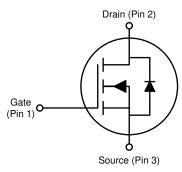
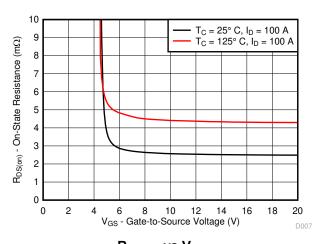


CSD19505KTT 80 V N-Channel NexFET™ Power MOSFET

1 Features


- Ultra-low Q_g and Q_{gd} Low thermal resistance
- Avalanche rated
- Pb-free terminal plating
- RoHS compliant
- Halogen free
- D²PAK plastic package


2 Applications

- Secondary side synchronous rectifier
- Motor control

3 Description

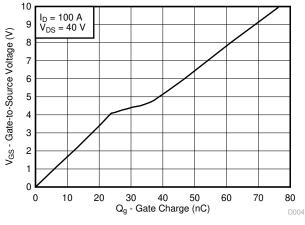
This 80V, 2.6mΩ, D²PAK (TO-263) NexFET[™] power MOSFET is designed to minimize losses in power conversion applications.

R_{DS(on)} vs V_{GS}

Product Summary

T _A = 25°	С	TYPICAL VA	UNIT		
V _{DS}	Drain-to-Source Voltage	80	V		
Qg	Gate Charge Total (10V)	76		nC	
Q _{gd}	Gate Charge Gate to Drain	te Charge Gate to Drain 11			
В	Drain-to-Source On Resistance	V _{GS} = 6V	2.9	mΩ	
R _{DS(on)}	Dialii-to-Source Off Resistance	V _{GS} = 10V 2.6		mΩ	
V _{GS(th)}	Threshold Voltage	2.6	V		

Device Information (1)


DEVICE	QTY	MEDIA	PACKAGE	SHIP
CSD19505KTT	500	13-Inch	D ² PAK Plastic Package	Tape &
CSD19505KTTT	50	Reel	D FAR Flastic Fackage	Reel

For all available packages, see the orderable addendum at the end of the data sheet.

Absolute Maximum Ratings

25°C	VALUE	UNIT
Drain-to-Source Voltage	80	V
Gate-to-Source Voltage	±20	V
Continuous Drain Current (Package Limited)	200	Α
Continuous Drain Current (Silicon Limited), T _C = 25°C	212	А
Continuous Drain Current (Silicon Limited), T _C = 100°C	150	А
Pulsed Drain Current ⁽¹⁾	400	Α
Power Dissipation	300	W
Operating Junction, Storage Temperature	-55 to 175	°C
Avalanche Energy, Single Pulse I_D = 101A, L = 0.1mH, R_G = 25 Ω	510	mJ
	Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current (Package Limited) Continuous Drain Current (Silicon Limited), T _C = 25°C Continuous Drain Current (Silicon Limited), T _C = 100°C Pulsed Drain Current(1) Power Dissipation Operating Junction, Storage Temperature Avalanche Energy, Single Pulse	Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current (Package Limited) Continuous Drain Current (Silicon Limited), T _C = 25°C Continuous Drain Current (Silicon Limited), T _C = 100°C Pulsed Drain Current(1) Power Dissipation Operating Junction, Storage Temperature Avalanche Energy, Single Pulse

Max $R_{\theta JC}$ = 0.5°C/W, pulse duration ≤100µs, duty cycle ≤1%.

