDS	DDR	Differential	Data positive	805
D_AP(9)	F2						
D_AP(10)	J4						
D_AP(11)	G3						
D_AP(12)	J2						
D_AP(13)	C14						
D_AP(14)	A6						
D_AP(15)	A4						
D_BN(0)	N4						
D_BN(1)	Z11						
D_BN(2)	W4						
D_BN(3)	W10						
D_BN(4)	L1						
D_BN(5)	V8						
D_BN(6)	W6						
D_BN(7)	M1	1	LVDS	DDR	Differential	Data was sative	05-
D_BN(8)	R4	Input	LVD2	DDR	Dillerential	Data negative	805
D_BN(9)	W1						
D_BN(10)	U4	-					
D_BN(11)	V2]					
D_BN(12)	Z5]					
D_BN(13)	N3						
D_BN(14)	Z2						
D_BN(15)	L4						

www.ti.com

PIN				DATA	INTERNAL		TRACE
NAME	NO.	TYPE ⁽²⁾	SIGNAL	RATE ⁽⁶⁾	TERMINATION ⁽⁷⁾	DESCRIPTION ⁽¹⁾	LENGTH (mil ⁽⁸⁾)
D_BP(0)	M4						
D_BP(1)	Z12						
D_BP(2)	Z4	1					
D_BP(3)	Z10						
D_BP(4)	L2]					
D_BP(5)	V9	1					
D_BP(6)	W7						
D_BP(7)	N1	Input	LVDS	DDB	Differential	Data positivo	905
D_BP(8)	P4	Input	LVDS	DDK	DDR Differential I	Data positive	805
D_BP(9)	V1]					
D_BP(10)	T4	1					
D_BP(11)	V3	1					
D_BP(12)	Z6	1					
D_BP(13)	N2						
D_BP(14)	Z3]					
D_BP(15)	L3	1					
D_CN(0)	H27						
D_CN(1)	A20						
D_CN(2)	H28						
D_CN(3)	K28						
D_CN(4)	K30						
D_CN(5)	C23						
D_CN(6)	G27						
D_CN(7)	J30	Input	LVDS	DDR	Differential	Data negative	805
D_CN(8)	B24	Input	LVDS	אטט	Dilletetiliai	Data Hegative	000
D_CN(9)	A21						
D_CN(10)	A27						
D_CN(11)	C29						
D_CN(12)	A26						
D_CN(13)	C25						
D_CN(14)	A29						
D_CN(15)	C30						

PIN				DATA	INTERNAL		TRACE
NAME	NO.	TYPE ⁽²⁾	SIGNAL	RATE ⁽⁶⁾	TERMINATION ⁽⁷⁾	DESCRIPTION ⁽¹⁾	LENGTH (mil ⁽⁸⁾)
D_CP(0)	J27						
D_CP(1)	A19	1					
D_CP(2)	H29	1					
D_CP(3)	K27						
D_CP(4)	K29]					
D_CP(5)	C22	1					
D_CP(6)	F27						
D_CP(7)	H30	Input	LVDS	DDR	Differential	Data positive	905
D_CP(8)	B25	Input	LVDS	DDK	Dillerential	Data positive	805
D_CP(9)	B21]					
D_CP(10)	B27	1					
D_CP(11)	C28	1					
D_CP(12)	A25	1					
D_CP(13)	C24						
D_CP(14)	A28	1					
D_CP(15)	B30	1					
D_DN(0)	V25						
D_DN(1)	V28	1					
D_DN(2)	T30						
D_DN(3)	V27]					
D_DN(4)	U30	1					
D_DN(5)	W23	1					
D_DN(6)	R27						
D_DN(7)	T28	Input	LVDS	DDR	Differential	Data negative	805
D_DN(8)	V20	Input	LVDS	DDK	Dillerential	Data negative	603
D_DN(9)	R28	1					
D_DN(10)	L27						
D_DN(11)	N28]					
D_DN(12)	M28]					
D_DN(13)	V18	1					
D_DN(14)	Z26						
D_DN(15)	Z28						

	Table 5-1. Pin Functions (continued)									
PIN		TVDE(2)	OLONIAL	DATA	INTERNAL	DECORIDE ION(1)	TRACE			
NAME	NO.	TYPE ⁽²⁾	SIGNAL	RATE ⁽⁶⁾	TERMINATION ⁽⁷⁾	DESCRIPTION ⁽¹⁾	LENGTH (mil ⁽⁸⁾)			
D_DP(0)	V24									
D_DP(1)	V29									
D_DP(2)	T29									
D_DP(3)	W27									
D_DP(4)	V30	1								
D_DP(5)	W24	1								
D_DP(6)	T27	1								
D_DP(7)	U28	Innut	LVDS	DDR	Differential	Data positivo	805			
D_DP(8)	V19	Input	LVDS	אטט	Dillerential	Data positive	603			
D_DP(9)	R29	1								
D_DP(10)	M27	1								
D_DP(11)	P28	1								
D_DP(12)	M29	1								
D_DP(13)	V17	1								
D_DP(14)	Z25	1								
D_DP(15)	Z27	1								
SCTRL_AN	G1	Input	LVDS	DDR	Differential	Serial control negative ⁽³⁾	805			
SCTRL_AP	F1	Input	LVDS	DDR	Differential	Serial control positive ⁽³⁾	805			
SCTRL_BN	V5	Input	LVDS	DDR	Differential	Serial control negative ⁽³⁾	805			
SCTRL_BP	V4	Input	LVDS	DDR	Differential	Serial control positive ⁽³⁾	805			
SCTRL_CN	C26	Input	LVDS	DDR	Differential	Serial control negative ⁽³⁾	805			
SCTRL_CP	C27	Input	LVDS	DDR	Differential	Serial control positive ⁽³⁾	805			
SCTRL_DN	P30	Input	LVDS	DDR	Differential	Serial control negative ⁽³⁾	805			
SCTRL_DP	R30	Input	LVDS	DDR	Differential	Serial control positive ⁽³⁾	805			
DCLK_AN	H2	Input	LVDS		Differential	Clock negative ⁽³⁾	805			
DCLK_AP	H1	Input	LVDS		Differential	Clock positive ⁽³⁾	805			
DCLK_BN	V6	Input	LVDS		Differential	Clock negative ⁽³⁾	805			
DCLK_BP	V7	Input	LVDS		Differential	Clock positive ⁽³⁾	805			
DCLK_CN	D27	Input	LVDS		Differential	Clock negative ⁽³⁾	805			
DCLK_CP	E27	Input	LVDS		Differential	Clock positive ⁽³⁾	805			
DCLK_DN	N29	Input	LVDS		Differential	Clock negative ⁽³⁾	805			
DCLK_DP	N30	Input	LVDS		Differential	Clock positive ⁽³⁾	805			
SCPCLK	A10	Input	LVCMOS		Pull down	Serial communications port clock. Active only when SCPENZ is logic low ⁽³⁾				
SCPDI	A12	Input	LVCMOS	SDR	Pull down	Serial communications port data input. Synchronous to SCPCLK rising edge ⁽³⁾				
SCPENZ	C10	Input	LVCMOS		Pull down	Serial communications port enable active low ⁽³⁾				
SCPDO	A11	Output	LVCMOS	SDR		Serial communications port output				

PIN				DATA	INTERNAL		TRACE
NAME	NO.	TYPE ⁽²⁾	SIGNAL	RATE ⁽⁶⁾	TERMINATION ⁽⁷⁾	DESCRIPTION ⁽¹⁾	LENGTH (mil ⁽⁸⁾)
RESET_ADDR(0)	Z13						
RESET_ADDR(W13		11/01/02		D !! !		
RESET_ADDR(2)	V10	Input	LVCMOS	LVCMOS Pull down		Reset driver address select ⁽³⁾	
RESET_ADDR(W14						
RESET_MOD E(0)	W9					Reset driver mode select ⁽³⁾	
RESET_SEL(0)	V14	Input	LVCMOS		Pull down	Reset driver level select ⁽³⁾	
RESET_SEL(1)	Z8					Reset driver level select.(3)	
RESET_STRO BE	Z 9	Input	LVCMOS		Pull down	Rising edge latches in RESET_ADDR, RESET_MODE, & RESET_SEL.(3)	
PWRDNZ	A8	Input	LVCMOS		Pull down	Active low device reset.(3)	
RESET_OEZ	W15	Input	LVCMOS		Pull up	Active low output enable for internal reset driver circuits. (3)	
RESET_IRQZ	V16	Output	LVCMOS			Active low output interrupt to DLP controller	
EN_OFFSET	C9	Output	LVCMOS			Active high enable for external V _{OFFSET} regulator	
PG_OFFSET	A9	Input	LVCMOS		Pull up	Active low fault from external V _{OFFSET} regulator ⁽³⁾	
TEMP_N	B18	Input	Analog			Temperature sensor diode cathode	
TEMP_P	B17	Input	Analog			Temperature sensor diode anode	
RESERVED **MUST VERIFY WITH SRC DATA SHEET	D12, D13, D14, D15, D16, D17, D18, D19, U12, U13, U14, U15	NC	Analog		Pull Down Do not connect on DLP sy board. No connect. No ele connections from CMOS b pad to package pin.		
No Connect	U16, U17, U18, U19	NC				No connect. No electrical connection from CMOS bond pad to package pin	
RESERVED_B A	W11						
RESERVED_B B	B11	Output	LVCMOS			Do not connect on DLP system	
RESERVED_B C	Z20	Output	LVOIVIOO			board.	
RESERVED_B D	C18						
RESERVED_P FE	A18	Input	LVCMOS		Pull down	Do not connect on DLP system	
RESERVED_T M	C8	put	2.0000		. an actiff	board.	

PIN					INTERNAL		TRACE
NAME	NO.	TYPE ⁽²⁾	SIGNAL	RATE ⁽⁶⁾	TERMINATION ⁽⁷⁾	DESCRIPTION ⁽¹⁾	LENGTH (mil ⁽⁸⁾)
RESERVED_T P0	Z19						
RESERVED_T P1	W20	Input	Analog			Do not connect on DLP system board.	
RESERVED_T P2	W19						
V _{BIAS} (4)	C15, C16, V11, V12	Power	Analog			Supply voltage for positive bias level of micromirror reset signal	
V _{RESET} (4)	G4, H4, J1, K1	Power	Analog			Supply voltage for negative reset level of micromirror reset signal	
V _{OFFSET} (4)	A30, B2, M30, Z1, Z30	Power	Analog			Supply voltage for HVCMOS logic. Supply voltage for positive offset level of micromirror reset signal. Supply voltage for stepped high voltage at micromirror address electrodes	
V _{CC} ⁽⁴⁾	A24, A7, B10, B13, B16, B19, B22, B28, B5, C17, C20, D4, J29, K2, L29, M2, V13, V15, V22, W17, W21, W26, W29, W3, Z18, Z23, Z29, Z7	Power	Analog			Supply voltage for LVCMOS core. Supply voltage for positive offset level of micromirror reset signal during power down. Supply voltage for normal high level at micromirror address electrodes	

PIN		(2)		DATA	INTERNAL		TRACE	
NAME	NO.	TYPE ⁽²⁾	SIGNAL	RATE ⁽⁶⁾	TERMINATION ⁽⁷⁾	DESCRIPTION ⁽¹⁾	LENGTH (mil ⁽⁸⁾)	
V _{SS} ⁽⁵⁾	A13, A22, A23, B12, B14, B15, B20, B23, B26, B29, B3, B6, B9, C19, C21, C5, D2, G2, J28, K3, L28, L30, M3, P27, P29, U29, V21, V23, V26, W12, W16, W18, W2, W22, W25, W28, W30, W5, W8, Z21, Z22, Z24	Ground				Device ground. Common return for all power.		

