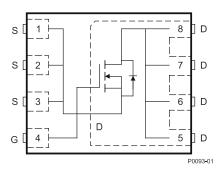


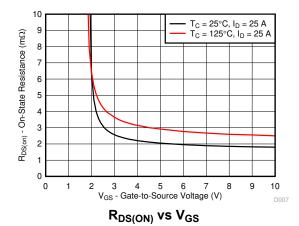
CSD16321Q5 SLPS220E - AUGUST 2009 - REVISED DECEMBER 2023

CSD16321Q5 25V N-Channel NexFET™ Power MOSFET

1 Features


- Optimized for 5V gate drive
- Ultra-low Q_g and Q_{gd}
- Low-thermal resistance
- Avalanche rated
- Lead-free terminal plating
- RoHS compliant
- SON 5mm × 6mm plastic package

2 Applications


- Point-of-load synchronous buck converter for applications in networking, telecom, and computing systems
- Optimized for synchronous FET applications

3 Description

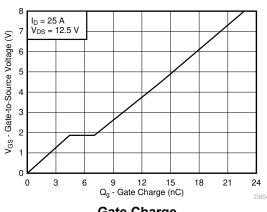
This 25V, 1.9mΩ, 5mm × 6mm SON NexFET™ power MOSFET has been designed to minimize losses in power conversion and optimized for 5V gate drive applications.

Top View

Product Summary

T _A = 25°	С	TYPICAL VA	UNIT	
V _{DS}	Drain-to-Source Voltage 25			
Qg	Gate Charge Total (4.5V) 14			
Q _{gd}	Gate Charge Gate-to-Drain	2.5	nC	
		V _{GS} = 3V	2.8	
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 4.5V	2.1	mΩ
		V _{GS} = 8V	1.9	
V _{GS(th)}	Threshold Voltage	1.1		V

Device Information⁽¹⁾


DEVICE	MEDIA	QTY	PACKAGE	SHIP
CSD16321Q5	13-Inch Reel	2500	SON	Таре
CSD16321Q5T	7-Inch Reel	250	5.00mm × 6.00mm Plastic Package	and Reel

For all available packages, see the orderable addendum at the end of the data sheet.

Absolute Maximum Ratings

7 toodiato maximam ratingo								
T _A = 2	5°C	VALUE	UNIT					
V _{DS}	Drain-to-Source Voltage	25	V					
V _{GS}	Gate-to-Source Voltage	+10 / –8	V					
	Continuous Drain Current (Package Limited)	100						
I _D	Continuous Drain Current (Silicon Limited), T _C = 25°C	177	Α					
	Continuous Drain Current ⁽¹⁾	29						
I _{DM}	Pulsed Drain Current ⁽²⁾	400	Α					
_	Power Dissipation ⁽¹⁾	3.1	W					
P _D	Power Dissipation, T _C = 25°C	113	VV					
T _J , T _{stg}	Operating Junction, Storage Temperature	-55 to 150	°C					
E _{AS}	Avalanche Energy, Single Pulse I_D = 66A, L = 0.1mH, R_G = 25 Ω	218	mJ					

- Typical $R_{\theta JA} = 40^{\circ} \text{C/W}$ on 1in^2 , 2oz Cu pad on 0.06in thick FR4 PCB.
- Max $R_{\theta JC}$ = 1.1°C/W, pulse duration ≤ 100 μ s, duty cycle ≤ (2)

Gate Charge

Table of Contents

1 Features1	5.1 Receiving Notification of Documentation Updates7
2 Applications1	5.2 Support Resources7
3 Description	
4 Specifications3	
4.1 Electrical Characteristics3	
4.2 Thermal Information3	
4.3 Typical MOSFET Characteristics4	7 Mechanical, Packaging, and Orderable Information9
5 Device and Documentation Support7	