Gate Charge

Table of Contents

1 Features1	5.1 Third-Party Products Disclaimer
2 Applications1	5.2 Receiving Notification of Documentation Updates7
3 Description	5.3 Support Resources7
4 Specifications3	5.4 Trademarks7
4.1 Electrical Characteristics3	5.5 Electrostatic Discharge Caution7
4.2 Thermal Information3	5.6 Glossary7
4.3 Typical MOSFET Characteristics4	6 Revision History7
5 Device and Documentation Support7	7 Mechanical, Packaging, and Orderable Information 8

4 Specifications

4.1 Electrical Characteristics

(T_A = 25°C unless otherwise stated)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
STATIC	CHARACTERISTICS		<u>'</u>		
BV _{DSS}	Drain-to-source voltage	V _{GS} = 0V, I _D = 250μA	80		V
I _{DSS}	Drain-to-source leakage current	V _{GS} = 0V, V _{DS} = 64V		1	μΑ
I _{GSS}	Gate-to-source leakage current	V _{DS} = 0V, V _{GS} = 20V		100	nA
V _{GS(th)}	Gate-to-source threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.2 2.6	3.2	V
В	Drain-to-source on-resistance	V _{GS} = 6V, I _D = 100A	2.9	3.8	mΩ
R _{DS(on)}	Drain-to-source on-resistance	V _{GS} = 10V, I _D = 100A	2.6	3.1	mΩ
9 _{fs}	Transconductance	V _{DS} = 8V, I _D = 100A	262		S
DYNAMI	C CHARACTERISTICS			,	
C _{iss}	Input capacitance		6090	7920	pF
C _{oss}	Output capacitance	$V_{GS} = 0V, V_{DS} = 40V, f = 1MHz$	1600	2080	pF
C _{rss}	Reverse transfer capacitance		26	34	pF
R _G	Series gate resistance		1.4	2.8	Ω
Q _g	Gate charge total (10V)		76		nC
Q _{gd}	Gate charge gate-to-drain	V = 40V L = 400A	11		nC
Q _{gs}	Gate charge gate-to-source	V _{DS} = 40V, I _D = 100A	25		nC
Q _{g(th)}	Gate charge at V _{th}		15		nC
Q _{oss}	Output charge	V _{DS} = 40V, V _{GS} = 0V	214		nC
t _{d(on)}	Turn on delay time		11		ns
t _r	Rise time	$V_{DS} = 40V, V_{GS} = 10V,$	5		ns
t _{d(off)}	Turn off delay time	$V_{DS} = 40V, I_D = 100A$ $V_{DS} = 40V, V_{GS} = 0V$ $V_{DS} = 40V, V_{GS} = 10V,$ $I_{DS} = 100A, R_G = 0\Omega$	22		ns
t _f	Fall time		3		ns
DIODE C	CHARACTERISTICS	'		Į.	
V _{SD}	Diode forward voltage	I _{SD} = 100A, V _{GS} = 0V	0.9	1.1	V
Q _{rr}	Reverse recovery charge	V _{DS} = 40V, I _F = 100A,	400		nC
t _{rr}	Reverse recovery time	di/dt = 300A/µs	88		ns

4.2 Thermal Information

(T_A = 25°C unless otherwise stated)

	THERMAL METRIC	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction-to-case thermal resistance			0.5	°C/W
$R_{\theta JA}$	Junction-to-ambient thermal resistance			62	°C/W

4.3 Typical MOSFET Characteristics

(T_A = 25°C unless otherwise stated)

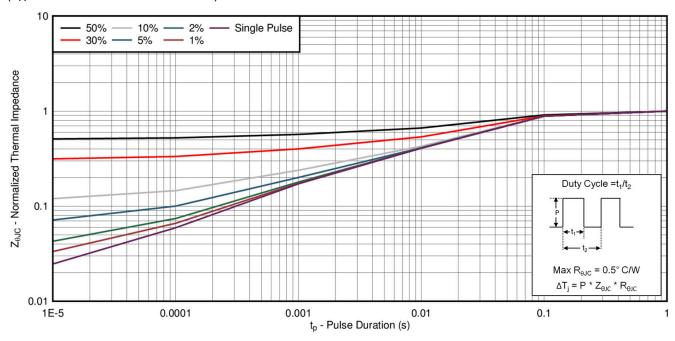
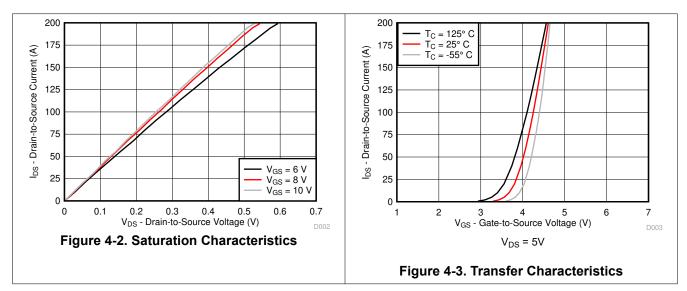