- (1) The DLP500YX DMD is a component of a DLP chipset. Reliable function and operation of the DLP500YX DMD requires that it be used in conjunction with the other components of the applicable DLP chipset, including those components that contain or implement TI DMD control technology. TI DMD control technology is the TI technology and devices for operating or controlling a DLP DMD.
- (2) I = Input, O = Output, P = Power, G = Ground, NC = No connect
- (3) These signals are very sensitive to noise or intermittent power connections, which can cause irreversible DMD micromirror array damage or, to a lesser extent, image disruption. Consider this precaution during DMD board design and manufacturer handling of the DMD sub-assemblies.
- (4) The following power supplies are required to operate the DMD: V_{CC}, V_{OFFSET}, V_{BIAS}, and V_{RESET}.
- (5) V_{SS} must be connected for proper DMD operation.
- (6) DDR = Double Data Rate, SDR = Single Data Rate. Refer to the Timing Requirements for specifications and relationships.
- (7) Internal term = CMOS level internal termination. Refer to Recommended Operating Conditions for differential termination specification.
- (8) Dielectric Constant for the DMD FXK (S410) ceramic package is approximately 9.c. For the package trace lengths shown: Propagation Speed = 11.8 sqrt (9.60 = 3.808 in/ns. Propagation Delay = 0.262 ns/in = 262 ps/in = 10.315 ps/mm.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

	,	MIN	MAX	UNIT
SUPPLY VOLTAGES				
V _{CC}	Supply voltage for LVCMOS core logic ⁽²⁾	-0.5	2.3	V
V _{OFFSET}	Supply voltage for HVCMOS and micromirror electrode ^{(2) (3)}	-0.5	11	V
V _{BIAS}	Supply voltage for micromirror electrode ⁽²⁾	-0.5	19	V
V _{RESET}	Supply voltage for micromirror electrode ⁽²⁾	-15	-0.3	V
V _{BIAS} – V _{OFFSET}	Supply voltage difference (absolute value) ⁽⁴⁾		11	V
V _{BIAS} – V _{RESET}	Supply voltage difference (absolute value) ⁽⁵⁾		34	V
INPUT VOLTAGES				
	Input voltage for all other LVCMOS input pins ⁽²⁾	-0.5	V _{CC} + 0.5	V
	Input voltage for all other LVDS input pins (2) (6)	-0.5	V _{CC} + 0.5	V
V _{ID}	Input differential voltage (absolute value) ⁽⁷⁾		500	mV
I _{ID}	Input differential current ⁽⁶⁾		6.3	mA
CLOCKS			-	
$f_{ exttt{CLOCK}}$	Clock frequency for LVDS interface, DCLK_A, DCLK_B, DCLK_C, DCLK_D		400	MHz
ENVIRONMENTAL				
T	Array temperature: operational ⁽⁸⁾	0	90	°C
T _{ARRAY} and T _{WINDOW}	Array temperature: non–operational ⁽⁸⁾	-40	90	°C
T _{DELTA}	Absolute temperature delta between any point on the window edge and the ceramic test point TP1 ⁽⁹⁾		30	°C
T _{DP}	Dew point temperature, operating and non-operating (non-condensing)		81	°C

- (1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
- (2) All voltages are referenced to common ground V_{SS}. V_{BIAS}, V_{CC}, V_{OFFSET}, and V_{RESET} power supplies are all required for proper DMD operation. V_{SS} must also be connected.
- (3) V_{OFFSET} supply transients must fall within specified voltages.
- (4) Exceeding the recommended allowable voltage difference between V_{BIAS} and V_{OFFSET} may result in excessive current draw.
- (5) Exceeding the recommended allowable voltage difference between V_{BIAS} and V_{RESET} may result in excessive current draw.
- (6) LVDS differential inputs must not exceed the specified limit or damage may result to the internal termination resistors.
- (7) This maximum LVDS input voltage rating applies when each input of a differential pair is at the same voltage potential.
- (8) The highest temperature of the active array (as calculated using Section 7.6) or of any location along the window edge as defined in Figure 7-2. The locations of thermal test points TP2, TP3, TP4, and TP5 in Figure 7-2 are intended to measure the highest window edge temperature. If a particular application causes another location on the window edge to be at a higher temperature, use that location
- (9) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in Figure 7-2. The window test points TP2, TP3, TP4, and TP5 shown in Figure 7-2 are intended to result in the worst case delta. If a particular application causes another location on the window edge to result in a larger delta temperature, use that location.

6.2 Storage Conditions

Applicable for the DMD as a component or non-operating in a system.

		MIN	MAX	UNIT
T_{DMD}	DMD storage temperature	-40	80	°C
T _{DP-AVG}	Average dew point temperature (non-condensing) (1)		28	°C
T _{DP-ELR}	Elevated dew point temperature range (non-condensing) (2)	28	36	°C
CT _{ELR}	Cumulative time in elevated dew point temperature range		24	Months

- (1) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.
- (2) Limit the exposure to dew point temperatures in the elevated range during storage and operation to less than a total cumulative time of CT_{ELR}.

6.3 ESD Ratings

			VALUE	UNIT
	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V _(ESD)	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in this data sheet is achieved when operating the device within the limits defined by this table. No level of performance is implied when operating the device above or below these limits.

		MIN	NOM	MAX	UNIT
VOLTAGE SUPPLY				•	
V _{CC}	LVCMOS logic supply voltage ⁽¹⁾	1.65	1.8	1.95	V
V _{OFFSET}	Mirror electrode and HVCMOS voltage ^{(1) (2)}	9.5	10	10.5	V
V _{BIAS}	Mirror electrode voltage ⁽¹⁾	17.5	18	18.5	V
V _{RESET}	Mirror electrode voltage ⁽¹⁾	-14.5	-14	-13.5	V
V _{BIAS} – V _{OFFSET}	Supply voltage difference (absolute value) ⁽³⁾			10.5	V
V _{BIAS} – V _{RESET}	Supply voltage difference (absolute value) ⁽⁴⁾			33	V
LVCMOS INTERFACE					
V _{IH(DC)}	DC input high voltage ⁽⁵⁾	0.7 × V _{CC}		V _{CC} + 0.3	V
V _{IL(DC)}	DC input low voltage ⁽⁵⁾	-0.3		0.3 × V _{CC}	V
V _{IH(AC)}	AC input high voltage ⁽⁵⁾	0.8 × V _{CC}		V _{CC} + 0.3	V
V _{IL(AC)}	AC input low voltage ⁽⁵⁾	-0.3		0.2 × V _{CC}	V
t _{PWRDNZ}	PWRDNZ pulse duration ⁽⁶⁾	10			ns
SCP INTERFACE					
f _{SCPCLK}	SCP clock frequency ⁽⁷⁾			500	kHz
t _{SCP_PD}	Propagation delay, clock to Q, from rising-edge of SCPCLK to valid $\mathrm{SCPDO}^{(8)}$	0		900	ns
t _{SCP_NEG_ENZ}	Time between falling-edge of SCPENZ and the first rising-edge of SCPCLK	1			μs
t _{SCP_POS_ENZ}	Time between falling-edge of SCPCLK and the rising-edge of SCPENZ	1			μs
t _{SCP_DS}	SCPDI clock setup time (before SCPCLK falling edge) ⁽⁸⁾	800			ns
t _{SCP_DH}	SCPDI hold time (after SCPCLK falling edge) ⁽⁸⁾	900			ns
t _{SCP_PW_ENZ}	SCPENZ inactive pulse duration (high level)	2			μs
LVDS INTERFACE				<u>'</u>	
fclock	Clock frequency for LVDS interface (all channels), DCLK ⁽⁹⁾			400	MHz

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

6.4 Recommended Operating Conditions (continued)

Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in this data sheet is achieved when operating the device within the limits defined by this table. No level of performance is implied when operating the device above or below these limits.

· ·	and a device above of bolow alone infinite.	MIN	NOM	MAX	UNIT
V _{ID}	Input differential voltage (absolute value) ⁽¹⁰⁾	150	300	440	mV
V _{CM}	Common mode voltage ⁽¹⁰⁾	1100	1200	1300	mV
V _{LVDS}	LVDS voltage ⁽¹⁰⁾	880		1520	mV
t _{LVDS_RSTZ}	Time required for LVDS receivers to recover from PWRDNZ			2000	ns
Z _{IN}	Internal differential termination resistance	80	100	120	Ω
Z _{LINE}	Line differential impedance (PWB/trace)	90	100	110	Ω
ENVIRONMENTAL					
т	Array temperature, long–term operational ⁽¹¹⁾ (12) (13) (14)	10	4	40 to 70 ⁽¹³⁾	°C
T _{ARRAY}	Array temperature, short–term operational ⁽¹²⁾ (15)	0		10	°C
T _{WINDOW}	Window temperature – operational ⁽¹⁶⁾			85	°C
T _{DELTA}	Absolute temperature delta between any point on the window edge and the ceramic test point TP1 ⁽¹⁶⁾ (17)			14	°C
T _{DP-AVG}	Average dew point temperature (non-condensing) ⁽¹⁸⁾			28	°C
T _{DP-ELR}	Elevated dew point temperature range (non-condensing) ⁽¹⁹⁾	28		36	°C
CT _{ELR}	Cumulative time in elevated dew point temperature range			24	Months
ILL _θ	Illumination marginal ray angle ⁽²⁰⁾			55	deg
For Illumination Sou	urce Between 420 nm and 700 nm				
ILL _{VIS}	Illumination power density on array ⁽²¹⁾			31	W/cm ²
ILL _{VISTP}	Illumination total power on array			22	W
For Illumination Sou	urce <420 nm and >700 nm				
ILL _{IR}	Illumination wavelengths > 700 nm			10	mW/cm ²
ILL _{UV}	Illumination wavelengths < 420 nm ⁽¹¹⁾			10	mW/cm ²

- (1) All voltages are referenced to common ground V_{SS}. V_{BIAS}, V_{CC}, V_{OFFSET}, and V_{RESET} power supplies are all required for proper DMD operation. V_{SS} must also be connected.
- (2) V_{OFFSET} supply transients must fall within specified max voltages.
- (3) To prevent excess current, the supply voltage difference |V_{BIAS} V_{OFFSET}| must be less than the specified limit. See Section 9, Figure 9-1, and Table 9-1.
- (4) To prevent excess current, the supply voltage difference |V_{BIAS} V_{RESET}| must be less than the specified limit. See Section 9 , Figure 9-1, and Table 9-1.
- (5) Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC Standard No. 209B, "Low-Power Double Data Rate (LPDDR)" JESD209B. Tester conditions for V_{IH} and V_{IL}.
 - Frequency = 60 MHz. Maximum rise time = 2.5 ns at 20/80
 - Frequency = 60 MHz. Maximum fall time = 2.5 ns at 80/20
- (6) PWRDNZ input pin resets the SCP and disables the LVDS receivers. PWRDNZ input pin overrides SCPENZ input pin and tristates the SCPDO output pin.
- (7) The SCP clock is a gated clock. Duty cycle must be 50% ± 10%. SCP parameter is related to the frequency of DCLK.
- (8) See Figure 6-2.
- (9) See LVDS timing requirements in Section 6.8 and Figure 6-6.
- (10) See LVDS waveform requirements in Figure 6-5.
- (11) Simultaneous exposure of the DMD to the maximum Section 6.4 for temperature and UV illumination reduces device lifetime.
- (12) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1 (TP1) shown in Figure 7-2 and the package thermal resistance Section 7.6.
- (13) Per Figure 6-1, the maximum operational array temperature must be derated based on the micromirror landed duty cycle that the DMD experiences in the end application. See Section 7.7 for a definition of micromirror landed duty cycle.
- (14) Long-term is defined as the usable life of the device.
- (15) Array temperatures beyond those specified as long-term are recommended for short-term conditions only (power-up). Short-term is defined as the cumulative time over the usable life of the device and is less than 500 hours.
- (16) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in Figure 7-2. The window test points TP2, TP3, TP4, and TP5 shown in Figure 7-2 are intended to result in the worst case delta temperature. If a particular application causes another location on the window edge to result in a larger delta in temperature, use that location.

- (17) DMD is qualified at the maximum temperature specified. Operation of the DMD outside of these limits has not been tested.
- (18) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.
- (19) Limit exposure to dew point temperatures in the elevated range during storage and operation to less than a total cumulative time of CT_{ELR}.
- (20) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including the pond of micromirrors (POM), cannot exceed 55 degrees from the normal to the device array plane. The device window aperture has not necessarily been designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance has not been tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array (including POM) contributes to thermal limitations described in this document, and may negatively affect lifetime.
- (21) The maximum optical power that can be incident on the DMD is limited by the maximum optical power density and the micromirror array temperature.