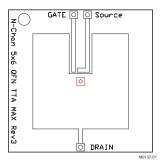
4 Specifications

4.1 Electrical Characteristics

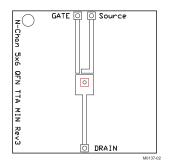
 $T_A = 25$ °C (unless otherwise stated)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
STATIC	CHARACTERISTICS					
BV _{DSS}	Drain-to-source voltage	V _{GS} = 0V, I _D = 250μA	25			V
I _{DSS}	Drain-to-source leakage current	V _{GS} = 0V, V _{DS} = 20V			1	μΑ
I _{GSS}	Gate-to-source leakage current	V _{DS} = 0V, V _{GS} = +10 / -8V			100	nA
V _{GS(th)}	Gate-to-source threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.9	1.1	1.4	V
		$V_{GS} = 3V$, $I_D = 25A$		2.8	3.8	
R _{DS(on)}	Drain-to-source on resistance	V _{GS} = 4.5V, I _D = 25A		2.1	2.6	$m\Omega$
		V _{GS} = 8V, I _D = 25A		1.9	2.4	
9 _{fs}	Transconductance	V _{DS} = 12.5V, I _D = 25A		150		S
DYNAMI	C CHARACTERISTICS	·				
C _{iss}	Input capacitance			2360	3100	pF
C _{oss}	Output capacitance	V _{GS} = 0V, V _{DS} = 12.5V, f = 1MHz		1700	2200	pF
C _{rss}	Reverse transfer capacitance			115	150	pF
R _G	Series gate resistance			1.5	3	Ω
Qg	Gate charge total (4.5 V)			14	19	nC
Q _{gd}	Gate charge gate-to-drain	V _{DS} = 12.5V, I _D = 25A		2.5		nC
Q _{gs}	Gate charge gate-to-source	V _{DS} = 12.5V, I _D = 25A		4		nC
Q _{g(th)}	Gate charge at V _{th}			2.1		nC
Q _{oss}	Output charge	V _{DS} = 15V, V _{GS} = 0V		36		nC
t _{d(on)}	Turnon delay time			9		ns
t _r	Rise time	V _{DS} = 12.5V, V _{GS} = 4.5V,		15		ns
t _{d(off)}	Turnoff delay time	$I_D = 25A, R_G = 2\Omega$		27		ns
t _f	Fall time			17		ns
DIODE (CHARACTERISTICS					
V _{SD}	Diode forward voltage	I _{SD} = 25A, V _{GS} = 0V		0.8	1	V
Q _{rr}	Reverse recovery charge	V_{DD} = 13V, I_F = 25A, di/dt = 300A/ μ s		33		nC
t _{rr}	Reverse recovery time	V _{DD} = 13V, I _F = 25A, di/dt = 300A/μs		32		ns

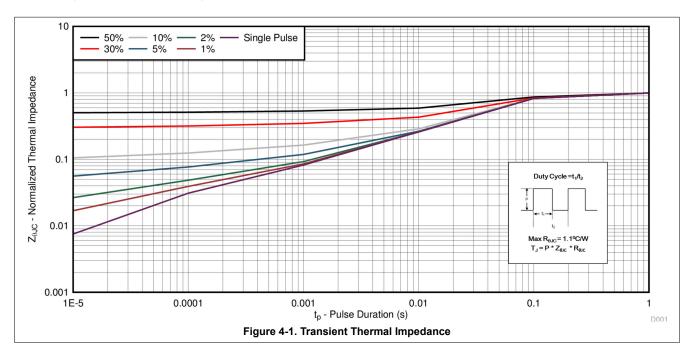
4.2 Thermal Information


T_A = 25°C (unless otherwise stated)

	PARAMETER	MIN	TYP	MAX	UNIT
R _{θJC}	Junction-to-case thermal resistance ⁽¹⁾			1.1	°C/W
R _{0JA}	Junction-to-ambient thermal resistance ⁽¹⁾ (2)			50	°C/W


⁽¹⁾ $R_{\theta JC}$ is determined with the device mounted on a $1in^2$, 2oz Cu pad on a $1.5in \times 1.5in$, 0.06in thick FR4 board. $R_{\theta JC}$ is specified by design while $R_{\theta JA}$ is determined by the user's board design.