Figure 4-1. Transient Thermal Impedance

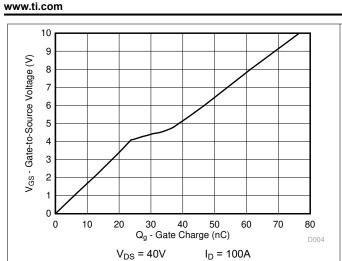
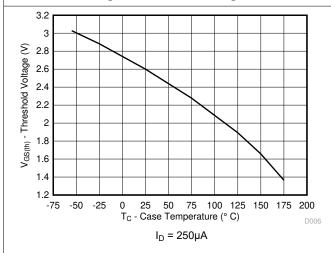



Figure 4-4. Gate Charge

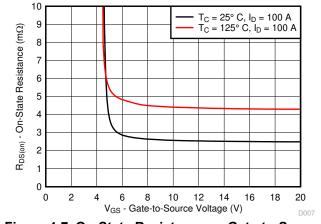
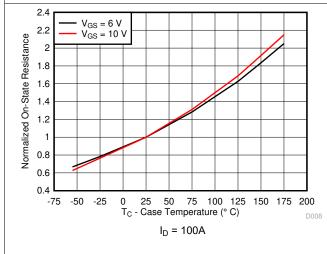
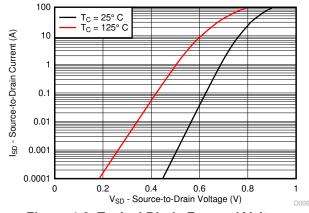



Figure 4-7. On-State Resistance vs Gate-to-Source Voltage

Figure 4-6. Threshold Voltage vs Temperature



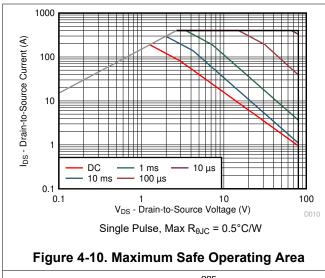

Figure 4-8. Normalized On-State Resistance vs **Temperature**

Figure 4-9. Typical Diode Forward Voltage

Copyright © 2025 Texas Instruments Incorporated

Submit Document Feedback

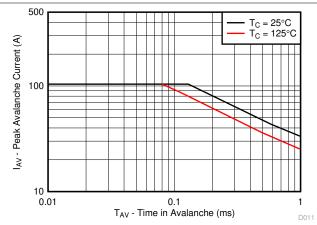


Figure 4-11. Single Pulse Unclamped Inductive Switching

225 200

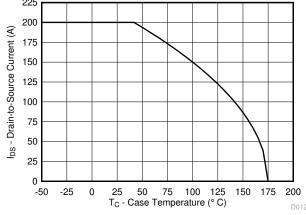


Figure 4-12. Maximum Drain Current vs Temperature

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

5 Device and Documentation Support

5.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

5.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

5.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

5.4 Trademarks

NexFET[™] is a trademark of TI.

TI E2E[™] are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

5.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

5.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

6 Revision History

Changes from Revision * (March 2016) to Revision A (June 2025)

Page

Updated the numbering format for tables, figures, and cross-references throughout the document.......