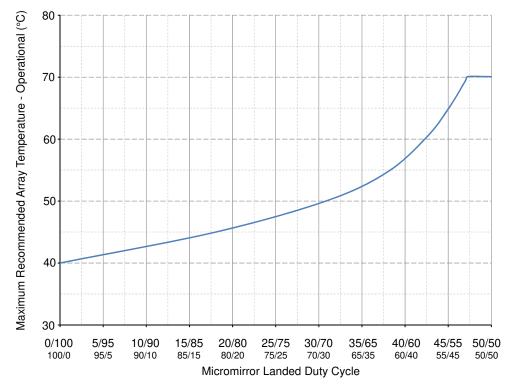


Figure 6-1. Maximum Recommended Array Temperature—Derating Curve

6.5 Thermal Information

	DLP500YX	
THERMAL METRIC	FXK Package	UNIT
	257 PINS	
Thermal resistance, active area to test point 1 (TP1) ⁽¹⁾	0.90	°C/W

(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of maintaining the package within the temperature range specified in the Section 6.4.

The total heat load on the DMD is largely driven by the incident light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array.

Optical systems must be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.

6.6 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
OUTPUT VO	DLTAGES		'	,	
V _{OH}	High level output voltage	V _{CC} = 1.8 V, I _{OH} = -2 mA	0.8 x V _{CC}		V
V _{OL}	Low level output voltage	V _{CC} = 1.95 V, I _{OL} = 2 mA		0.2 x V _{CC}	V
CURRENTS					
l _{OZ}	High impedance output current	V _{CC} = 1.95 V	-40	25	μA
I _{IL}	Low level input current	V _{CC} = 1.95 V, V _I = 0	-1		μA
I _{IH}	High level input current (1)	V _{CC} = 1.95 V, V _I = V _{CC}		110	μΑ
I _{cc}	Supply current V _{CC}	V _{CC} = 1.95 V		1500	mA
I _{OFFSET}	Supply current V _{OFFSET} (2)	V _{OFFSET} = 10.5 V		13	mA
I _{BIAS}	Supply current V _{BIAS} (2) (3)	V _{BIAS} = 18.5 V		4	mA
I _{RESET}	Supply current V _{RESET} (3)	V _{RESET} = -14.5 V		-9	mA
SUPPLY PO	WER				
P _{CC}	Supply power dissipation V _{CC}	V _{CC} = 1.95 V		2925	mW
P _{OFFSET}	Supply power dissipation V _{OFFSET} ⁽²⁾	V _{OFFSET} = 10.5 V		139	mW
P _{BIAS}	Supply power dissipation V _{BIAS} (2) (3)	V _{BIAS} = 18.5 V		67	mW
P _{RESET}	Supply power dissipation V _{RESET} ⁽³⁾	V _{RESET} = -14.5 V		131	mW
P _{TOTAL}	Supply power dissipation V _{TOTAL}			3261	mW

- (1) Applies to LVCMOS pins only. Excludes LVDS pins and MBRST (15:0) pins.
- (2) To prevent excess current, the supply voltage difference |V_{BIAS} V_{OFFSET}| must be less than the specified limits listed in the Section 6.4 table.
- (3) To prevent excess current, the supply voltage difference |V_{BIAS} V_{RESET}| must be less than specified limit in Section 6.4.

6.7 Capacitance at Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{I_lvds}	LVDS input capacitance 2xLVDS	f = 1 MHz			20	pF
C _{I_nonlvds}	Non-LVDS input capacitance	f = 1 MHz			20	pF
C _{I_tdiode}	Temperature diode input capacitance	f = 1 MHz			30	pF
Co	Output capacitance	f = 1 MHz			20	pF

6.8 Timing Requirements

			MIN	NOM	MAX	UNIT
SCP IN	TERFACE ⁽¹⁾					
t _r	Rise time	20% to 80% reference points	1		3	V/ns
t _f	Fall time	80% to 20% reference points	1		3	V/ns
LVDS IN	NTERFACE ⁽²⁾					
t _r	Rise slew rate	20% to 80% reference points	0.7	1		V/ns
t _f	Fall slew rate	80% to 20% reference points	0.7	1		V/ns
		DCLK_A, LVDS pair	2.5	-		ns
	Clock cycle	DCLK_B, LVDS pair	2.5			ns
t _C	Clock cycle	DCLK_C, LVDS pair	2.5			ns
		DCLK_D, LVDS pair	2.5			ns
		DCLK_A, LVDS pair	1.19	1.25		ns
	Dulco duration	DCLK_B, LVDS pair	1.19	1.25		ns
t _W	Pulse duration	DCLK_C, LVDS pair	1.19	1.25		ns
		DCLK_D, LVDS pair	1.19	1.25		ns
		D_A(15:0) before DCLK_A, LVDS pair	0.275			ns
		D_B(15:0) before DCLK_B, LVDS pair	0.275	-		ns
		D_C(15:0) before DCLK_C, LVDS pair	0.275	-		ns
	Setup time	D_D(15:0) before DCLK_D, LVDS pair	0.275			ns
t _{Su}	Setup time	SCTRL_A before DCLK_A, LVDS pair	0.275			ns
		SCTRL_B before DCLK_B, LVDS pair	0.275			ns
		SCTRL_C before DCLK_C, LVDS pair	0.275	-		ns
		SCTRL_D before DCLK_D, LVDS pair	0.275	-		ns
		D_A(15:0) after DCLK_A, LVDS pair	0.195			ns
		D_B(15:0) after DCLK_B, LVDS pair	0.195			ns
		D_C(15:0) after DCLK_C, LVDS pair	0.195			ns
	Llaid time	D_D(15:0) after DCLK_D, LVDS pair	0.195	-		ns
t _h	Hold time	SCTRL_A after DCLK_A, LVDS pair	0.195	-		ns
		SCTRL_B after DCLK_B, LVDS pair	0.195			ns
		SCTRL_C after DCLK_C, LVDS pair	0.195			ns
		SCTRL_D after DCLK_D, LVDS pair	0.195			ns
t _{SKEW}	Skew time	Channel B relative to channel A (3) (4)	-1.25		1.25	ns
t _{SKEW}	Skew time	Channel D relative to channel C ⁽⁵⁾ (6), LVDS pair	-1.25		1.25	ns

- (1) See Figure 6-3 for rise time and fall time for SCP.
- (2) See Figure 6-5 for timing requirements for LVDS.
- (3) Channel A (Bus A) includes the following LVDS pairs: DCLK_AN and DCLK_AP, SCTRL_AN and SCTRL_AP, D_AN(15:0) and D_AP(15:0).
- (4) Channel B (Bus B) includes the following LVDS pairs: DCLK_BN and DCLK_BP, SCTRL_BN and SCTRL_BP, D_BN(15:0) and D_BP(15:0).
- (5) Channel C (Bus C) includes the following LVDS pairs: DCLK_CN and DCLK_CP, SCTRL_CN and SCTRL_CP, D_CN(15:0) and D_CP(15:0).
- (6) Channel D (Bus D) includes the following LVDS pairs: DCLK_DN and DCLK_DP, SCTRL_DN and SCTRL_DP, D_DN(15:0) and D_DP(15:0).

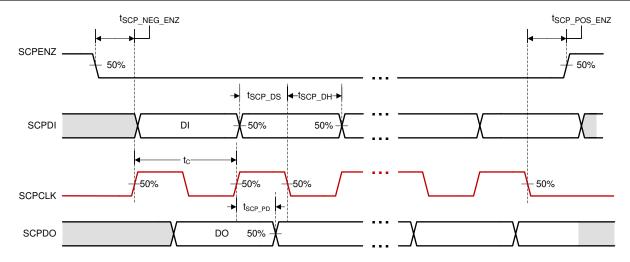


Figure 6-2. SCP Timing Requirements

- A. See Section 6.4 for f_{SCPCLK}, t_{SCP_DS}, t_{SCP_DH} and t_{SCP_PD} specifications.
- B. SCPCLK falling-edge capture for SCPDI.
- C. SCPCLK rising-edge launch for SCPDO.
- D. See Equation 1

$$f_{SCPCLK} = \frac{1}{t_C}$$

(1)

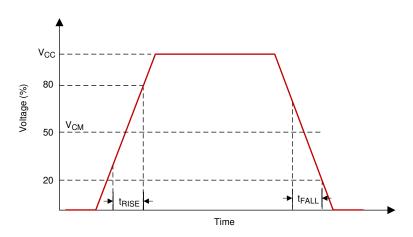


Figure 6-3. SCP Requirements for Rise and Fall

See Section 6.8 for t_r and t_f specifications and conditions.

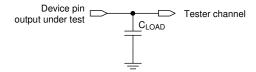
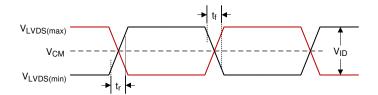



Figure 6-4. Test Load Circuit for Output Propagation Measurement

For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. System designers must use IBIS or other simulation tools to correlate the timing reference load to a system environment.

(3)

A. See Equation 2 and Equation 3

Figure 6-5. LVDS Waveform Requirements

$$V_{LVDS (max)} = V_{CM (max)} + \left| \frac{1}{2} \times V_{ID (max)} \right|$$
(2)

$$V_{LVDS (min)} = V_{CM (min)} - \left| \frac{1}{2} \times V_{ID (max)} \right|$$

See Section 6.4 for V_{CM} , V_{ID} , and V_{LVDS} specifications and conditions.

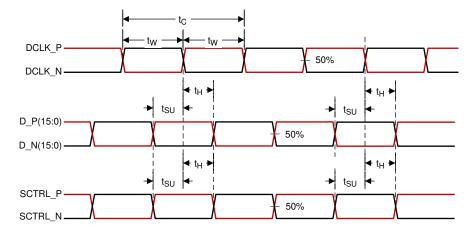


Figure 6-6. Timing Requirements

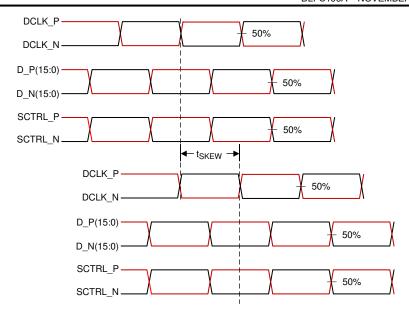


Figure 6-7. LVDS Interface Channel Skew Definition

See Section 6.8 for timing requirements and LVDS pairs per channel (bus) defining D P(15:0) and D N(15:0).

6.9 Typical Characteristics

When the DMD is controlled by the DLPC900, the digital controller has four modes of operation:

- A. Video mode
- B. Video pattern mode
- C. Pre-stored pattern mode
- D. Pattern on-the-fly mode

In video mode (A), the 24-bit frames displayed on the DMD are the same as the input 24-bit video frame rates. In video pattern mode (B), the V_{SYNC} rates displayed on the DMD are linked to the incoming video source V_{SYNC} rates but the overall pattern rates depend upon the configured bit depth. In modes B, C, and D, the pattern rates depend on the bit depth as shown in Table 6-1.

Table 6-1. DLP500YX Pattern Rate versus Bit Depth using DLPC900

BIT DEPTH	VIDEO PATTERN MODE (Hz)	PRE-STORED or PATTERN ON-THE-FLY MODE (Hz)
1	2880	16129
2	1440	5434
3	960	3717
4	720	2183
5	480	1466
6	480	1239
7	360	923
8	247	441
10		96
12		24
14		6
16		1

6.10 System Mounting Interface Loads

Table 6-2. System Mounting Interface Loads

PARAMETER	MIN	NOM	MAX	UNIT		
When loads are applied to the electrical and thermal interface areas						
Maximum load to be applied to the electrical interface area ⁽¹⁾			111	N		
Maximum load to be applied to the thermal interface area ⁽¹⁾			111	N		
When loads are applied to only the electrical interface area						
Maximum load to be applied to the electrical interface area ⁽¹⁾			222	N		
Maximum load to be applied to the thermal interface area ⁽¹⁾			0	N		

(1) Apply the load uniformly in the corresponding areas shown in Figure 6-8.