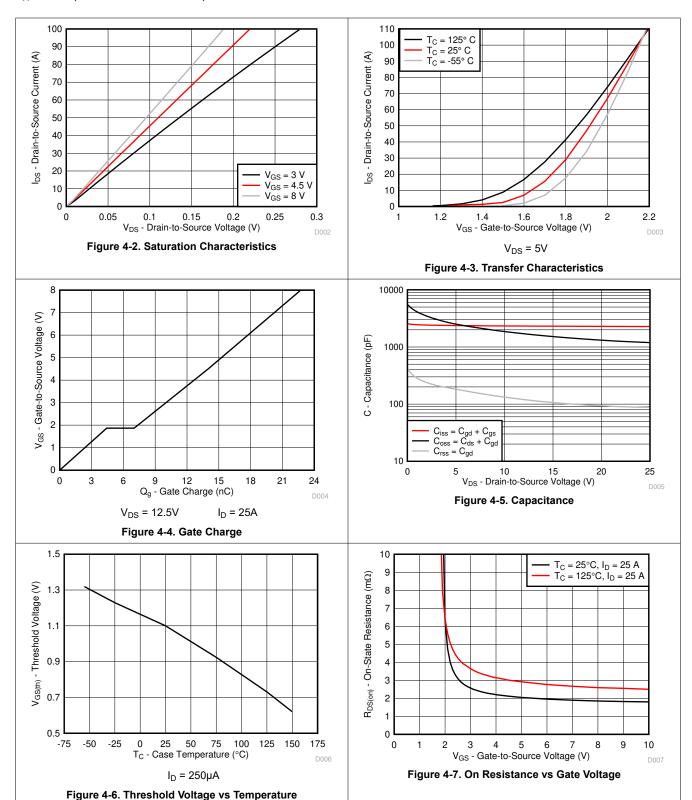
⁽²⁾ Device mounted on FR4 Material with 1 in² of 2oz Cu.


Max $R_{\theta JA} = 50^{\circ}$ C/W when mounted on 1in² of 2oz Cu.

Max $R_{\theta JA}$ = 125°C/W when mounted on minimum pad area of 2oz Cu.

4.3 Typical MOSFET Characteristics

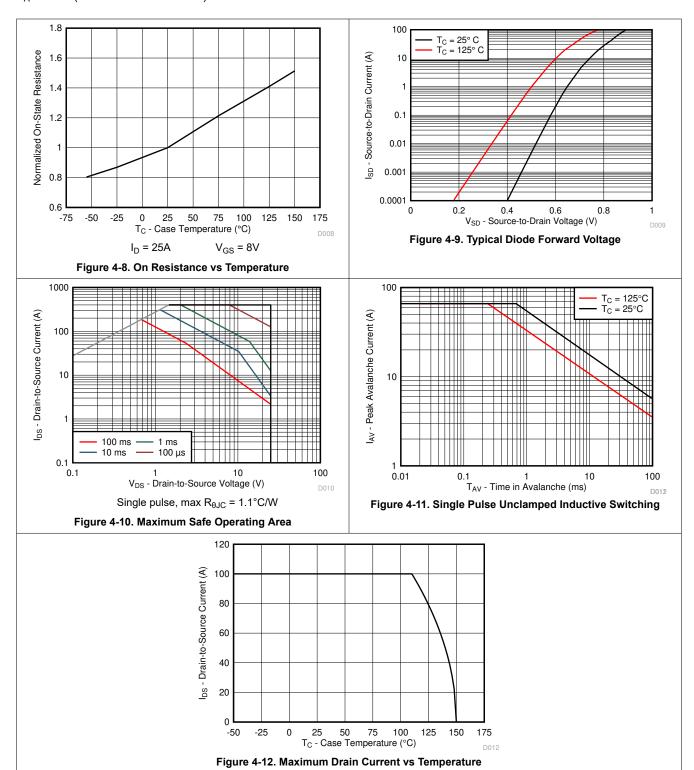
T_A = 25°C (unless otherwise stated)



Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

4.3 Typical MOSFET Characteristics (continued)


T_A = 25°C (unless otherwise stated)

4.3 Typical MOSFET Characteristics (continued)

T_A = 25°C (unless otherwise stated)

5 Device and Documentation Support

5.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

5.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

5.3 Trademarks

NexFET[™] and TI E2E[™] are trademarks of Texas Instruments. All trademarks are the property of their respective owners.