7 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

www.ti.com 7-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
CSD19505KTT	Active	Production	DDPAK/ TO-263 (KTT) 2	500 LARGE T&R	ROHS Exempt	SN	Level-2-260C-1 YEAR	-55 to 175	CSD19505KTT
CSD19505KTT.B	Active	Production	DDPAK/ TO-263 (KTT) 2	500 LARGE T&R	ROHS Exempt	SN	Level-2-260C-1 YEAR	-55 to 175	CSD19505KTT
CSD19505KTTT	Active	Production	DDPAK/ TO-263 (KTT) 2	50 SMALL T&R	ROHS Exempt	SN	Level-2-260C-1 YEAR	-55 to 175	CSD19505KTT
CSD19505KTTT.B	Active	Production	DDPAK/ TO-263 (KTT) 2	50 SMALL T&R	ROHS Exempt	SN	Level-2-260C-1 YEAR	-55 to 175	CSD19505KTT

⁽¹⁾ Status: For more details on status, see our product life cycle.

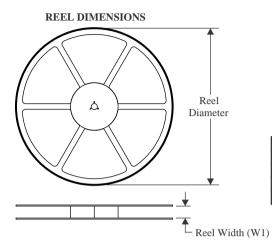
- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

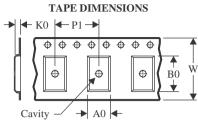
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.


PACKAGE OPTION ADDENDUM

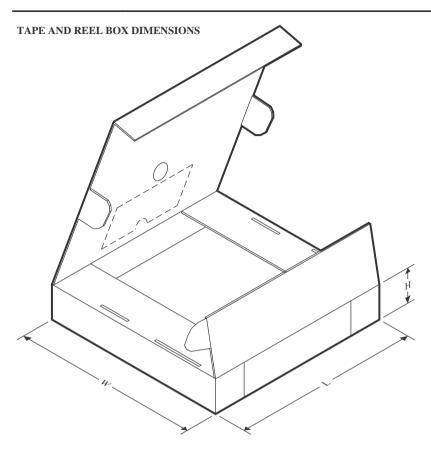

www.ti.com 7-Nov-2025

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jun-2025

TAPE AND REEL INFORMATION

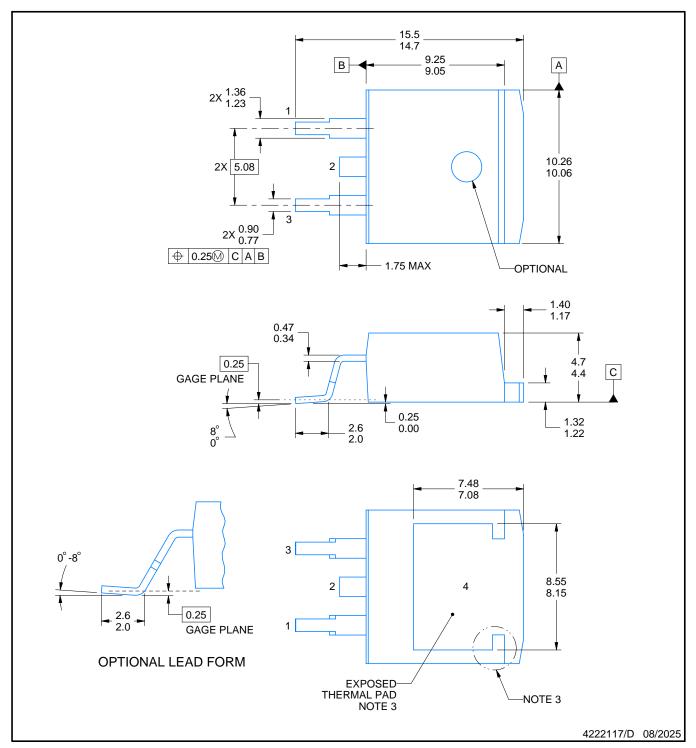
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CSD19505KTT	DDPAK/ TO-263	KTT	2	500	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2
CSD19505KTTT	DDPAK/ TO-263	KTT	2	50	330.0	24.4	10.8	16.3	5.11	16.0	24.0	Q2