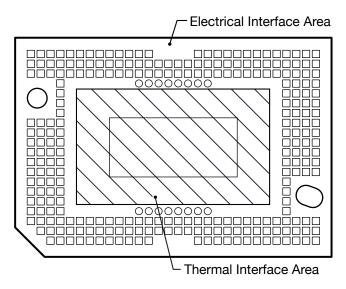


Figure 6-8. System Mounting Interface Loads

6.11 Micromirror Array Physical Characteristics

Table 6-3. Micromirror Array Physical Characteristics

PARAMETER DESCRIPTION			UNIT
Number of active columns ⁽¹⁾	M	2048	micromirrors
Number of active rows ⁽¹⁾	N	1200	micromirrors
Micromirror (pixel) pitch ⁽¹⁾	P	5.4	μm
Micromirror active array width ⁽¹⁾	Micromirror Pitch × number of active columns	11.0592	mm
Micromirror active array height ⁽¹⁾	Micromirror Pitch × number of active rows	6.4800	mm
Micromirror active border (All four sides) (2)	Pond of micromirrors (POM)	20	micromirrors/side

⁽¹⁾ See Figure 6-9

(2) The structure and qualities of the border around the active array includes a band of partially functional micromirrors referred to as the pond of micromirrors (POM). These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state but still require an electrical bias to tilt toward the OFF state.

Product Folder Links: DLP500YX

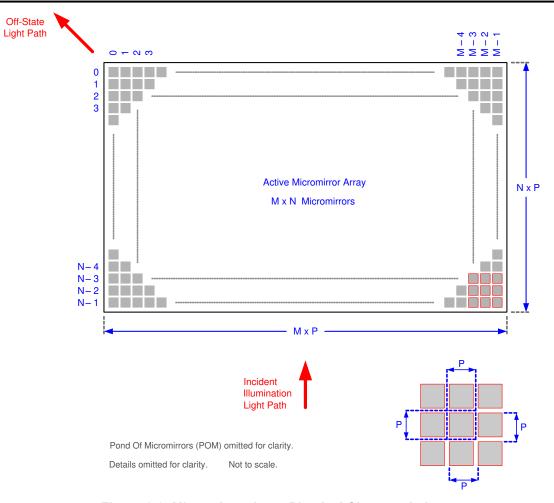


Figure 6-9. Micromirror Array Physical Characteristics

Refer to Section 6.11 table for M, N, and P specifications.

6.12 Micromirror Array Optical Characteristics

Table 6-4. Micromirror Array Optical Characteristics

, , , , , , , , , , , , , , , , , , ,							
PARAMETER	TEST CONDITION	MIN	NOM	MAX	UNIT		
Mirror tilt angle (1) (2) (3) (4)	Landed State	15.6	17.5	18.4	degrees		
Micromirror crossover time ⁽⁵⁾	Typical Performance		1	3			
Micromirror switching time ⁽⁶⁾	Typical Performance	6			- μs		
Number of out-of-specification	Adjacent micromirrors			0			
micromirrors ⁽⁷⁾	Non-Adjacent micromirrors			10	micromirrors		
DMD Photopic Efficiency ⁽⁸⁾	420 - 700 nm		65%				

- (1) Measured relative to the plane formed by the overall micromirror array
- (2) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different devices.
- (3) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result in colorimetry variations, system efficiency variations or system contrast variations.
- (4) When the micromirror array is landed (not parked), the tilt direction of each individual micromirror is dictated by the binary contents of the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in the ON State direction. A binary value of 0 results in a micromirror landing in the OFF State direction. See Figure 6-10.
- (5) The time required for a micromirror to nominally transition from one landed state to the opposite landed state.
- (6) The minimum time between successive transitions of a micromirror.
- (7) An out-of-specification micromirror is defined as a micromirror that is unable to transition between the two landed states within the specified MICROMIRROR SWITCHING Time.
- (8) Efficiency numbers assume 35-degree illumination angle, F/2.4 illumination and collection cones, uniform source spectrum, and uniform pupil illumination.
 - Window Transmission 94% (double Pass, Through Two Window Surfaces)
 - Micromirror Reflectivity 88%
 - Array Diffraction Efficiency 84% (@f/2.4)
 - · Array Fill Factor 93%

Efficiency numbers assume 100% electronic mirror duty cycle and do not include optical overfill loss. Note that this number is specified under conditions described above and deviations from the specified conditions could result in decreased efficiency.

Product Folder Links: DLP500YX

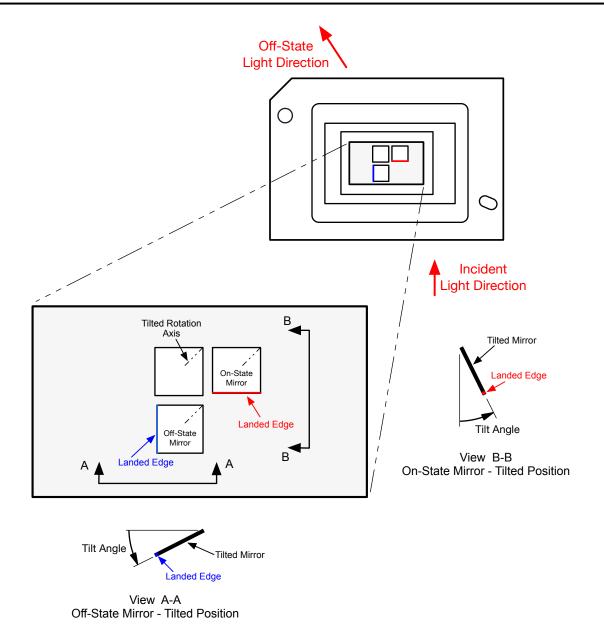


Figure 6-10. Micromirror Landed Orientation and Tilt

6.13 Window Characteristics

Table 6-5. DMD Window Characteristics

PARAMETER ⁽¹⁾	CONDITIONS	MIN	NOM	MAX	UNIT
Window material	Corning Eagle XG				
Window refractive index	at wavelength 546.1 nm		1.5119		
Window aperture	See Note (2)				
Illumination overfill	Refer to Section 7.5.3				
Window transmittance, single–pass through both surfaces and glass ⁽³⁾	Minimum within the wavelength range 420 nm to 680 nm. Applies to all angles 0° to 30° AOI.	97%			
	Average over the wavelength range 420 nm to 680 nm. Applies to all angles 30° to 45° AOI.	97%			

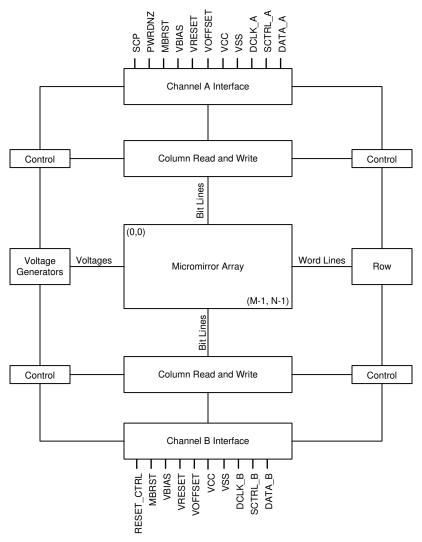
- (1) See Section 7.5 for more information.
- (2) For details on the size and location of the window aperture, see the Mechanical ICD in the Mechanical, Packaging, and Orderable Information section of this data sheet.
- (3) See the TI application report DLPA031, Wavelength Transmittance Considerations for DLP® DMD Window.

6.14 Chipset Component Usage Specification

Reliable function and operation of the DLP500YX DMD requires that it be used in conjunction with the other components of the applicable DLP chipset, including those components that contain or implement TI DMD control technology. TI DMD control technology consists of the TI technology and devices used for operating or controlling a DLP DMD.

Product Folder Links: DLP500YX

ивтії Document Feedback


7 Detailed Description

7.1 Overview

The DLP500YX DMD is a 0.50-inch diagonal spatial light modulator which consists of an array of highly reflective aluminum micromirrors. The DMD is an electrical input, optical output micro-electrical-mechanical system (MEMS). The electrical interface is low voltage differential signaling (LVDS). The DMD consists of a two-dimensional array of 1-bit CMOS memory cells. The array is organized in a grid of M memory cell columns by N memory cell rows. Refer to Section 7.2. The positive or negative deflection angle of the micromirrors can be individually controlled by changing the address voltage of underlying CMOS addressing circuitry and micromirror reset signals (MBRST).

The DMD is one part of a chipset comprising of the DLP500YX DMD and the DLPC900 Controller. To ensure reliable operation, the DLPC900 Controller must always be used to control the DLP500YX DMD.

7.2 Functional Block Diagram

Channels C and D not shown. For pin details on channels A, B, C, and D, refer to the *Pin Configurations and Functions* table and the LVDS interface section of *Section 6.8*.

Figure 7-1. Functional Block Diagram

7.3 Feature Description

7.3.1 Power Interface

The DMD requires 5 DC voltages: DMD_P3P3V, DMD_P1P8V, VOFFSET, VRESET, and VBIAS. DMD_P3P3V is a filtered version of the 3.3VDS supply received over the flex cables from the DLPC910 Controller Board. DMD_P3P3V is used on the DMD Board to create the other DMD voltages (DMD_P1P8V, VOFFSET, VRESET, and VBIAS) required for proper DMD operation. TI provides a DMD board reference design on TI.com to enable customers to see how these voltages are created as well and how the DMD board design is accomplished.

7.3.2 Timing

The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. Figure 6-4 shows an equivalent test load circuit for the output under test. Timing reference loads are not intended as a precise representation of any particular system environment or depiction of the actual load presented by a production test. System designers need to use IBIS or other simulation tools to correlate the timing reference load to a system environment. The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving.

7.4 Device Functional Modes

DMD functional modes are controlled by the DLPC900 controller. See the DLPC900 controller data sheet or contact a TI applications engineer.

7.5 Optical Interface and System Image Quality Considerations

Note

TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system operating conditions exceeding limits described previously.

TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical performance involves making trade-offs between numerous component and system design parameters. Optimizing system optical performance and image quality strongly relate to optical system design parameter trades. Although it is not possible to anticipate every conceivable application, the projected image quality and the optical performance are contingent on compliance to the optical system operating conditions described in the following sections.

7.5.1 Numerical Aperture and Stray Light Control

The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area needs to be the same. This angle cannot exceed the nominal device micromirror tilt angle unless appropriate apertures are added in the illumination and/or projection pupils to block out flat-state and stray light from the projection lens. The micromirror tilt angle defines DMD capability to separate the "ON" optical path from any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the micromirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination numerical aperture angle (and vice versa), contrast degradation, and objectionable artifacts in the display border and/or active area could occur.

7.5.2 Pupil Match

TI's optical and image quality specifications assume that the exit pupil of the illumination optics is nominally centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable artifacts in the display border or active area, which may require additional system apertures to control, especially if the numerical aperture of the system exceeds the pixel tilt angle.

7.5.3 Illumination Overfill

The active area of the device is surrounded by an aperture on the inside DMD window surface that masks structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating

conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window aperture opening and other surface anomalies that may be visible on the screen. Design the illumination optical system to limit light flux incident anywhere on the window aperture from exceeding approximately 10% of the average flux level in the active area. Depending on the particular system optical architecture, overfill light may have to be further reduced below the suggested 10% level in order to be acceptable.

7.6 Micromirror Array Temperature Calculation

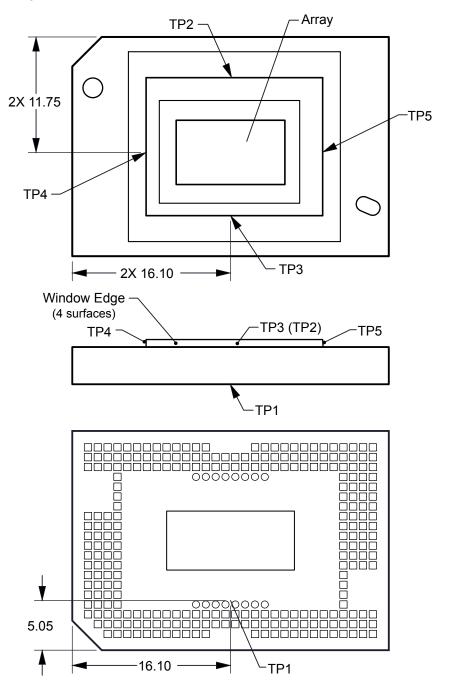


Figure 7-2. DMD Thermal Test Points

Micromirror array temperature can be computed analytically from measurement points on the outside of the package, the package thermal resistance, the electrical power, and the illumination heat load. The relationship between micromirror array temperature and the reference ceramic temperature is provided by the following equations:

$$T_{ARRAY} = T_{CERAMIC} + (Q_{ARRAY} \times R_{ARRAY-TO-CERAMIC})$$

$$Q_{ARRAY} = Q_{ELECTRICAL} + Q_{ILLUMINATION}$$

where

- T_{ARRAY} = Computed array temperature (°C)
- T_{CERAMIC} = Measured ceramic temperature (°C) (measured at TP1 location)
- R_{ARRAY-TO-CERAMIC} = Thermal resistance of package specified in Thermal Information from array to ceramic TP1 (°C/Watt)
- Q_{ARRAY} = Total DMD power on the array (W) (electrical + absorbed)
- Q_{ELECTRICAL} = Nominal electrical power (W)
- Q_{ILLUMINATION} = Illumination power absorbed (W)

The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating frequencies. A nominal electrical power dissipation to use when calculating array temperature is 3.26 W. The absorbed power from the illumination source is variable and depends on the operating state of the micromirrors and the intensity of the light source. The factors used in determining the illumination power absorbed is shown in each of the examples below. Examples are included where the optical power has been determined by measuring the illumination power density, total illumination power, and screen lumens. The examples assume illumination distribution is 83.7% on the active array and 16.3% on the area outside the array.