5.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

5.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

6 Revision HistoryNOTE: Page numbers for

171	OTE. Page numbers for previous revisions may differ from page numbers in the current version.	
C	hanges from Revision D (May 2017) to Revision E (December 2023)	Page
•	Updated the numbering format for tables, figures, and cross-references throughout the document	1
C	hanges from Revision C (December 2016) to Revision D (May 2017)	Page
•	Changed the R _{DS(ON)} values at 3 V, 4.5 V, 8 V & the <i>Description</i> to match the values on the <i>Electrical Characteristics</i> table.	1
C	hanges from Revision B (May 2010) to Revision C (December 2016)	Page
•	Changed Description text.	
•	Added silicon limited continuous drain current to Absolute Maximum Ratings table	
	Added max power dissipation at T _C = 25°C to <i>Absolute Maximum Ratings</i> table	
•		
•	Changed R _{θJA} max from 48°C/W : to 50°C/W	3
•	Changed the SOA in Figure 4-10 to reflect measured data	4
• _	Changed MECHANICAL DATA section to Mechanical, Packaging, and Orderable Information section	9
CI	hanges from Revision A (January 2010) to Revision B (May 2010)	Page
•	Changed $R_{DS(on)}$ - V_{GS} = 3V, I_D = 25A MAX value From: 3.5 To: 3.8	3
C	hanges from Revision * (August 2009) to Revision A (January 2010)	Page
•	Changed the labels on the Top View pinout image	1
•	Shanged retail at the Abbolicto Maximum retaining them. Regid to the Abbolicto Maximum retaining them.	
	Changed Figure 4-1 text From: $R_{\theta JA} = 92^{\circ}C/W$ To: Typical $R_{\theta JA} = 93^{\circ}C/W$	
	Changed Figure 4-10 text From: $R_{\theta JA} = 92^{\circ}C/W$ To: Typical $R_{\theta JA} = 93^{\circ}C/W$	
•	Changed Figure 4-11 X-axis values	4

7 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
CSD16321Q5	Active	Production	VSON-CLIP (DQH) 8	2500 LARGE T&R	ROHS Exempt	SN	Level-1-260C-UNLIM	-55 to 150	CSD16321
CSD16321Q5.B	Active	Production	VSON-CLIP (DQH) 8	2500 LARGE T&R	ROHS Exempt	SN	Level-1-260C-UNLIM	-55 to 150	CSD16321
CSD16321Q5T	Active	Production	VSON-CLIP (DQH) 8	250 SMALL T&R	ROHS Exempt	SN	Level-1-260C-UNLIM	-55 to 150	CSD16321
CSD16321Q5T.B	Active	Production	VSON-CLIP (DQH) 8	250 SMALL T&R	ROHS Exempt	SN	Level-1-260C-UNLIM	-55 to 150	CSD16321

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

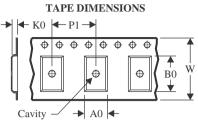
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