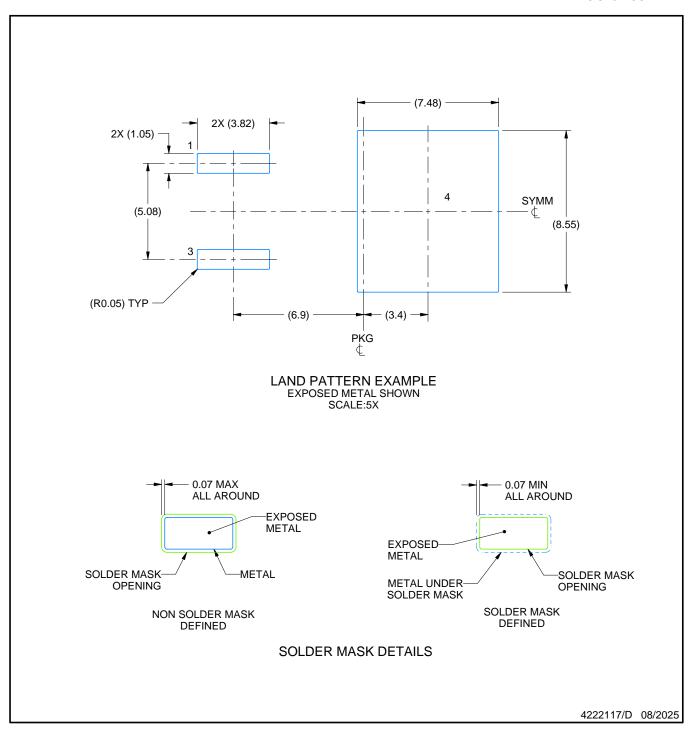
www.ti.com 24-Jun-2025



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CSD19505KTT	DDPAK/TO-263	ктт	2	500	340.0	340.0	38.0
CSD19505KTTT	DDPAK/TO-263	KTT	2	50	340.0	340.0	38.0

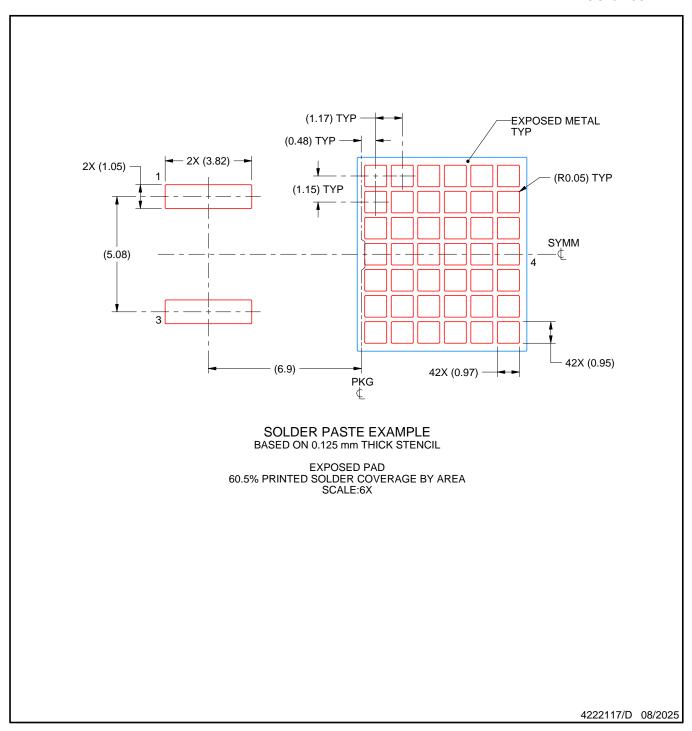
TRANSISTOR OUTLINE


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. Features may not exist and shape may vary per different assembly sites. Pin 2 and Pin 4 connected. 4. Reference JEDEC registration TO-263.

TRANSISTOR OUTLINE



NOTES: (continued)

- 5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002(www.ti.com/lit/slma004) and SLMA004 (www.ti.com/lit/slma004).
- 6. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

TRANSISTOR OUTLINE

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025