7.6.1 Micromirror Array Temperature Calculation using Illumination Power Density

The equations below are valid for each DMD in a single chip or multi-chip DMD system.

- Q_{ILLUMINATION} = (Q_{INCIDENT} × DMD average thermal absorptivity) (W)
- Q_{INCIDENT} = ILL_{DENSITY} × ILL_{AREA} (W)
- ILL_{DENSITY} = measured illumination optical power density at DMD (W/cm²)
- ILL_{AREA} = illumination area on DMD (cm²)
- DMD average thermal absorptivity = 0.40

```
Q_{\text{ELECTRICAL}} = 3.26 \text{ W}
Array \text{ size} = 11.0592 \text{ mm} \times 6.4800 \text{ mm} = 0.72 \text{ cm}^2
ILL_{\text{DENSITY}} = 31 \text{ W/cm}^2 \text{ (measured)}
T_{\text{CERAMIC}} = 50.0 \text{ °C (measured)}
ILL_{\text{AREA}} = 0.72 \text{ cm}^2 / (83.7\%) = 0.86 \text{ cm}^2
Q_{\text{INCIDENT}} = 31 \text{ W/cm}^2 \times 0.86 \text{ cm}^2 = 26.66 \text{ W}
Q_{\text{ARRAY}} = 3.26 \text{ W} + (0.40 \times 26.66 \text{ W}) = 13.92 \text{ W}
T_{\text{ARRAY}} = 50.0 \text{ °C} + (13.92 \text{ W} \times 0.90 \text{ °C/W}) = 62.53 \text{ °C}
```

7.6.2 Micromirror Array Temperature Calculation using Total Illumination Power

The equations below are valid for each DMD in a single chip or multi-chip DMD system.

- Q_{ILLUMINATION} = (Q_{INCIDENT} × DMD average thermal absorptivity) (W)
- Q_{INCIDENT} = measured total illumination optical power at DMD (W)

DMD average thermal absorptivity = 0.40

```
Q_{ELECTRICAL} = 3.26 \text{ W}

Q_{INCIDENT} = 26.66 \text{ W (measured)}

T_{CERAMIC} = 50.0 ^{\circ}\text{C (measured)}

Q_{ARRAY} = 3.26 \text{ W} + (0.40 \times 26.66 \text{ W}) = 13.92 \text{ W}

T_{ARRAY} = 50.0 ^{\circ}\text{C} + (13.92 \text{ W} \times 0.90 ^{\circ}\text{C/W}) = 62.53 ^{\circ}\text{C}
```

7.6.3 Micromirror Array Temperature Calculation using Screen Lumens

The equations below are valid for a single chip DMD system with spectral efficiency of 300 lumens/Watt.

- $Q_{ILLUMINATION} = SL \times C_{L2W} (W)$
- SL = measured ANSI screen lumens (Im)
- C_{L2W} = Conversion constant for screen lumens to power absorbed on DMD (Watts/Lumen)

```
Q_{ELECTRICAL} = 3.26 \text{ W}
C_{L2W} = 0.00266 \text{ W/Im}
SL = 4000 \text{ Im (measured)}
T_{CERAMIC} = 50.0 ^{\circ}\text{C (measured)}
Q_{ARRAY} = 3.26 \text{ W} + (0.00266 \text{ W/Im} \times 4000 \text{ Im}) = 13.9 \text{ W}
T_{ARRAY} = 50.0 ^{\circ}\text{C} + (13.9 \text{ W} \times 0.90 ^{\circ}\text{C/W}) = 62.51 ^{\circ}\text{C}
```

7.7 Micromirror Landed-On/Landed-Off Duty Cycle

7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle

The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a percentage) that an individual micromirror is landed in the ON state versus the amount of time the same micromirror is landed in the OFF state.

As an example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the ON state 100% of the time (and in the OFF state 0% of the time), whereas 0/100 would indicate that the pixel is in the OFF state 100% of the time. Likewise, 50/50 indicates that the pixel is ON for 50% of the time (and OFF for 50% of the time).

Note that when assessing the landed duty cycle, the time spent switching from one state (ON or OFF) to the other state (OFF or ON) is considered negligible and is thus ignored.

Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages) always add to 100.

7.7.2 Landed Duty Cycle and Useful Life of the DMD

Knowing the long-term average landed duty cycle (of the end product or application) is important because subjecting all (or a portion) of the DMD micromirror array (also called the active array) to an asymmetric landed duty cycle for a prolonged period of time can reduce the DMD usable life.

Note that it is the symmetry or asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly asymmetrical.

7.7.3 Landed Duty Cycle and Operational DMD Temperature

Operational DMD temperature and landed duty cycle interact to affect DMD usable life, and this interaction can be exploited to reduce the impact that an asymmetrical landed duty cycle has on the DMD usable life. This is quantified in the de-rating curve shown in Figure 6-1. The importance of this curve is that:

- · All points along this curve represent the same usable life.
- All points above this curve represent lower usable life (and the further away from the curve, the lower the usable life).
- All points below this curve represent higher usable life (and the further away from the curve, the higher the usable life).

In practice, this curve specifies the maximum operating DMD temperature at a given long-term average landed duty cycle.

7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application

During a given period of time, the landed duty cycle of a given pixel follows from the image content being displayed by that pixel.

For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel operates under a 100/0 landed duty cycle during that time period. Likewise, when displaying pure-black, the pixel operates under a 0/100 landed duty cycle.

If the use case involves inputting Grayscale input images, between the two extremes (ignoring for the moment color), the Landed Duty Cycle tracks one-to-one with the gray scale value, as shown in Table 7-1.

Table 7-1. Grayscale Value and Landed Duty Cycle

GRAYSCALE VALUE	LANDED DUTY CYCLE
0%	0/100
10%	10/90
20%	20/80
30%	30/70
40%	40/60
50%	50/50
60%	60/40
70%	70/30
80%	80/20
90%	90/10
100%	100/0

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from 0% to 100%) for each constituent primary color (red, green, or blue) for the given pixel as well as the color cycle time for each primary color, where "color cycle time" is the total percentage of the frame time that a given primary must be displayed in order to achieve the desired white point.

Use the following equation to calculate the landed duty cycle of a given pixel during a specified time period

Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) + (Blue_Cycle_% × Blue_Scale_Value)

where

- Red_Cycle_% represents the percentage of the frame time that red is displayed to achieve the desired white point
- Green_Cycle_% represents the percentage of the frame time that green is displayed to achieve the desired white point
- Blue_Cycle_% represents the percentage of the frame time that blue is displayed to achieve the desired white point

For example, assume that the red, green, and blue color cycle times are 50%, 20%, and 30% respectively (in order to achieve the desired white point), then the landed duty cycle for various combinations of red, green, and blue color intensities would be as shown in Table 7-2 and Table 7-3.

Table 7-2. Example Landed Duty Cycle for Full-Color, Color Percentage

CYCLE PERCENTAGE				
RED	GREEN BLUE			
50%	20%	30%		

Table 7-3. Example Landed Duty Cycle for Full-Color

SCALE VALUE			LANDED DUTY		
RED	GREEN	BLUE	CYCLE		
0%	0%	0%	0/100		
100%	0%	0%	50/50		
0%	100%	0%	20/80		
0%	0%	100%	30/70		
12%	0%	0%	6/94		
0%	35%	0%	7/93		
0%	0%	60%	18/82		
100%	100%	0%	70/30		
0%	100%	100%	50/50		
100%	0%	100%	80/20		
12%	35%	0%	13/87		
0%	35%	60%	25/75		
12%	0%	60%	24/76		
100%	100%	100%	100/0		

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The DMD is a spatial light modulator, which reflects incoming light from an illumination source to one of two directions, with the primary direction being into a projection or collection optic. Each application is derived primarily from the optical architecture of the system and the format of the data being used.

The DLP500YX DMD is controlled by two DLPC900 controllers. The DMD itself receives bit planes through a 2xLVDS input data bus and, when input control commands dictate, activates the controls which update the mechanical state of the DMD mirrors. In combination with the DLPC900 Controllers, the chipset enables four unique modes of system level operation:

- Video Mode 24 bit video signals presented to inputs of the DLPC900 Controllers appear on the DMD.
 The DMD mirrors are updated in a PWM fashion to construct the 24 bit video data. This mode is similar to standard DLP Display projector use cases.
- Video Pattern Mode the user can define periods of time for specific patterns to be displayed on the DMD. Those patterns are provided via the input video interface and are constrained to input video timing parameters. This mode is optimal for when the data to be presented is not known in advance of operation, or input data needs to be streamed or updated based on real-time processing conditions.
- Pre-stored Pattern Mode the user can define the patterns in advance and build the pattern data into an
 on-board flash memory. Upon power up, the DLPC900 controllers immediately start reading and displaying
 those patterns. This mode is typically used in applications where the patterns to be used are known in
 advance and the patterns can all fit in the external flash memory. This mode typically provides the fastest
 pattern update rates.
- Pattern-on-the-Fly Pattern Mode the user can download and update pattern data over the DLPC900 input USB data interface. This allows an external processor to modify and update patterns based on external processing decisions. This mode also provides streaming capability similar to the Video Pattern Mode except that the user would need to take into account delays involved with USB transmission of pattern data and control information.

The DLP500YX provides solutions for many varied applications including structured light (3-D machine vision), 3-D printing, information projection, and lithography.

The DLP500YX contains the most recent breakthrough micromirror technology called the TRP pixel. With a smaller pixel pitch of 5.4 µm and increased tilt angle of 17 degrees, TRP chipsets enable higher resolution in a smaller form factor while maintaining high optical efficiency. DLP chipsets are a great fit for any system that requires high resolution and high output projection imaging.

8.2 Typical Application

3D machine vision is a typical embedded system application for the DLP500YX DMD. In this application, two DLPC900 devices control the pattern data being imaged from a DLP500YX DMD onto the object being measured while an external camera system monitors the projected patterns as they appear on the object. An external microprocessor can then geometrically determine all 3D points of the object using the knowledge of the projected pattern provided to the object, the actual distorted pattern as captured by the camera, and the angle between the projector line-of-sight and the camera line-of-sight. This type of application diagram is shown in Figure 8-1. In this configuration, the DLPC900 controller supports a 24-bit parallel RGB video input from an external source computer or processor. The video input FPGA splits each 2048 x 1200 image frame into a left half and a right half with the left half feeding the Primary DLPC900 and the right half feeding the Secondary DLPC900. Each half consists of 1024 columns by 1200 rows plus any horizontal and vertical blanking at half the pixel clock rate. This system configuration supports still and motion video as well as sequential pattern modes.

Product Folder Links: DLP500YX

omit Document Feedback

For more information, refer to the DLPC900 digital controller data sheet, found on the DLPC900 Product Folder listed under Section 11.3.1.