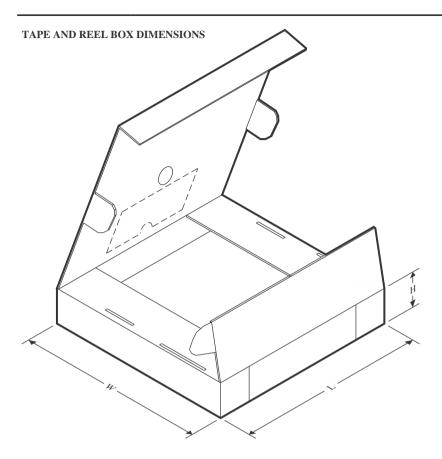
PACKAGE MATERIALS INFORMATION

www.ti.com 4-Mar-2024

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

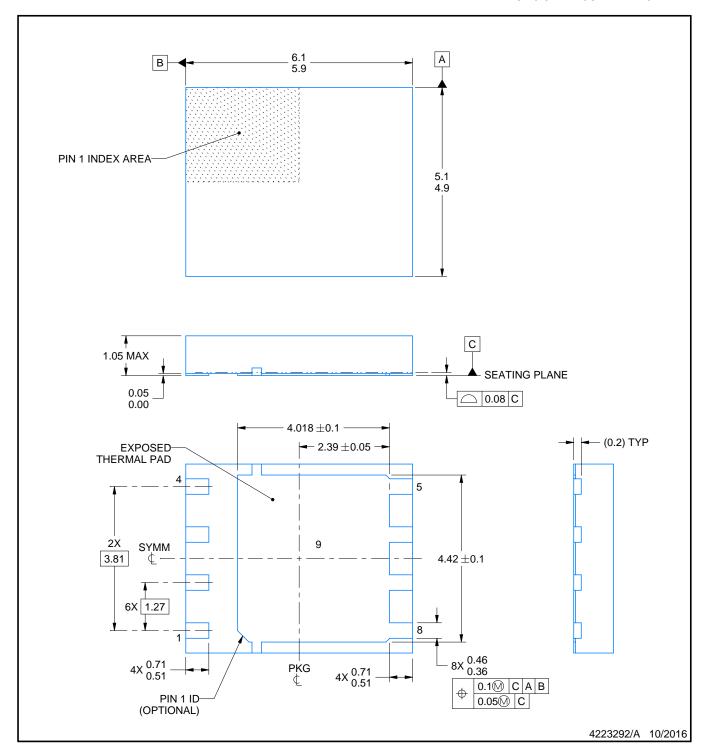


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CSD16321Q5T	VSON- CLIP	DQH	8	250	178.0	12.4	6.3	5.3	1.2	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 4-Mar-2024

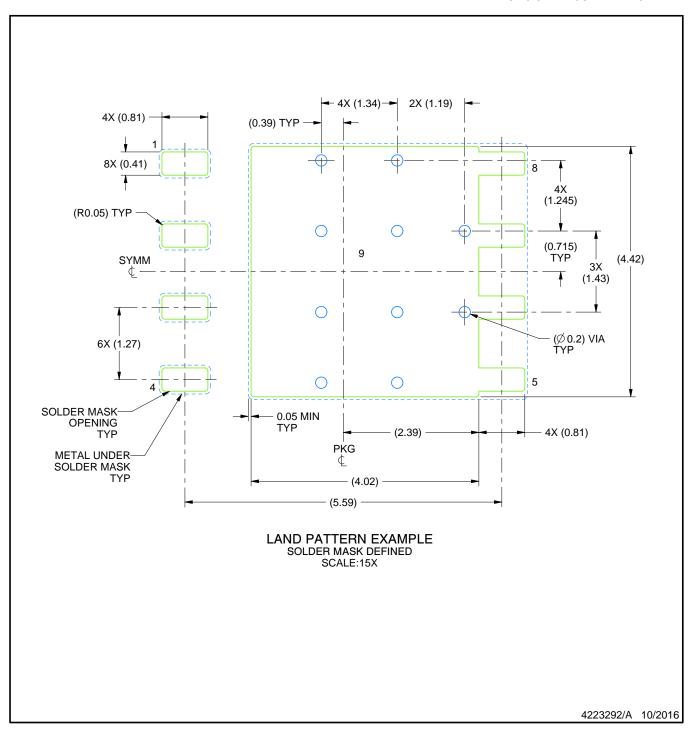

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CSD16321Q5T	VSON-CLIP	DQH	8	250	180.0	180.0	79.0

VSON-CLIP - 1.05 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

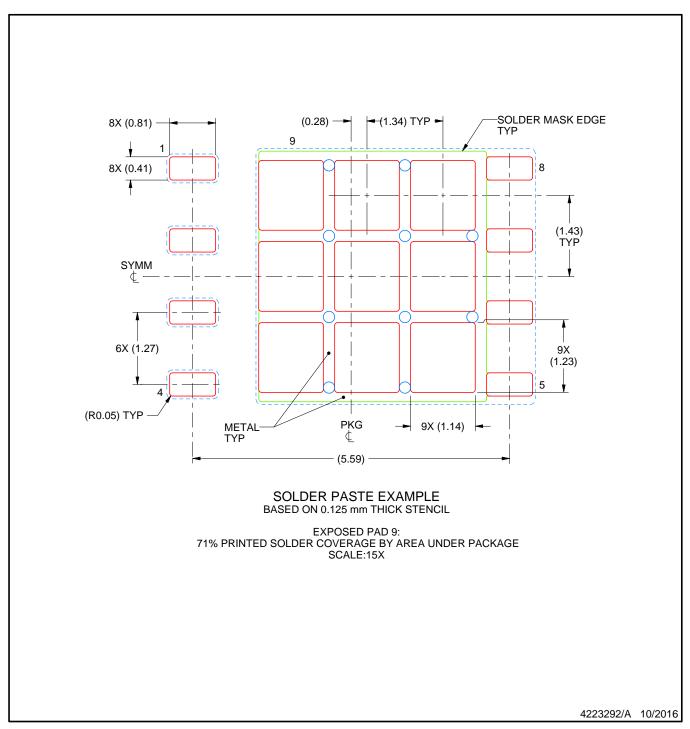
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC SMALL OUTLINE - NO LEAD


NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

 5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025