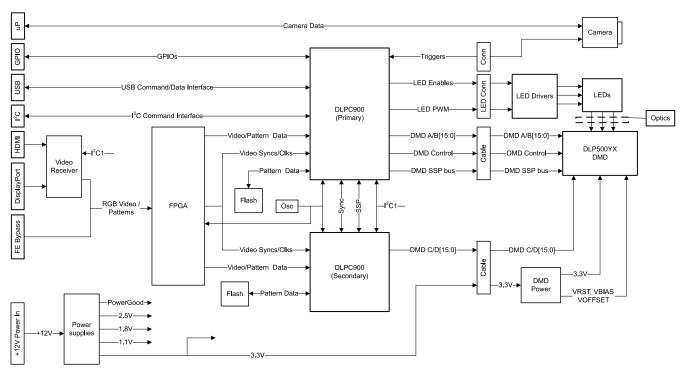
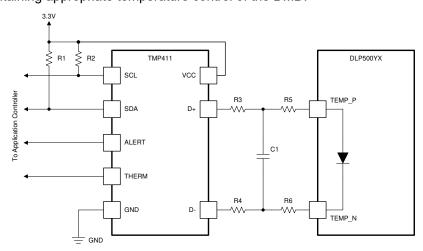


Figure 8-1. Typical DLP500YX Application Diagram

8.2.1 Design Requirements


At the high level, typical DLP500YX DMD systems include an illumination source (Lamp, LED, or Laser), an optical light engine containing both illumination and projection optics, mechanics, electronic components, power supplies, cooling systems, and software. The designer must first choose an illumination source and design the optical engine taking into consideration the optical relationship from the illumination source to the DMD, and from the DMD to the location of the projected image. The designer must then understand the electronic components of a DLP500YX DMD system, part of which includes one or more PCBs which contain the DMD and Controllers. In the TI DLP500YX based evaluation module design, the DLPC900 Controller board provides power, bit plane data, and control information to the DMD mounted on the DLP500YX DMD board. The DLPC900 Controller board also interfaces to the user system, accepting image data based on user provided timing (software or hardware triggered) and providing that data in bit plane format to the DMD to be projected on the imaging target.

8.2.2 Detailed Design Procedure

A TI evaluation module design exists which shows how to connect the DLPC900 controller to the DMD. In creating a new board specific to a customer application, layout guidelines need to be followed to achieve a functional and reliable projection system. To complete the system, an optical module or light engine is required that contains the DLP500YX DMD, associated illumination sources, optical elements, and necessary mechanical components. Care must be taken to understand and implement wise design decisions regarding the engineering aspects of illumination and projection optics, digital and analog electronics, software, and mechanical and thermal design principles.

8.3 DMD Die Temperature Sensing

The DMD features a built-in thermal diode that measures the temperature at one corner of the die outside the micromirror array. The DMD thermal diode pins B17 and B18 can be connected to the TMP411 temperature sensor as shown in Figure 8-2, and an external processor can interface with the TMP411 temperature sensor over I²C bus to allow monitoring of the DMD temperature. This temperature data can be leveraged to incorporate additional functionality in the overall system design such as adjusting illumination, fan speeds, and so forth, all with the idea of maintaining appropriate temperature control of the DMD.

- A. Details omitted for clarity, see the DLPLCR500YXEVM evaluation module design for connections.
- B. See the TMP411 datasheet for system board layout recommendation.
- C. See the TMP411 datasheet and the DLPLCR500YXEVM evaluation module design for suggested component values for R1, R2, R3, R4. and C1.
- D. R5 = 0 Ω . R6 = 0 Ω . Zero ohm resistors need to be located close to the DMD package pins.

Figure 8-2. TMP411 Sample Schematic

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

9 Power Supply Recommendations

The following power supplies are all required to operate the DMD:

- V_{SS}
- V_{BIAS}
- V_{CC}
- V_{OFFSET}
- V_{RESET}

DMD power-up and power-down sequencing is strictly controlled by the DLP® controller.

CAUTION

For reliable operation of the DMD, the following power supply sequencing requirements must be followed. Failure to adhere to any of the prescribed power-up and power-down requirements may affect device reliability. See Figure 9-1.

 V_{BIAS} , V_{CC} , V_{OFFSET} , and V_{RESET} power supplies must be coordinated during power-up and power-down operations. Failure to meet any of the below requirements results in a significant reduction in the DMD reliability and lifetime. Common ground V_{SS} must also be connected.

9.1 DMD Power Supply Power-Up Procedure

- During power-up, V_{CC} must always start and settle before V_{OFFSET} plus Delay1 specified in Table 9-1, V_{BIAS}, and V_{RESET} voltages are applied to the DMD.
- During power-up, it is a strict requirement that the voltage difference between V_{BIAS} and V_{OFFSET} must be within the specified limit shown in Section 6.4.
- During power-up, there is no requirement for the relative timing of V_{RESET} with respect to V_{BIAS}.
- Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the requirements specified in Section 6.1, in Section 6.4, and in Figure 9-1.
- During power-up, LVCMOS input pins must not be driven high until after V_{CC} have settled at operating voltages listed in Section 6.4.

9.2 DMD Power Supply Power-Down Procedure

- During power-down, V_{CC} must be supplied until after V_{BIAS}, V_{RESET}, and V_{OFFSET} are discharged to within the specified limit of ground. See Table 9-1.
- During power-down, it is a strict requirement that the voltage difference between V_{BIAS} and V_{OFFSET} must be within the specified limit shown in Section 6.4.
- During power-down, there is no requirement for the relative timing of V_{RESET} with respect to V_{BIAS}.
- Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the requirements specified in Section 6.1, in Section 6.4, and in Figure 9-1.
- During power-down, LVCMOS input pins must be less than specified in Section 6.4.

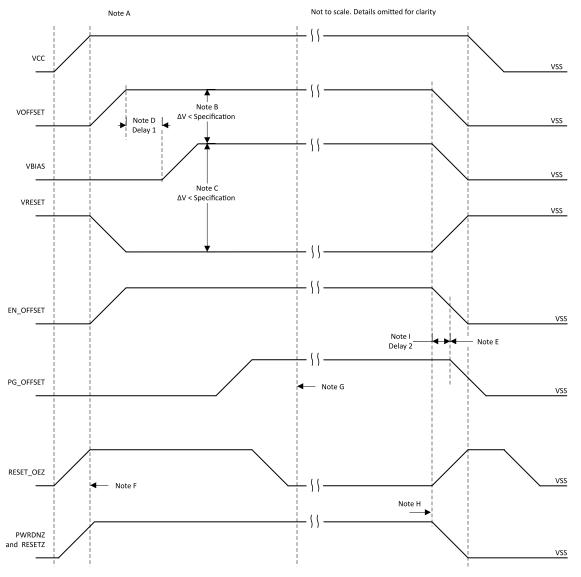


Figure 9-1. DMD Power Supply Requirements

- A. See Section 6.4, and the Pin Functions Table 5-1.
- B. To prevent excess current, the supply voltage difference |VOFFSET VBIAS| must be less than the specified limit in the Section 6.4
- C. To prevent excess current, the supply difference |VBIAS VRESET| must be less than the specified limit in the Section 6.4.
- D. VBIAS must power up after VOFFSET has powered up, per the Delay1 specification in Table 9-1.
- E. PG OFFSET must turn off after EN OFFSET has turned off, per the Delay2 specification in Table 9-1.
- F. DLP® controller software enables the DMD power supplies VBIAS, VRESET, VOFFSET with VCC active after RESET_OEZ is at logic high.
- G. DLP® controller software initiates the global VBIAS command.
- H. After the DMD micromirror park sequence is complete, the DLP® controller software initiates a hardware power-down that activates PWRDNZ and disables VBIAS, VRESET, and VOFFSET.
- I. Under power-loss conditions where emergency DMD micromirror park procedures are being enacted by the DLP® controller hardware, EN_OFFSET may turn off after PG_OFFSET has turned off. The OEZ signal goes high prior to PG_OFFSET turning off to indicate the DMD micromirror has completed the emergency park procedures.

Table 9-1. DMD Power-Supply Requirements

PARAMETER	DESCRIPTION	MIN	NOM	MAX	UNIT
Delay1	Delay from VOFFSET settled at recommended operating voltage to VBIAS power up	1	2		ms

Table 9-1. DMD Power-Supply Requirements (continued)

PARAMETER	DESCRIPTION	MIN	NOM	MAX	UNIT
Delay2	PG_OFFSET hold time after EN_OFFSET goes low	100			ns

9.3 Restrictions on Hot Plugging and Hot Swapping

The DLP500YX uses a state of the art pixel node which enables smaller optics, higher resolution, and overall great performance and reliability as long as certain design-for-assembly methods are used. To maximize DMD reliability, Hot Plugging and/or Hot Swapping DMDs voids the DMD warranty conditions and must be avoided at all times.

9.3.1 No Hot Plugging

Avoid hot plugging, the act of connecting the DMD to power supplies and/or data inputs which are already energized, to ensure maximum reliability of the DMD. Do not add or remove the DMD from a DMD socket unless all input power supplies of the DMD are at a potential equal to the local ground potential (VSS). This applies to a DMD incoming test station, a partially assembled product, a completed product under test, and a product in the field. This also applies to any cables, flex cables, or PCB connections which provide power to the DMD. Provide power as defined in the power-up scenario detailed in Section 9.1. Perform power down as defined in Section 9.2.

9.3.2 No Hot Swapping

Avoid hot swapping, the act of removing and replacing the DMD with DMD power supplies and/or data inputs which are already energized, to ensure maximum reliability of the DMD. Never add or remove the DMD from a DMD socket unless all input power supplies of the DMD are at a potential equal to the local ground potential (VSS). This applies to a DMD incoming test station, a partially assembled product, a completed product under test, and a product in the field. This also applies to any cables, flex cables, or PCB connections which provide power to the DMD. Provide power as defined in the power-up scenario detailed in Section 9.1. Perform power down as defined in Section 9.2

9.3.3 Intermittent or Voltage Power Spike Avoidance

When DMD power and/or data and clock inputs are energized, twisting of the DMD, DMD socket, or DMD board must be avoided when trying to align the DMD within an optical engine. This twisting motion can create power intermittences and/or voltage spikes exceeding input power and data specifications of the DMD which may ultimately affect the DMD reliability. PCB power/data/clock/control circuits must be de-energized before making or removing connections, including cables, connectors, probes and bed-of-nails connections.

PCB and System design considerations must take into account ways to prevent external influence of DMD input power clock, data and control signals. Robust connectors must be used which are resistant to intermittent connections or noise spikes if jostled or vibrated. Connectors must be used which are rated to exceed the number of insertion/removal cycles expected in the application. External electromagnetic emitters must not be placed nearby these sensitive circuits unless adequate EMI shielding is properly used. Sufficient bulk decoupling and component decoupling capacitance as well as appropriate PCB layout techniques must be available for all electrical components within the DMD based "system" such that ground bounce does not occur. See the section on Section 10.1 for more layout information.

10 Layout

10.1 Layout Guidelines

10.1.1 Critical Signal Guidelines

The DLP500YX DMD is one device in a chipset controlled by the DLPC900 Controller. The following guidelines are targeted at designing a functioning PCB using this DLP500YX DMD chipset. The DLP500YX DMD board must be a high-speed multi-layer PCB containing high-speed digital logic utilizing dual edge (DDR) LVDS signals at 400 MHz clock rates. Figure 10-1 shows the DLP500YX signals and the recommendations needed from/to the DLPC900 Controller devices. The DLPC900 device provides the data and control to the DMD. The TPS65145 and LP38513 devices supply power to the DMD.

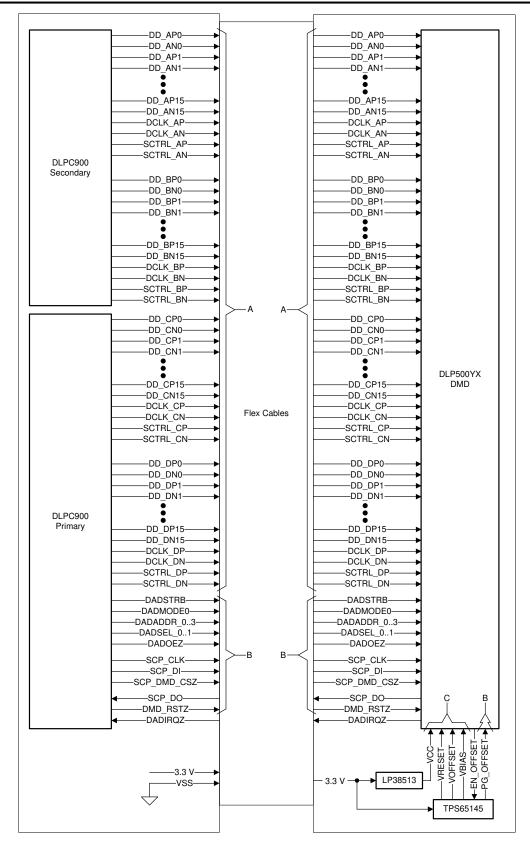


Figure 10-1. DLP500YX DMD System Connections and Layout Restrictions

Table 10-1. Layout Restriction Notes for Figure 10-1

Note	Signal Type	Guideline			
	Differential	Prevent signal noise			
		Route 100 ±10-Ω resistor			
		Intra-pair (P-to-N) length tolerance is ±12-mils			
Α		DD and SCTRL must be matched to the DCLK within ±150-mils			
A		DCLK_C must be matched to DCLK_D within ±1.25-ns			
		DCLK_A must be matched to DCLK_B within ±1.25-ns			
		Do not switch routing layers except at the beginning and end of trace			
		Signal routing length must not exceed 375-mm			
	Single-ended	Prevent signal noise			
В		Route single-ended signals 50 ±5-Ω			
		No length match requirement			
С	Power	VRESET, VOFFSET, VBIAS, and VCC at the DMD must be kept within the operating limits specified in the data sheet			
		Provide proper amount of decoupling capacitance for each voltage at the DMD			

10.1.2 Power Connection Guidelines

The following are recommendations for the power connections to the DMD or DMD PCB:

- Solid planes are **required** for DMD_P3P3V(3.3V), DMD_P1P8V and Ground.
- TI strongly recommends partial power planes are used for VOFFSET, VRESET, and VBIAS.
- VOFFSET, VBIAS, VRESET, VCC, and VCCI power rails must be kept within the specified operating range. This includes effects from ripple and DC error.
- To accommodate power supply transient current requirements, adequate decoupling capacitance must be
 placed as near the DMD VOFFSET, VBIAS, VRESET, VCC, and VCCI pins as possible.
- Do not swap DMDs while the DMD is still powered on (this is called hot swapping). All DMD power supply rails and signals must be 0 volts (not driven) before connecting or disconnecting the DMD physical interface.
- Do not allow power to be applied to the DMD when one or more signal pins are not being driven.
- Decoupling capacitor locations for the DMD must be as close as possible to the DMD. The pads of the capacitors must be connected to at least two or three vias to get a very low impedance to ground as shown in Figure 10-3. Furthermore, the capacitor must be in the flow of the power trace as it goes to the input of the DMD.
- It is extremely important to adhere to the Section 9.1 and Section 9.2 and do not allow the DMD power-supply levels to be outside of the recommended operating conditions specified in the DMD data sheet.

These figures show examples of bypass decoupling capacitor layout.

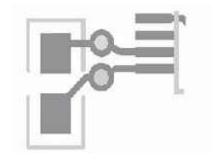


Figure 10-2. Poor Layout

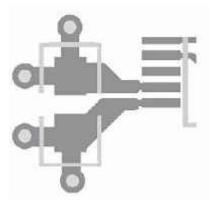


Figure 10-3. Good Layout

10.1.3 Noise Coupling Avoidance

During operation, it is critical to prevent the coupling of noise or intermittent power connections onto the following signals because *irreversible DMD micromirror array damage* or lesser effects of image disruption can occur:

- SCTRL DN, STRL DP
- · DCLK DN, DCLK DP
- SCPCLK
- SCPDI
- SCP DMD CSZ
- DADADDR 0, DADADDR1 1, DADADDR 2, DADADDR 3
- DADMODE0
- DADSEL_0, DADSEL_1, DADSEL_2, DADSEL_3
- DADSTRB
- DMD RSTZ
- DADOEZ
- PG_OFFSET

In this context, the following conditions are considered noise:

- · Shorting to another signal
- · Shorting to power
- · Shorting to ground
- Intermittent connection (includes hot swapping)
- · An electrical open condition
- · An electrical floating condition
- · Inducing electromagnetic interference that is strong enough to affect the integrity of the signals
- Unstable inputs (conditions outside of the specified operating range) to any of the device power rails
- · Voltage fluctuations on the device ground pins

10.2 Layout Example

10.2.1 Layers

The layer stack-up and copper weight for each layer is shown in Table 10-2. Small sub-planes are allowed on signal routing layers to connect components to major sub-planes on top/bottom layers if necessary.

Table 10-2. Layer Stack-Up

Table 10 2: Eager Stack Op						
LAYER NO.	LAYER NAME	COPPER WT. (oz.)	COMMENTS			
1	Side A - DMD only	1.5	DMD, escapes, low frequency signals, power sub-planes.			
2	Ground	1	Solid ground plane (net GND).			
3	Signal	0.5	50 $Ω$ and 100 $Ω$ differential signals			
4	Ground	1	Solid ground plane (net GND)			
5	DMD_P3P3V	1	+3.3-V power plane (net DMD_P3P3V)			
6	Signal	0.5	50 $Ω$ and 100 $Ω$ differential signals			
7	Ground	1	Solid ground plane (net GND).			
8	Side B - All other Components	1.5	Discrete components, low frequency signals, power sub-planes			

Product Folder Links: DLP500YX

10.2.2 Impedance Requirements

TI recommends that the board has matched impedance of 50 Ω ±10% for all signals. The exceptions are listed in Figure 10-1 and repeated for convenience in Table 10-3.

Table 10-3. Special Impedance Requirements

Signal Type	Signal Name	Impedance (ohms)	
	D_AP(0:15), D_AN(0:15)		
A channel LVDS differential pairs	DCLK_AP, DCLK_AN	100 ±10% differential across each pair	
	SCTRL_AP, SCTRL_AN		
	D_BP(0:15), D_BN(0:15)		
B channel LVDS differential pairs	DCLK_BP, DCLK_BN	100 ±10% differential across each pair	
	SCTRL_BP, SCTRL_BN		
	D_CP(0:15), D_CN(0:15)	100 ±10% differential across each	
C channel LVDS differential pairs	DCLK_CP, DCLK_CN		
	SCTRL_CP, SCTRL_CN	- Pan	
	D_DP(0:15), D_DN(0:15)		
D channel LVDS differential pairs	DCLK_DP, DCLK_DN	100 ±10% differential across each	
	SCTRL_DP, SCTRL_DN	7	

10.2.3 Trace Width, Spacing

Unless otherwise specified, TI recommends that all signals follow the 0.005"/0.005" design rule. Minimum trace clearance from the ground ring around the PWB has a 0.1" minimum. An analysis of impedance and stack-up requirements determine the actual trace widths and clearances.

10.2.3.1 Voltage Signals

Below are additional voltage supply layout examples from the power planes to the individual DMD pins. In general, power supply trace widths must be as wide as possible to reduce impedances.

Table 10-4. Special Trace Widths, Spacing Requirements

SIGNAL NAME	MINIMUM TRACE WIDTH TO PINS (MIL)	LAYOUT REQUIREMENT			
GND	15	Maximize trace width to connecting pin			
DMD_P3P3V	15	Maximize trace width to connecting pin			
DMD_P1P8V	15	Maximize trace width to connecting pin			
VOFFSET	15	Create mini plane from the power generation to the DMD input			
VRESET	15	Create mini plane from the power generation to the DMD input			
VBIAS	15	Create mini plane from the power generation to the DMD input			
All DMD control input/ output connections	10	Use 10 mil etch to connect all signals/voltages to DMD pads			

11 Device and Documentation Support

11.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.2 Device Support

11.2.1 Device Nomenclature

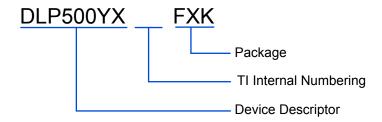


Figure 11-1. Part Number Description

11.2.2 Device Markings

The device marking includes both human-readable information and a 2-dimensional matrix code. The human-readable information is described in Figure 11-2. The 2-dimensional matrix code is an alpha-numeric character string that contains the DMD part number, part 1 of the serial number, and part 2 of the serial number. The first character of the DMD serial number (part 1) is the manufacturing year. The second character of the DMD serial number (part 1) is the manufacturing month.

Example: DLP500YXFXK GHXXXXX LLLLLLM

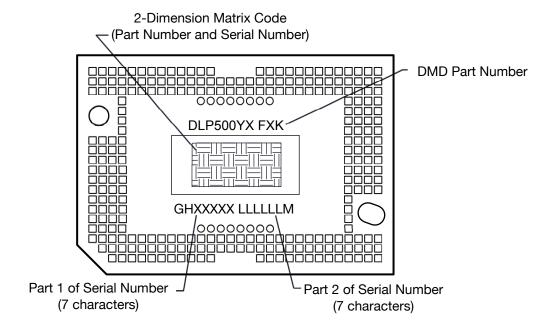


Figure 11-2. DMD Marking Locations

Submit Document Feedback

11.3 Documentation Support

11.3.1 Related Documentation

The following documents contain additional information related to the chipset components used with the DLP500YX.

- DLP500YX Product Folder
- DLPC900 Product Folder
- DLPC900 Programmers Guide

11.4 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.5 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.6 Trademarks

TI E2E™ is a trademark of Texas Instruments.

DLP® is a registered trademark of Texas Instruments.

All trademarks are the property of their respective owners.

11.7 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.8 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

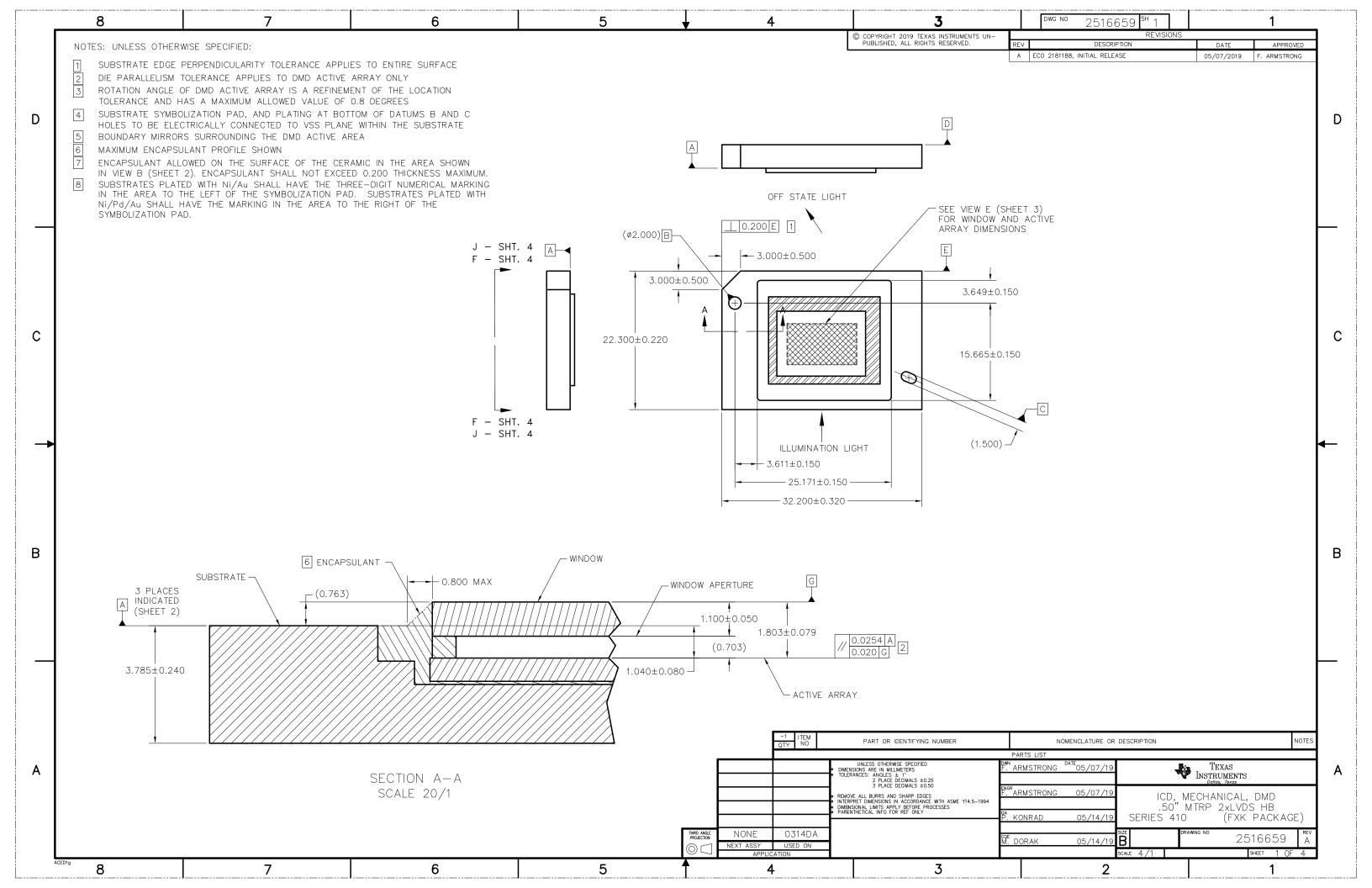
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

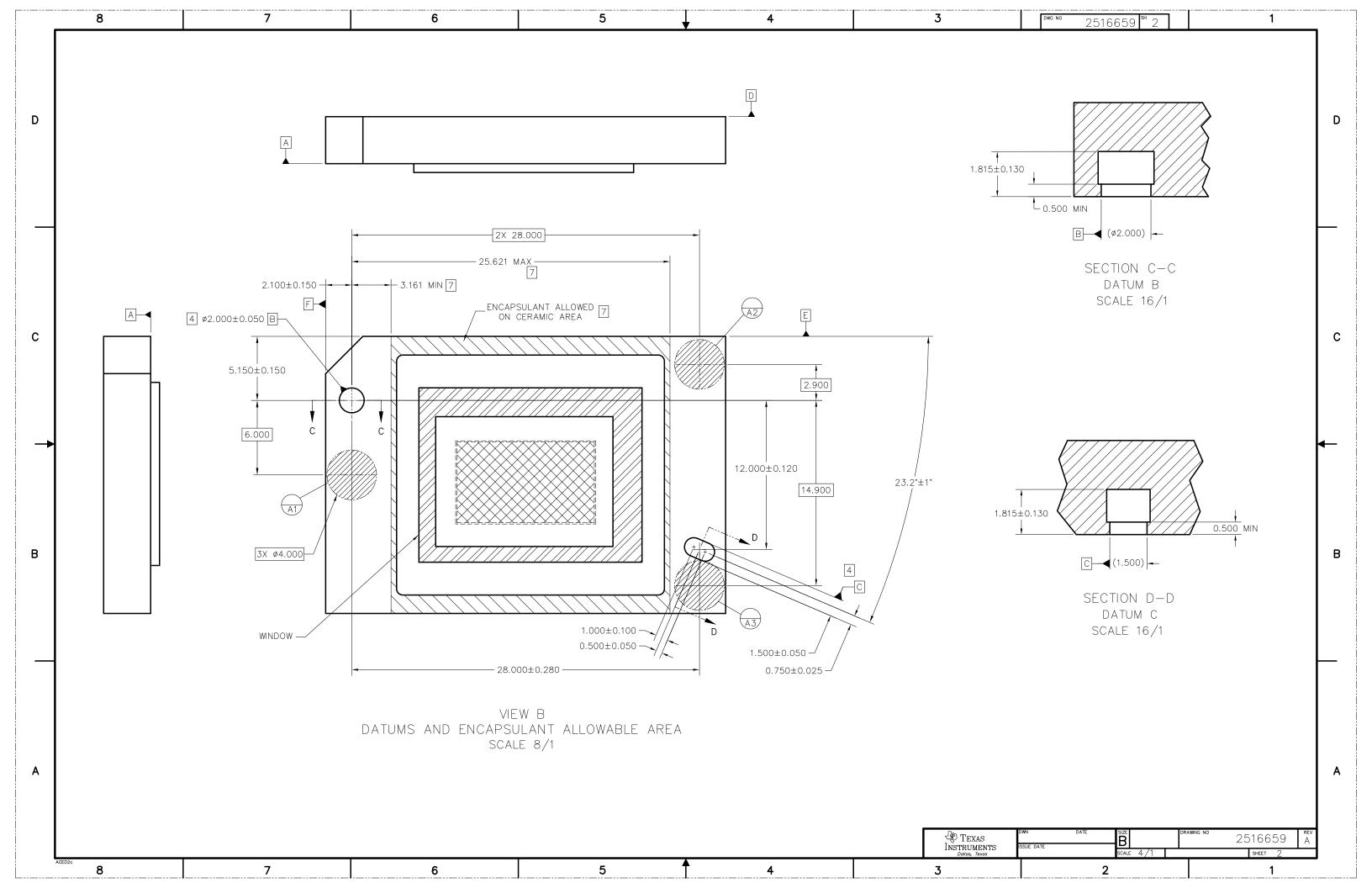
www.ti.com 9-Nov-2025

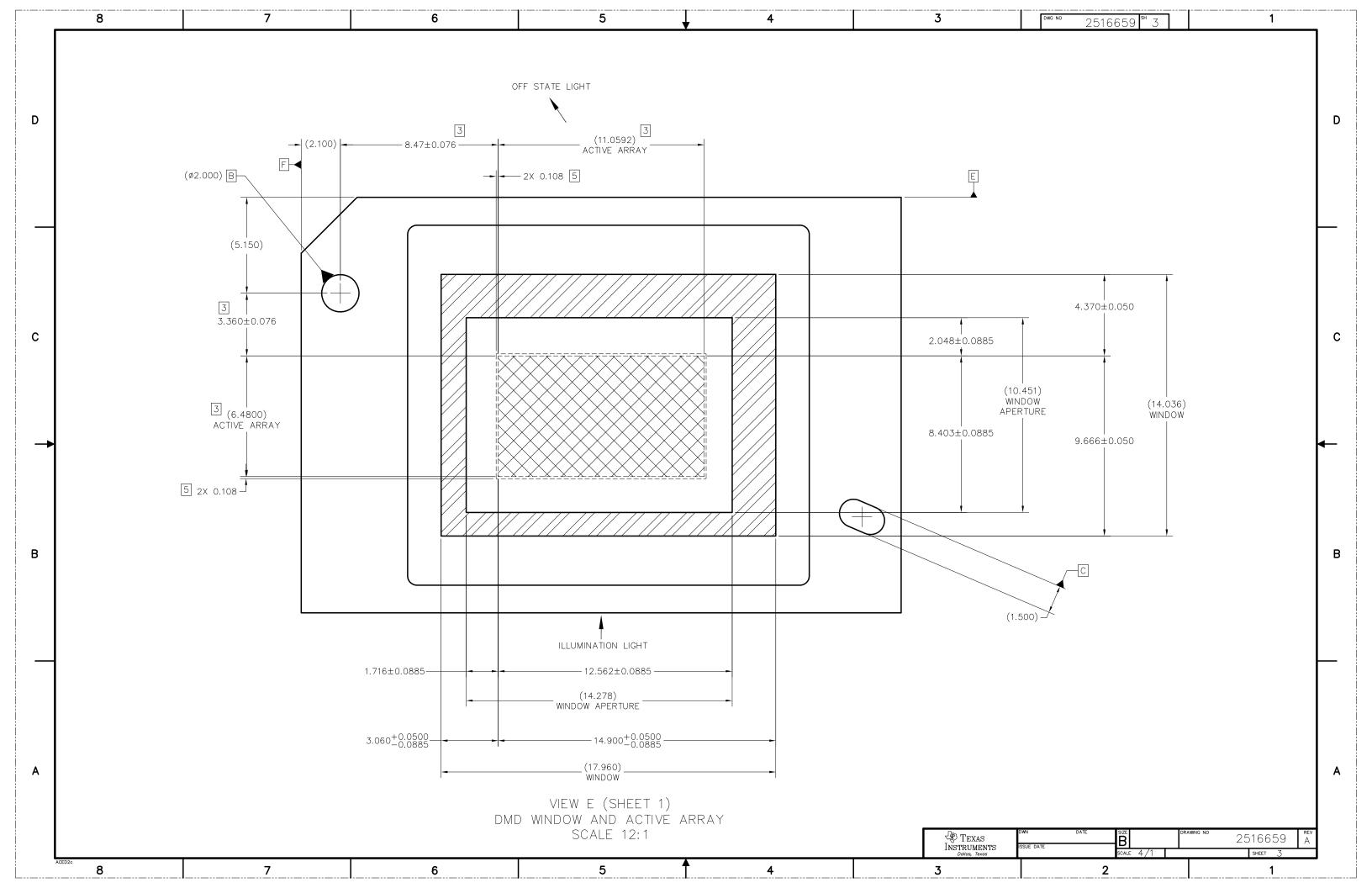
PACKAGING INFORMATION

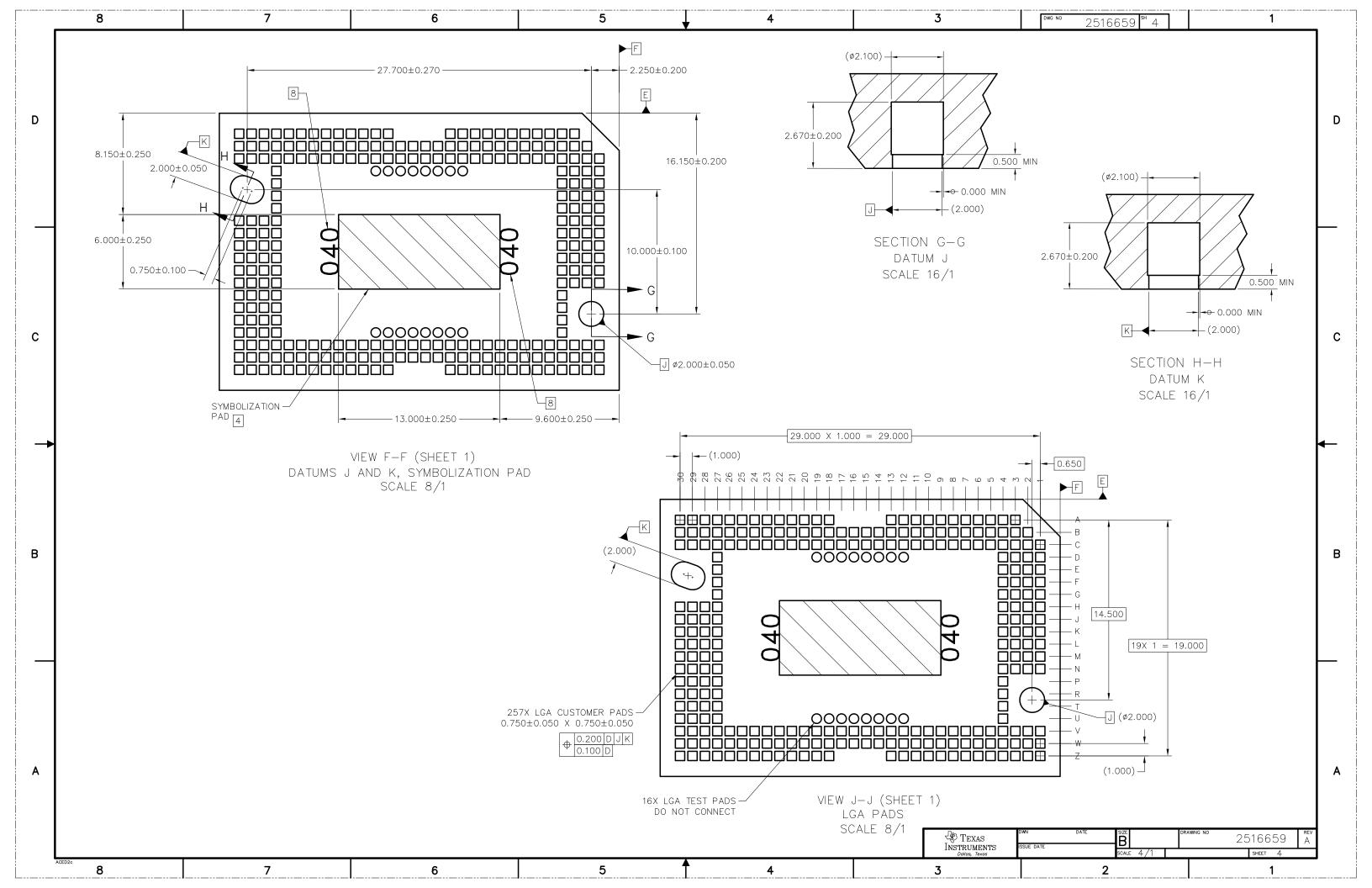
Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
DLP500YXFXK	Last Time Buy	Production	CLGA (FXK) 257	33 JEDEC TRAY (5+1)	Yes	NIPDAU	N/A for Pkg Type	0 to 70	

⁽¹⁾ Status: For more details on status, see our product life cycle.


- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025